JunProf.Dr. Judith Verstegen

JunProf.Dr. Judith Verstegen

Heisenbergstraße 2
48149 Münster

Akademisches Profil

Externes Profil

  • Mitgliedschaften und Aktivitäten in Gremien

    Program Chair GIScience conference 2020
    Associate Editor Computers & Geosciences
    Associate Editor Environmental Modeling & Assessment
  • Projekte

    • Dist-KISS – Distance-Keeping: Influence of the StreetScape ()
      Gefördertes Einzelprojekt: VolkswagenStiftung - Corona Crisis and Beyond – Perspectives for Science, Scholarship and Society | Förderkennzeichen: 99 714
    • Future land-use-change induced subsidence in the Mekong delta (seit )
      Eigenmittelprojekt
    • LCS – Land Change Science Education ()
      Gefördertes Einzelprojekt: Universität Utrecht
    • FAPESP SPRINT 2016/50495-4 – Land use change impacts of increased bioenergy demand in Brazil ()
      Eigenmittelprojekt
  • Publikationen

    Auswahl

    • , , , , und . „Recent and projected impacts of land use and land cover changes on carbon stocks and biodiversity in East Kalimantan, Indonesia.Ecological Indicators, Nr. 103: 563575. doi: 10.1016/j.ecolind.2019.04.053.
    • , , und . „A computational approach to The Image of the City.Cities, Nr. 89: 1425. doi: 10.1016/j.cities.2019.01.006.
    • , , , , , , und . „How a Pareto frontier complements scenario projections in land use change impact assessment.Environmental Modelling & Software, Nr. 97: 287302. doi: 10.1016/j.envsoft.2017.08.006.
    • , , , , , und . „What can and can't we say about indirect land-use change in Brazil using an integrated economic - land-use change model?GCB Bioenergy, Nr. 8 (3): 561578. doi: 10.1111/gcbb.12270.
    • , , , und . „Detecting systemic change in a land use system by Bayesian data assimilation.Environmental Modelling and Software, Nr. 75 (null): 424438. doi: 10.1016/j.envsoft.2015.02.013.
    • , , , und . „Identifying a land use change cellular automaton by Bayesian data assimilation.Environmental Modelling and Software, Nr. 53 (null): 121136. doi: 10.1016/j.envsoft.2013.11.009.
    • , , , und . „Spatio-temporal uncertainty in Spatial Decision Support Systems: A case study of changing land availability for bioenergy crops in Mozambique.Computers, Environment and Urban Systems, Nr. 36 (1): 3042. doi: 10.1016/j.compenvurbsys.2011.08.003.

