Modelle und Approximationen

© FB10 - D. Münsterkötter

Forschungsschwerpunkt C

Alsmeyer, Böhm, Dereich, Engwer, Friedrich (bis 2021), Gusakova (seit 2021), Hille, Holzegel (seit 2020), Huesmann, Jentzen (seit 2019), Kabluchko, Lohkamp, Löwe, Mukherjee, Ohlberger, Pirner (seit 2022), Rave, Schedensack (bis 2019), F. Schindler, Schlichting (seit 2020), Seis, Simon (seit 2021), Stevens, Weber (seit 2022), Wilking, Wirth, Wulkenhaar, Zeppieri.

Anwendungen aus den Natur- und Lebenswissenschaften bestimmen die Herausforderungen in diesem Forschungsschwerpunkt. Dabei zielen wir auf die Entwicklung und Analyse von grundlegenden dynamischen und geometrischen Modellierungs- und Approximationsansätzen zur Beschreibung deterministischer und stochastischer Systeme ab. Wir untersuchen beispielsweise das Zusammenspiel von makroskopischen Strukturen mit zugrundeliegenden mikroskopischen Prozessen und deren jeweiligen topologischen und geometrischen Eigenschaften. Ein weiterer Fokus ist die Untersuchung, Ausnutzung und Optimierung der zugrundeliegenden Geometrie in mathematischen Modellen. Wir untersuchen strukturelle Verbindungen zwischen unterschiedlichen mathematischen Konzepten, wie z.B. zwischen Lösungsmannigfaltigkeiten von partiellen Differentialgleichungen und nicht-linearer Interpolation oder zwischen verschiedenen metrischen, variationellen oder mehrskaligen Konvergenzkonzepten für Geometrien. Speziell zielen wir auf die Charakterisierung kennzeichnender geometrischer Eigenschaften von mathematischen Modellen und deren Approximationen.

 

 

 

 

 

 

 

Weitere Forschungsprojekte von Mitgliedern des Forschungsschwerpunkts C

 

CRC 1442 - B01: Curvature and Symmetry

The question of how far geometric properties of a manifold determine its global topology is a classical problem in global differential geometry. Building on recent breakthroughs we investigate this problem for positively curved manifolds with torus symmetry. We also want to complete the classification of positively curved cohomogeneity one manifolds and obtain structure results for the fundamental groups of nonnegatively curved manifolds. Other goals include structure results for singular Riemannian foliations in nonnegative curvature and a differentiable diameter pinching theorem.

online
Project members: Burkhard Wilking, Michael Wiemeler

CRC 1442 - B02: Geometric evolution equations

Hamilton's Ricci flow is a (weakly parabolic) geometric evolution equation, which deforms a given Riemannian metric in its most natural direction. Over the last decades, it has been used to prove several significant conjectures in Riemannian geometry and topology (in dimension three). In this project we focus on Ricci flow in higher dimensions, in particular on heat flow methods, new Ricci flow invariant curvature conditions and the dynamical Alekseevskii conjecture.

online
Project members: Burkhard Wilking, Christoph Böhm

CRC 1442 - D03: Integrability

We investigate blobbed topological recursion for the general Kontsevich matrix model, as well as the behaviour of Baker–Akhiezer spinor kernels for deformations of the spectral curve and for the quartic Kontsevich model. We study relations between spin structures and square roots of Strebel differentials, respectively between topological recursion and free probability. We examine factorisation super-line bundles on infinite-dimensional Grassmannians and motivic characteristic classes for intersection cohomology sheaves of Schubert varieties.

online
Project members: Jörg Schürmann, Raimar Wulkenhaar, Yifei Zhao

CRC 1442 - B04: Harmonic maps and symmetry

Many important geometric partial differential equations are Euler–Lagrange equations of natural functionals. Amongst the most prominent examples are harmonic and biharmonic maps between Riemannian manifolds (and their generalisations), Einstein manifolds and minimal submanifolds. Since commonly it is extremely difficult to obtain general structure results concerning existence, index and uniqueness, it is natural to examine these partial differential equations under symmetry assumptions.

online
Project members: Christoph Böhm, Anna Siffert

CRC 1442 - B06: Einstein 4-manifolds with two commuting Killing vectors

We will investigate the existence, rigidity and classification of 4-dimensional Lorentzian and Riemannian Einstein metrics with two commuting Killing vectors. Our goal is to address open questions in the study of black hole uniqueness and gravitational instantons. In the Ricci-flat case, the problem reduces to the analysis of axisymmetric harmonic maps from R^3 to the hyperbolic plane. In the case of negative Ricci curvature, a detailed understanding of the conformal boundary value problem for asymptotically hyperbolic Einstein metrics is required.

online
Project members: Hans-Joachim Hein, Gustav Holzegel

Mathematical analysis of bubble rings in ideal fluids

In this project, the evolution of toroidal bubble vortices is to be investigated. Bubble vortices are special vortices that occur in two-phase fluids. A typical and fascinating example is an air bubble ring in water created by dolphins or beluga whales. The underlying mathematical model is given by the two-phase Euler equations with surface tension. One major goal is a thorough mathematical construction of steady rings that move without changing their shape, and of perturbations of these. Such traveling waves are known for the classical Euler equations, but their existence is unknown for surface tension dependent models. Of particular interest is the role of the surface tension for the shape of the ring, which will be investigated. A second objective of this project is to understand how the effect of surface tension can be exploited to rigorously justify certain nonlinear motion laws of one or more interacting bubble rings. The understanding of such motion laws for the classical Euler equations is poor, and it is expected that the regularising effect of surface tension helps to mathematically tame the problem.

