Professor Dr. Erich Bornberg-Bauer

Professor Dr. Erich Bornberg-Bauer

Hüfferstr. 1, Raum 100.16
48149 Münster

T: +49 251 83-21630
F: +49 251 83-24668

  • Forschungsschwerpunkte

    • Evolutionary molecular design: Escape from adaptative conflicts via multifunctionality in Proteins and RNA
    • Modular evolution of proteins: Dynamics and adaptive benefits of domain rearrangements
    • Genome evolution: Rearrangements and emergence of novel genes in development
    • Regulatory network evolution: Molecular causes and phenotypic consequences for diseases
    • Bioinformatics
  • Vita

    Akademische Ausbildung

    PhD in Theoretical Biochemistry (Institute for Theoratical Chemistry, University of Vienna, Austria)
    Diploma (equivalent to MSc) in Biochemistry, University of Vienna, Austria
    Studies in Biochemistry, Physics and Mathematics, University of Vienna, Austria

    Beruflicher Werdegang

    Gastprofessur Université Lyon 1, Claude Bernard, Laboratoire de Biométrie et Biologie Évolutive
    Gastwissenschaftler EBI, Thornton Group "The Spices", Cambridge
    Full Professor of Molecular Evolution and Bioinformatics, University of Münster, Germany
    Senior Lecturer in Bioinformatics, School of Biological Sciences, The University of Manchester, UK
    Project Manager EML Ltd. (Heidelberg, Germany)
    Postdoctoral Research Associate (Cancer Research Centre Heidelberg, Germany)
    Assistant Professor in Mathematics (Univ. Ass., Institute for Mathematics, University of Vienna, Austria)
  • Publikationen

    • , , und . . „Assessing structure and disorder prediction tools for de novo emerged proteins in the age of machine learning.F1000Research, Nr. eCollection 2023 doi: 10.12688/f1000research.130443.1.
    • , , und . . „Tracing the paths of modular evolution by quantifying rearrangement events of protein domains.BMC Ecology and Evolution, Nr. 25 (1) doi: 10.1186/s12862-024-02347-7.
    • , , , , , , und . . „High-throughput Selection of Human de novo-emerged sORFs with High Folding Potential.Genome Biology and Evolution, Nr. 16 (4) evae069. doi: 10.1093/gbe/evae069.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . „The complete sequence and comparative analysis of ape sex chromosomes.Nature, Nr. 630 (8015) doi: 10.1038/s41586-024-07473-2.
    • . . „DNA Transposons Favor De Novo Transcript Emergence Through Enrichment of Transcription Factor Binding Motifs.Genome Biology and Evolution, Nr. 16 (7) doi: 10.1093/gbe/evae134.
    • . . „How antisense transcripts can evolve to encode novel proteins.Nature Communications, Nr. 15 (1) doi: 10.1038/s41467-024-50550-3.
    • . . „Modeling Length Changes in De Novo Open Reading Frames during Neutral Evolution.Genome Biology and Evolution, Nr. 16 (7) doi: 10.1093/gbe/evae129.
    • . . „Quantification and modeling of turnover dynamics of de novo transcripts in Drosophila melanogaster.Nucleic Acids Research, Nr. 52 (1) doi: 10.1093/nar/gkad1079.
    • , , , , , , , , und . . „Experimental characterization of de novo proteins and their unevolved random-sequence counterparts.Nature Ecology and Evolution, Nr. 7 (4) doi: 10.1038/s41559-023-02010-2.
    • , und . . „Introducing creative destruction as a mechanism in protein evolution.Proceedings of the National Academy of Sciences of the United States of America, Nr. 120 (6) doi: 10.1073/pnas.2220460120.
    • , , und . . „Population genomics reveals mechanisms and dynamics of de novo expressed open reading frame emergence in <i>Drosophila melanogaster</i>.Genome Research, Nr. 33 doi: 10.1101/gr.277482.122.
    • . . „Live-bearing cockroach genome reveals convergent evolutionary mechanisms linked to viviparity in insects and beyond.iScience, Nr. 26 (10) doi: 10.1016/j.isci.2023.107832.
    • , , , , , , , , , , und . . „Origin matters: Using a local reference genome improves measures in population genomics.Molecular Ecology Resources, Nr. 23 (7) doi: 10.1111/1755-0998.13838.
