• B01 Curvature and Symmetry

    The question of how far geometric properties of a manifold determine its global topology is a classical problem in global differential geometry. Building on recent breakthroughs we investigate this problem for positively curved manifolds with torus symmetry. We also want to complete the classification of positively curved cohomogeneity one manifolds and obtain structure results for the fundamental groups of nonnegatively curved manifolds. Other goals include structure results for singular Riemannian foliations in nonnegative curvature and a differentiable diameter pinching theorem.

  • Project Leaders & Staff

    Project Leaders
    PD Dr. Michael Wiemeler
    Prof. Dr. Burkhard Wilking
    Staff
    Jakob Dittmer
    Yiheng He
    Dr. Lucas Lavoyer de Miranda
    Dr. Dennis Wulle