online
Project members: Christian Seis

Overcoming the curse of dimensionality through nonlinear stochastic algorithms: Nonlinear Monte Carlo type methods for high-dimensional approximation problems

In many relevant real-world problems it is of fundamental importance to approximately compute evaluations of high-dimensional functions. Standard deterministic approximation methods often suffer in this context from the so-called curse of dimensionality in the sense that the number of computational operations of the approximation method grows at least exponentially in the problem dimension. It is the key objective of the ERC-funded MONTECARLO project to employ multilevel Monte Carlo and stochastic gradient descent type methods to design and analyse algorithms which provably overcome the curse of dimensionality in the numerical approximation of several high-dimensional functions; these include solutions of certain stochastic optimal control problems of some nonlinear partial differential equations and of certain supervised learning problems.

online
Project members: Arnulf Jentzen

Global Estimates for non-linear stochastic PDEs

Semi-linear stochastic partial differential equations: global solutions’ behaviours
Partial differential equations are fundamental to describing processes in which one variable is dependent on two or more others – most situations in real life. Stochastic partial differential equations (SPDEs) describe physical systems subject to random effects. In the description of scaling limits of interacting particle systems and in quantum field theories analysis, the randomness is due to fluctuations related to noise terms on all length scales. The presence of a non-linear term can lead to divergencies. Funded by the European Research Council, the GE4SPDE project will describe the global behaviour of solutions of some of the most prominent examples of semi-linear SPDEs, building on the systematic treatment of the renormalisation procedure used to deal with these divergencies.

online
Project members: Hendrik Weber

Interdisziplinäres Lehrprogramm zu maschinellem Lernen und künstlicher Intelligenz

The aim of the project is to establish and test a graduated university-wide teaching programme on machine learning (ML) and artificial intelligence (AI). AI is taught as an interdisciplinary cross-sectional topic that has diverse application possibilities in basic research as well as in economy and society, but consequently also raises social, ethical and ecological challenges.

The modular teaching program is designed to enable students to build up their AI knowledge, apply it independently and transfer it directly to various application areas. The courses take place in a broad interdisciplinary context, i.e., students from different departments take the courses together and work together on projects.

online
Project members: Xiaoyi Jiang, Christian Engwer

Dynamical systems and irregular gradient flows The central goal of this project is to study asymptotic properties for gradient flows (GFs) and related dynamical systems. In particular, we intend to establish a priori bounds and related regularity properties for solutions of GFs, we intend to study the behaviour of GFs near unstable critical regions, we intend to derive lower and upper bounds for attracting regions, and we intend to establish convergence speeds towards global attrators. Special attention will be given to GFs with irregularities (discontinuities) in the gradient and for such GFs we also intend to reveal sufficient conditions for existence, uniqueness, and flow properties in dependence of the given potential. We intend to accomplish the above goals by extending techniques and concepts from differential geometry to describe and study attracting and critical regions, by using tools from convex analysis such as subdifferentials and other generalized derivatives, as well as by employing concepts from real algebraic geometry to describe domains of attraction. In particular, we intend to generalize the center-stable manifold theorem from the theory of dynamical systems to the considered non-smooth setting. Beside finite dimensional GFs, we also study GFs in their associated infinite dimensional limits. The considered irregular GFs and related dynamical systems naturally arise, for example, in the context of molecular dynamics (to model the configuration of atoms along temporal evoluation) and machine learning (to model the training process of artificial neural networks).
online
Project members: Christoph Böhm, Arnulf Jentzen

Mathematical Research Data Initiative - TA2: Scientific Computing Driven by the needs and requirements of mathematical research as well as scientific disciplines using mathematics, the NFDI-consortium MaRDI (Mathematical Research Data Initiative) will develop and establish standards and services for mathematical research data. Mathematical research data ranges from databases of special functions and mathematical objects, aspects of scientific computing such as models and algorithms to statistical analysis of data with uncertainties. It is also widely used in other scientific disciplines due to the cross-disciplinary nature of mathematical methods. online
Project members: Mario Ohlberger, Stephan Rave

CRC 1450 A05 - Targeting immune cell dynamics by longitudinal whole-body imaging and mathematical modelling We develop strategies for tracking and quantifying (immune) cell populations or even single cells in long-term (days) whole-body PET studies in mice and humans. This will be achieved through novel acquisition protocols, measured and simulated phantom data, use of prior information from MRI and microscopy, mathematical modelling, and mathematical analysis of image reconstruction with novel regularization paradigms based on optimal transport. Particular applications include imaging and tracking of macrophages and neutrophils following myocardial ischemia-reperfusion or in arthritis and sepsis. online
Project members: Benedikt Wirth

CRC 1450 A06 - Improving intravital microscopy of inflammatory cell response by active motion compensation using controlled adaptive optics We will advance multiphoton fluorescence microscopy by developing a novel optical module comprised of a high-speed deformable mirror that will actively compensate tissue motion during intravital imaging, for instance due to heart beat (8 Hz), breathing (3 Hz, in mm-range) or peristaltic movement of the gut in mice. To control this module in real-time, we will develop mathematical methods that track and predict tissue deformation. This will allow imaging of inflammatory processes at cellular resolution without mechanical tissue fixation. online
Project members: Benedikt Wirth