    • , und . . „Neutral Models of De Novo Gene Emergence Suggest that Gene Evolution has a Preferred Trajectory.Molecular Biology and Evolution, Nr. 40 (4) doi: 10.1093/molbev/msad079.
    • , , und . . „Domain Evolution of Vertebrate Blood Coagulation Cascade Proteins.Journal of Molecular Evolution, Nr. 90: 418428. doi: 10.1007/s00239-022-10071-3.
    • , , , , , und . . „Vector Redesign and In-Droplet Cell-Growth Improves Enrichment and Recovery in live Escherichia coli.Microbial Biotechnology, Nr. 15 (11) doi: 10.1111/1751-7915.14144.
    • , , , , und . . „Heterologous expression of naturally evolved putative <i>de novo</i> proteins with chaperones.Protein Science, Nr. 31 (8) doi: 10.1002/pro.4371.
    • . . „More effective transposon regulation in fertile, long-lived termite queens than in sterile workers.Molecular Ecology, Nr. 32 (2) doi: 10.1111/mec.16753.
    • , , , , , , und . . „Eusocial Transition in Blattodea: Transposable Elements and Shifts of Gene Expression.Genes, Nr. 13 (11) doi: 10.3390/genes13111948.
    • , , , , , , , , und . . „Evidence for a conserved queen-worker genetic toolkit across slave-making ants and their ant hosts.Molecular Ecology, Nr. 31 (19) doi: 10.1111/mec.16639.
    • , , , , , , , , , , , , , , , und . . „Lifespan prolonging mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of a higher termite.Communications biology, Nr. 5 (44) doi: 10.1038/s42003-021-02974-6.
    • , , , , , , , , , , , , und . . „A genetic variant alters the secondary structure of the lncRNA H19 and is associated with dilated cardiomyopathy.RNA Biology, Nr. 18 (sup1): 409415. doi: 10.1080/15476286.2021.1952756.
    • , , , , und . . „Ancestral sequences of a large promiscuous enzyme family correspond to bridges in sequence space in a network representation.Interface, Nr. 18 (184) doi: 10.1098/rsif.2021.0389.
    • , , , , , , , , , , und . „A putative <i>de novo</i> evolved gene required for spermatid chromatin condensation in <i>Drosophila melanogaster</i>.PLOS GENETICS, Nr. 17 (9) doi: 10.1371/journal.pgen.1009787.
    • , , , , , , , und . . „Convergent Loss of Chemoreceptors across Independent Origins of Slave-Making in Ants.Molecular Biology and Evolution, Nr. 39 (1) doi: 10.1093/molbev/msab305.
    • , , , , , , und . . „Gene Coexpression Network Reveals Highly Conserved, Well-Regulated Anti-Ageing Mechanisms in Old Ant Queens.Genome Biology and Evolution, Nr. 13 (6) doi: 10.1093/gbe/evab093.
    • , , , , , , , und . . „Structural and functional characterization of a putative de novo gene in <i>Drosophila</i>.Nature Communications, Nr. 12 (1) doi: 10.1038/s41467-021-21667-6.
    • , , und . . „Structure and function of naturally evolved de novo proteins.Current Opinion in Structural Biology, Nr. 68 doi: 10.1016/j.sbi.2020.11.010.
    • . . „Author Correction: Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme.Nature Chemical Biology, Nr. 16: 930930. doi: 10.1038/s41589-020-0588-8.
    • , , , , und . . „The modular nature of protein evolution: domain rearrangement rates across eukaryotic life.BMC Evolutionary Biology, Nr. 20 (1): 30. doi: 10.1186/s12862-020-1591-0.
    • . . „Gene content evolution in the arthropods.Genome Biology, Nr. 21 (15) doi: 10.1186/s13059-019-1925-7.
    • , , und . . „Stochastic Gain and Loss of Novel Transcribed Open Reading Frames in the Human Lineage.Genome Biology and Evolution, Nr. 12 (11) doi: 10.1093/gbe/evaa194.
    • , , , , , , und . . „Comparative analyses of caste, sex, and developmental stage-specific transcriptomes in two <i>Temnothorax</i> ants.Ecology and Evolution, Nr. 10 (10) doi: 10.1002/ece3.6187.
    • , und . . „Becoming a de novo gene.Nature Ecology and Evolution, Nr. 3 (4): 524525. doi: 10.1038.
