• B01 Krümmung und Symmetrie

    Die Frage, in wie weit geometrische Eigenschaften einer Mannigfaltigkeit ihre Topologie bestimmen, ist ein klassisches Problem der globalen Differentialgeometrie. Aufbauend auf aktuellen Durchbrüchen studieren wir dieses Problem für positiv gekrümmte Mannigfaltigkeiten mit Torussymmetrie. Ferner wollen wir die Klassifikation von positiv gekrümmten Kohomogenität-eins Mannigfaltigkeiten vervollständigen und Fundamentalgruppen nicht-negativ gekrümmter Mannigfaltigkeiten untersuchen. Weitere Ziele sind Strukturresultate für singuläre Riemannsche Blätterungen und ein differenzierbares Durchmesser-Pinching Theorem.

  • Projektleiter & Mitarbeiter

    Projektleiter
    PD Dr. Michael Wiemeler
    Prof. Dr. Burkhard Wilking
    Mitarbeiter
    Jakob Dittmer
    Yiheng He
    Dr. Lucas Lavoyer de Miranda
    Dr. Dennis Wulle