    Gesamtliste

    • , und . . „Quantifying uncertainty in Pareto fronts arising from spatial data.Environmental Modelling and Software, Nr. 141 (105069) doi: 10.1016/j.envsoft.2021.105069.
    • , und . „Modelling the effect of landmarks on pedestrian dynamics in urban environments.Computers, Environment and Urban Systems, Nr. 86: 101573. doi: 10.1016/j.compenvurbsys.2020.101573.
    • , , und . „Perception of urban subdivisions in pedestrian movement simulation.PloS one, Nr. 15 (12): e0244099. doi: 10.1371/journal.pone.0244099.
    • , , , , , und . „Brazilian Amazon indigenous peoples threatened by mining bill.Environmental Research Letters, Nr. 15 (10) doi: 10.1088/1748-9326/abb428.
    • , , und . „Quantifying the Effect of Land Use Change Model Coupling.Land, Nr. 9 (52) doi: 10.3390/land9020052.
    • , , , und . „Automatic Mapping of Center Line of Railway Tracks using Global Navigation Satellite System, Inertial Measurement Unit and Laser Scanner.Remote Sensing, Nr. 12 (3): 411. doi: 10.3390/rs12030411.
    • . . „Spatial Optimization - The local versus global food debate.Nature Food, Nr. 1: 198199. doi: 10.1038/s43016-020-0062-5.
    • , , , , , und . „Global ecosystem service values in climate class transitions.Environmental Research Letters, Nr. 15 (2) doi: 10.1088/1748-9326/ab5aab.
    • K., Janowicz, Verstegen, und J.A., Hrsg. . 11th International Conference on Geographic Information Science (GIScience 2021) - Part I, Wadern: Dagstuhl Publishing. doi: 10.4230/LIPIcs.GIScience.2021.I.0.
    • , , , , , und . „Exploring NASA's harmonized Landsat and Sentinel-2 (HLS) dataset to monitor deforestation in the Amazon rainforest.“ In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences doi: 10.5194/isprs-archives-XLIII-B3-2020-705-2020.
    • , , und . „Route Choice Through Regions by Pedestrian Agents.“ In 14th International Conference on Spatial Information Theory (COSIT 2019), Bd.142 aus Leibniz International Proceedings in Informatics (LIPIcs), herausgegeben von S. Timpf, C. Schlieder, M. Kattenbeck, B. Ludwig und K. Stewart. Wadern: Dagstuhl Publishing. doi: 10.4230/LIPIcs.COSIT.2019.5.
    • . . „A plea for statistical analyses of geosimulation model projections.“ Beitrag präsentiert auf der Spatial Data Science symposium, Santa Barbara, USA
    • , , , , und . „Recent and projected impacts of land use and land cover changes on carbon stocks and biodiversity in East Kalimantan, Indonesia.Ecological Indicators, Nr. 103: 563575. doi: 10.1016/j.ecolind.2019.04.053.
    • , , und . „A computational approach to The Image of the City.Cities, Nr. 89: 1425. doi: 10.1016/j.cities.2019.01.006.
    • , , , , , , und . „Exploring the emergence of a biojet fuel supply chain in Brazil: an agent‐based modeling approach.Global Change Biology Bioenergy, Nr. 00: 118. doi: 10.1111/gcbb.12594.
    • , , , , und . „Mapping land use changes resulting from biofuel production and the effect of mitigation measures.Global Change Biology Bioenergy, Nr. x doi: 10.1111/gcbb.12534.
    • , und . „Mental representation of space in Agent Based Models for pedestrian movement in urban environments: A conceptual model.“ Beitrag präsentiert auf der The 21st AGILE Conference on Geographic Information Science, Lund, Sweden
    • , , , , , , und . „Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach.Energy Policy, Nr. 123: 619641. doi: 10.1016/j.enpol.2018.09.015.
    • , , , , , , , und . „Analyses of Land Cover Change Trajectories Leading to Tropical Forest Loss: Illustrated for the West Kutai and Mahakam Ulu Districts, East Kalimantan, Indonesia.Land, Nr. 7 (3) doi: 10.3390/land7030108.
    • , , , , , und im Druck. „Spatial Evaluation of Global Climate Class Transitions and Ecosystem Service Values.“ Beitrag präsentiert auf der The 9th Ecosystem Services Partnership (ESP9) conference, Shenzhen, China
    • , , , , , , und . „How a Pareto frontier complements scenario projections in land use change impact assessment.Environmental Modelling & Software, Nr. 97: 287302. doi: 10.1016/j.envsoft.2017.08.006.
    • , , , , , , , , , , und . „Modeling the impacts of wood pellet demand on forest dynamics in southeastern United States.Biofuels, Bioproducts and Biorefining, Nr. 11 (6): 1007–1029. doi: 10.1002/bbb.1803.
    • , , und . „A framework to monitor, model, and actively manage crowd behaviour.“ Beitrag präsentiert auf der The 20th AGILE Conference on Geographic Information Science, Wageningen, The Netherlands
    • , , und . „Locating the position of a scenario projection in solution space.“ Beitrag präsentiert auf der The 20th AGILE Conference on Geographic Information Science, Wageningen, The Netherlands
    • . . „Quantifying and reducing uncertainty in land use change model projections - Case studies on the implications of increasing bioenergy demands.Dissertationsschrift, Utrecht University.
    • , , , , und . „Linking carbon stock change from land-use change to consumption of agricultural products: A review with Indonesian palm oil as a case study.Journal of Environmental Management, Nr. 184 (2): 340352. doi: 10.1016/j.jenvman.2016.08.055.
    • , , , , , und . „What can and can't we say about indirect land-use change in Brazil using an integrated economic - land-use change model?GCB Bioenergy, Nr. 8 (3): 561578. doi: 10.1111/gcbb.12270.
    • , , , , , , , und . „Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil.Applied Energy, Nr. 173 (null): 494510. doi: 10.1016/j.apenergy.2016.04.069.
    • , , , und . „Detecting systemic change in a land use system by Bayesian data assimilation.Environmental Modelling and Software, Nr. 75 (null): 424438. doi: 10.1016/j.envsoft.2015.02.013.
    • , , , , , , , , , , , , , , , , , , , , , , und . „Model collaboration for the improved assessment of biomass supply, demand, and impacts.GCB Bioenergy, Nr. 7 (3): 422437. doi: 10.1111/gcbb.12176.
    • , , , , und . „Integrated spatiotemporal modelling of bioenergy production potentials, agricultural land use, and related GHG balances; demonstrated for Ukraine.Biofuels, Bioproducts and Biorefining, Nr. 8 (3): 391411. doi: 10.1002/bbb.1471.
    • , , , und . „Identifying a land use change cellular automaton by Bayesian data assimilation.Environmental Modelling and Software, Nr. 53 (null): 121136. doi: 10.1016/j.envsoft.2013.11.009.
    • , , , , , , , und . „Combining empirical and theory-based land-use modelling approaches to assess economic potential of biofuel production avoiding iLUC: Argentina as a case study.Renewable and Sustainable Energy Reviews, Nr. 34 (null): 208224. doi: 10.1016/j.rser.2014.02.040.
    • , , , , , und . . „Impacts of Biofuel Production, Case Studies: Mozambique, Argentina and Ukraine – Final Report.Utrecht, The Netherlands: UNIDO and GEF.
    • , , , und . „Spatio-temporal uncertainty in Spatial Decision Support Systems: A case study of changing land availability for bioenergy crops in Mozambique.Computers, Environment and Urban Systems, Nr. 36 (1): 3042. doi: 10.1016/j.compenvurbsys.2011.08.003.
    • , , , und . „Spatiotemporal land use modelling to assess land availability for energy crops - illustrated for Mozambique.GCB Bioenergy, Nr. 4 (6): 859874. doi: 10.1111/j.1757-1707.2011.01147.x.