    • , , , , , , und . . „Ant behaviour and brain gene expression of defending hosts depend on the ecological success of the intruding social parasite.Philosophical Transactions of the Royal Society B: Biological Sciences, Nr. 374 (1769): 20180192. doi: 10.1098/rstb.2018.0192.
    • , , , , , , , und . . „Genome-wide genotype-expression relationships reveal both copy number and single nucleotide differentiation contribute to differential gene expression between stickleback ecotypes.Genome Biology and Evolution, Nr. n.a. doi: 10.1093/gbe/evz148.
    • , und . . „A Roadmap to Domain Based Proteomics.“ In Computational Methods in Protein Evolution, herausgegeben von Tobias Sikosek. doi: 10.1007/978-1-4939-8736-8_16.
    • , , und . . „DOGMA: a web server for proteome and transcriptome quality assessment.Nucleic Acids Research, Nr. 47 (W1) doi: 10.1093/nar/gkz366.
    • . . „Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme.Nature Chemical Biology, Nr. 15: 11201128. doi: 10.1038/s41589-019-0386-3.
    • , , , , , , , , , und . . „Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme (vol 51, pg 831, 2020).Nature Chemical Biology, Nr. 16 (8) doi: 10.1038/s41589-020-0588-8.
    • , , , und . . „Origins and structural properties of novel and de novo protein domains during insect evolution.The FEBS Journal, Nr. 285 (14): 26052625. doi: 10.1111/febs.14504.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „Hemimetabolous genomes reveal molecular basis of termite eusociality.Nature Ecology and Evolution, Nr. 2 (3): 557566. doi: 10.1038/s41559-017-0459-1DO-10.1038/s41559-017-0459-1.
    • , , und . . „Evolutionary Potential of Cis-Regulatory Mutations to Cause Rapid Changes in Transcription Factor Binding.Genome Biology and Evolution, Nr. 11 (2): 406414. doi: 10.1093/gbe/evy269.
    • , , , , , und . . „Remodeling of the juvenile hormone pathway through caste-biased gene expression and positive selection along a gradient of termite eusociality.Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, Nr. 330 (5): 296304. doi: 10.1002/jez.b.22805.
    • , , , , , , , , , , und . . „Expansions of key protein families in the German cockroach highlight the molecular basis of its remarkable success as a global indoor pest.J. Exp. Zool. B Mol. Dev. Evol., Nr. 330 (5): 254264. doi: 10.1002/jez.b.22824.
    • . . „<i>Tribolium castaneum</i> gene expression changes after <i>Paranosema whitei</i> infection.Journal of Invertebrate Pathology, Nr. 153 doi: 10.1016/j.jip.2018.02.009.
    • , , und . . „The first cockroach genome and its significance for understanding development and the evolution of insect eusociality.Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, Nr. 330 (5) doi: 10.1002/jez.b.22826.
    • , , , , , , und . „The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen de Novo.Molecular Biology and Evolution, Nr. 34 (5): 10661082. doi: 10.1093/molbev/msx057.
    • , und . „Fact or fiction: Updates on how protein-coding genes might emerge de novo from previously non-coding DNA.F1000Research, Nr. 6 (null) doi: 10.12688/f1000research.10079.1.
    • , , und . „Comparative analysis of lincRNA in insect species.BMC Evolutionary Biology, Nr. 17 (1) doi: 10.1186/s12862-017-0985-0.
    • . . „Enzyme sub-functionalization driven by regulation.EMBO Reports, Nr. 18: 10431045. doi: 10.15252/embr.201744383.
    • , , , , , , , , und . „Comparative transcriptomics of stickleback immune gene responses upon infection by two helminth parasites, Diplostomum pseudospathaceum and Schistocephalus solidus.Zoology (Jena), Nr. 2016 (119(4)): 307313. doi: 10.1016/j.zool.2016.05.005.
    • , , , , , , , , , , , und . . „Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks.Molecular Ecology, Nr. 2016 (25(4)): 943958. doi: 10.1111/mec.13520.
    • , und . im Druck. „Evolution of Protein Domain Repeats in Metazoa.Molecular Biology and Evolution, Nr. 33
    • , , , und . . „DOGMA: Domain-Based Transcriptome and Proteome Quality Assessment.“ Beitrag präsentiert auf der German Conference on Bioinformatics, Berlin
    • , , , , , , , und . „Phylogeographic differentiation versus transcriptomic adaptation to warm temperatures in Zostera marina, a globally important seagrass.Molecular Ecology, Nr. 25 (21): 53965411. doi: 10.1111/mec.13829.
