B06 Einstein 4-manifolds with two commuting Killing vectors
We will investigate the existence, rigidity and classification of 4-dimensional Lorentzian and Riemannian Einstein metrics with two commuting Killing vectors. Our goal is to address open questions in the study of black hole uniqueness and gravitational instantons. In the Ricci-flat case, the problem reduces to the analysis of axisymmetric harmonic maps from R^3 to the hyperbolic plane. In the case of negative Ricci curvature, a detailed understanding of the conformal boundary value problem for asymptotically hyperbolic Einstein metrics is required.