    • , , , , und . . „Domain World.“ Beitrag präsentiert auf der GCB 2016, Berlin, Deutschland
    • , , und . „Mechanisms of transcription factor evolution in Metazoa.Nucleic Acids Research, Nr. 44 (13): 62876297. doi: 10.1093/nar/gkw492.
    • , , , und . „DOGMA: Domain-based transcriptome and proteome quality assessment.Bioinformatics, Nr. 32 (17): 25772581. doi: 10.1093/bioinformatics/btw231.
    • , , , und . „Chapter 6. Comparative genomic approaches to investigate molecular traits specific to social insects.Current Opinion in Insect Science, Nr. 16 (null): 8794. doi: 10.1016/j.cois.2016.05.016.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . „The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea.Nature, Nr. doi: 10.1038/nature16548
    • , , , , , , und . „Immunity comes first: the effect of parasite genotypes on adaptive immunity and immunization in three-spined sticklebacks.Developmental and Comparative Immunology, Nr. 54 (1): 137144. doi: 10.1016/j.dci.2015.09.008.
    • , , und . . „Emergence of de novo proteins from 'dark genomic matter' by 'grow slow and moult'.Biochem Soc Trans., Nr. 43(5): 867873. doi: 10.1042/BST20150089.
    • , , , , , , , , , , , und . „Genomics of Divergence along a Continuum of Parapatric Population Differentiation.PLoS Genetics, Nr. 2015 doi: 10.1371/journal.pgen.1004966.
    • , , , , , , , , , , , , , , , , , , und . . „Host-Pathogen Coevolution: The Selective Advantage of Bacillus thuringiensis Virulence and Its Cry Toxin Genes.PLoS Biology, Nr. 13 (6): e1002169. doi: 10.1371/journal.pbio.1002169.
    • , , , und . „Domain similarity based orthology detection.BMC Bioinformatics, Nr. 16 (1) doi: 10.1186/s12859-015-0570-8.
    • , , , , , und . . „The Rise and Fall of TRP-N, an Ancient Family of Mechanogated Ion Channels, in Metazoa.Genome Biol. Evol., Nr. 7 (6): 17131727. doi: 10.1093/gbe/evv091.
    • , , und . . „MDAT - Aligning multiple domain arrangements.BMC Bioinformatics, Nr. 16 doi: 10.1186/s12859-014-0442-7.
    • , , , und . im Druck. „Evolution of enzyme specificity in the alkaline phosphatase superfamily.“ Beitrag präsentiert auf der SMBE, Vienna, Austria
    • , , und . im Druck. „The Origins of Life's Molecular Diversity: Does Modularity Epitomize the Evolvability of Early Functional Units.“ Beitrag präsentiert auf der Volkswagen Stiftung Kick-off Conference: Life? - A New Funding Initiative Introduces Itself, Schloss Herrenhausen, Hannover, Germany
    • , , , , und . im Druck. „Functional Transitions in Enzyme Evolution: Balancing Stability, Folding and Catalytic Specificity.“ Beitrag präsentiert auf der The annual meeting of the Society for Molecular Biology and Evolution, Hofburg Palace, Vienna, Austria
    • , , , , , , und . „Detecting convergent molecular evolution in eusocial insects.“ Beitrag präsentiert auf der Society of Molecular Biology and Evolution, Wien
    • , , , und . . „Detection of orphan domains in <i>Drosophila</i> using "hydrophobic cluster analysis".Biochimie, Nr. 119 doi: 10.1016/j.biochi.2015.02.019.
    • , , , und . „Detection of orphan domains in Drosophila using "hydrophobic cluster analysis".Biochimie, Nr. 119: 244253. doi: 10.1016/j.biochi.2015.02.019.
    • , , , und . „Protein domain evolution is associated with reproductive diversification and adaptive radiation in the genus Eucalyptus.New Phytologist, Nr. 206: 13281336. doi: 10.1111/nph.13211.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . „The genomes of two key bumblebee species with primitive eusocial organization.Genome Biol., Nr. 16 doi: 10.1186/s13059-015-0623-3.
    • , , , , , , , , , , , , und . „How do genomes create novel phenotypes Insights from the loss of the worker caste in ant social parasites.Molecular Biology and Evolution, Nr. 32 (11): 29192931. doi: 10.1093/molbev/msv165.
    • , , , , , , und . „Specific gene expression responses to parasite genotypes reveal redundancy of innate immunity in vertebrates.PloS one, Nr. 9 (9) doi: 10.1371/journal.pone.0108001.
    • , , , und . . „Genomic divergence between nine- and three -spined sticklebacks.BMC Genomics, Nr. 14
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „Molecular traces of alternative social organization in a termite genome.Nature Communications, Nr. 5
    • , , , , , , , , und . . „Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis.BMC Genomics, Nr. 16 (1): 445.
    • , , , , , , , , und . . „Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen <i>Bacillus thuringiensis</i>.BMC Genomics, Nr. 15 doi: 10.1186/1471-2164-15-445.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . „The genome of Eucalyptus grandis.Nature, Nr. 510 (7505): 362. doi: 10.1038/nature13308.
    • , , , , und . „Rapid similarity search of proteins using alignments of domain arrangements.Bioinformatics, Nr. 30 (2): 281. doi: 10.1093/bioinformatics/btt379.
    • , , und . „Protein family analysis at the domain-level.Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI), Nr. P-235: 26.
    • , , , , , , , , , und . „Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types.Marine Genomics, Nr. 15: 73. doi: 10.1016/j.margen.2014.03.004.
    • , , , , und . „DoMosaics: Software for domain arrangement visualization and domain-centric analysis of proteins.Bioinformatics, Nr. 30 (2): 283. doi: 10.1093/bioinformatics/btt640.
    • , , , , , , , , , , und . „Extensive Copy-Number Variation of Young Genes across Stickleback Populations.PLoS Genetics, Nr. 10 (12) doi: 10.1371/journal.pgen.1004830.
    • , , , , und . . „Mechanisms and Dynamics of Orphan Gene Emergence in Insect Genomes.Genome Biology and Evolution, Nr. 5 (2): 439455. doi: 10.1093/gbe/evt009.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . „Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality.Genome Research, Nr. 23 (8): 1247. doi: 10.1101/gr.155408.113.
    • , und . . „Dynamics and adaptive benefits of modular protein evolution.Current Opinion in Structural Biology, Nr. 23 (3): 45966. doi: 10.1016/j.sbi.2013.02.012.
    • , , , , , , , , , , , und . „Genome-wide patterns of standing genetic variation in a marine population of three-spined sticklebacks.Molecular Ecology, Nr. 22 (3): 649. doi: 10.1111/j.1365-294X.2012.05680.x.
    • , , , , und . „Quantification and functional analysis of modular protein evolution in a dense phylogenetic tree.Biochimica et Biophysica Acta - Proteins and Proteomics, Nr. 1834 (5): 898907. doi: 10.1016/j.bbapap.2013.01.007.
    • , , , und . . „Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach.PloS one, Nr. 7 (2): e31410. doi: 10.1371/journal.pone.0031410.
    • , , , und . . „Dynamics and adaptive benefits of protein domain emergence and arrangements during plant genome evolution.Genome Biology and Evolution, Nr. 4 (3): 31629. doi: 10.1093/gbe/evs004.
    • , , und . . „Evolutionary Dynamics on Protein Bi-stability Landscapes can Potentially Resolve Adaptive Conflicts.PLoS Computational Biology, Nr. 8 (9): e1002659. doi: 10.1371/journal.pcbi.1002659.
    • , , und . . „Escape from Adaptive Conflict follows from weak functional trade-offs and mutational robustness.Proceedings of the National Academy of Sciences of the United States of America, Nr. 109 (37) doi: 10.1073/pnas.1115620109.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „The interface of protein structure, protein biophysics, and molecular evolution.Protein Science, Nr. 21 (6): 76985. doi: 10.1002/pro.2071.
    • , , , , , , , , , , , , , , , , , , und . . „Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera.Current biology, Nr. 22 (14): 13091313. doi: 10.1016/j.cub.2012.05.018.
    • , , , , , , , , , , und . . „Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness.Integrative Biology, Nr. 4 (5): 48093. doi: 10.1039/c2ib00109h.
    • , , , , , , , und . . „Proteome of Hydra nematocyst.Journal of Biological Chemistry, Nr. 287 (13): 967281. doi: 10.1074/jbc.M111.328203.
    • , und . „The dynamics and evolutionary potential of domain loss and emergence.Molecular Biology and Evolution, Nr. 29 (2): 787796. doi: 10.1093/molbev/msr250.
    • , , und . . „Evolutionary dynamics of simple sequence repeats across long evolutionary time in genus Drosphila.Trends in Evolutionary Biology, Nr. 4 (1)
    • , , , , und . . „Fast Homology Search Using Domain-Architecture Alignment.JOBIM, Conference proceedings, Nr. 1
    • , , , , , , , und . . „Proteome of <i>Hydra</i> Nematocyst.Journal of Biological Chemistry, Nr. 287 (13) doi: 10.1074/jbc.M111.328203.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle.PLoS Genetics, Nr. 7 (2): e1002007. doi: 10.1371/journal.pgen.1002007.
    • , , , , , , und . . „Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life.BMC Evolutionary Biology, Nr. 11: 8. doi: 10.1186/1471-2148-11-8.
    • , und . . „The evolution of protein interaction networks.Methods in Molecular Biology, Nr. 696: 27389. doi: 10.1007/978-1-60761-987-1_17.
    • , , , , , , , und . . „Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species.Proceedings of the National Academy of Sciences of the United States of America, Nr. 108 (48): 81. doi: 10.1073/pnas.1107680108.
    • , , , , und . . „Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing.BMC Genomics, Nr. 12 (1): 227. doi: 10.1186/1471-2164-12-227.
    • , , und . . „Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes.Nucleic Acids Research doi: 10.1093/nar/gkr179.
    • , , , , , , , , und . . „The sieve element occlusion gene family in dicotyledonous plants.Plant Signaling and Behavior, Nr. 6 (1): 1513. doi: 10.4161/psb.6.1.14308.
    • . . „Signals: tinkering with domains.Science Signaling, Nr. 3 (139): pe31. doi: 10.1126/scisignal.3139pe31.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „Functional and evolutionary insights from the genomes of three parasitoid nasonia species.Science, Nr. 327 (5963): 343348. doi: 10.1126/science.1178028.
    • , , , , , , , , und . . „Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants.BMC Plant Biology, Nr. 10 doi: 10.1186/1471-2229-10-219.
    • , , und . . „Protein Domains as Evolutionary Units.“ In Evolutionary Genomics and System Biology, herausgegeben von Dep of Crop Sciences Bioinformatics Laboratory und USA University of Illinois. N/A: unbekannt / n.a. / unknown. doi: 10.1002/9780470570418.ch12.
    • , , und . . „How do new proteins arise?Current Opinion in Structural Biology, Nr. 20 (3): 3906. doi: 10.1016/j.sbi.2010.02.005.
    • , und . . „Robustness versus evolvability: a paradigm revisited.HFSP Journal, Nr. 4 (3-4): 1058. doi: 10.2976/1.3404403.
    • , , , , und . . „Evolvability and single-genotype fluctuation in phenotypic properties: a simple heteropolymer model.Biophysical Journal, Nr. 98 (11): 248796. doi: 10.1016/j.bpj.2010.02.046.
    • , und . . „Evolution after and before gene duplication?“ In Evolution after Gene Duplication, herausgegeben von D Liberles und K Dittmar. New York City: John Wiley & Sons. doi: 10.1002/9780470619902.ch6.
    • , , und . . „How do new proteins arise?Current Opinion in Structural Biology, Nr. 20 (3) doi: 10.1016/j.sbi.2010.02.005.
    • , , , , und . „EvoIvability and single-genotype fluctuation in phenotypic properties: A simple heteropolymer model.Biophysical Journal, Nr. 98 (11): 24872496. doi: 10.1016/j.bpj.2010.02.046.
    • , , , , , , , und . . „Dr. Zompo: an online data repository for Zostera marina and Posidonia oceanica ESTs.Database: The Journal of Biological Databases and Curation, Nr. 2009: bap009. doi: 10.1093/database/bap009.
    • , , und . . „Just how versatile are domains?BMC Evolutionary Biology, Nr. 8: 285. doi: 10.1186/1471-2148-8-285.
    • , , , und . . „Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans.Immunobiology, Nr. 213 (3-4): 23750. doi: 10.1016/j.imbio.2007.12.004.
    • , , , und . . „The look-ahead effect of phenotypic mutations.Biology Direct, Nr. 3: 18. doi: 10.1186/1745-6150-3-18.
    • , , , , und . . „Arrangements in the modular evolution of proteins.Trends in Biochemical Sciences, Nr. 33 (9): 44451. doi: 10.1016/j.tibs.2008.05.008.
    • , , , , , , , , , und . . „Comparative analysis of expressed sequence tag (EST) libraries in the seagrass Zostera marina subjected to temperature stress.Marine Biotechnology, Nr. 10 (3): 297309. doi: 10.1007/s10126-007-9065-6.
    • , , , , , , , , und . . „The Crohn's disease susceptibility gene DLG5 as a member of the CARD interaction network.Journal of Molecular Medicine, Nr. 86 (4): 423432. doi: 10.1007/s00109-008-0307-5.
    • , , , , , , , , , und . „Metabolism of halophilic archaea.Extremophiles, Nr. 12 (2): 177196. doi: 10.1007/s00792-008-0138-x.
    • , , , , , , , , und . . „A protein interaction atlas for the nuclear receptors: properties and quality of a hub-based dimerisation network.BMC Systems Biology, Nr. 1: 34. doi: 10.1186/1752-0509-1-34.
    • , , und . . „Automated Improvement of Domain ANnotations using context analysis of domain arrangements (AIDAN).Bioinformatics, Nr. 23 (14): 18346. doi: 10.1093/bioinformatics/btm240.
    • , , , , , , , , , und . . „The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses.The Plant journal, Nr. 50 (2): 34763. doi: 10.1111/j.1365-313X.2007.03052.x.
    • , , und . . „Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins.Molecular Biology and Evolution, Nr. 24 (3): 6708. doi: 10.1093/molbev/msl197.
    • , , , , , , und . . „One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity.Molecular Biology and Evolution, Nr. 24 (3): 82735. doi: 10.1093/molbev/msl211.
    • , , und . . „A structural model of latent evolutionary potentials underlying neutral networks in proteins.HFSP J., Nr. 1: 7987.
    • , , , und . . „Reduction/oxidation-phosphorylation control of DNA binding in the bZIP dimerization network.BMC Genomics, Nr. 7: 107107. doi: 10.1186/1471-2164-7-107.
    • , , und . . „Domain deletions and substitutions in the modular protein evolution.The FEBS Journal, Nr. 273 (9): 203747. doi: 10.1111/j.1742-4658.2006.05220.x.
    • , und . . „Evolution of circular permutations in multidomain proteins.Molecular Biology and Evolution, Nr. 23 (4): 73443. doi: 10.1093/molbev/msj091.
    • , , , und . . „Finding common protein interaction patterns across organisms.Evolutionary Bioinformatics, Nr. 2: 4552.
    • , , und . . Transcriptional networking., 6. Aufl. doi: 10.1186/gb-2005-6-9-344.
    • , , , , , , und . . „Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex.Phytochemistry, Nr. 66 (11): 12961311. doi: 10.1016/j.phytochem.2005.04.012.
    • , , und . . „Rapid motif-based prediction of circular permutations in multi-domain proteins.Bioinformatics, Nr. 21 (7): 9327. doi: 10.1093/bioinformatics/bti085.
    • , , und . . „Phylogenetic profiling of protein interaction networks in eukaryotic transcription factors reveals focal proteins being ancestral to hubs.Gene, Nr. 347 (2): 247253. doi: 10.1016/j.gene.2004.12.031.
    • , , , , und . . „The evolution of domain arrangements in proteins and interaction networks.Cellular and Molecular Life Sciences, Nr. 62 (4): 43545. doi: 10.1007/s00018-004-4416-1.
    • , , und . . „Comparing folding codes in simple heteropolymer models of protein evolutionary landscape: robustness of the superfunnel paradigm.Biophysical Journal, Nr. 88 (1): 118131. doi: 10.1529/biophysj.104.050369.
    • , , und . . „The evolution of protein interaction networks in regulatory proteins.Comparative and Functional Genomics, Nr. 5 (1): 7984. doi: 10.1002/cfg.365.
    • , , , und . . „Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.EMBO Reports, Nr. 5 (3): 2749. doi: 10.1038/sj.embor.7400096.
    • , , , und . „Inference of Aspergillus fumigatus pathways by computational genome analysis: Tricarboxylic acic cycle (TCA) and glyoxylate shunt.Journal of microbiology and biotechnology, Nr. 14 (1): 7480.
    • , , , , , , , , , und . . „CADRE: the Central Aspergillus Data REpository.Nucleic Acids Research, Nr. 32 (Database issue): 5. doi: 10.1093/nar/gkh009.
    • , und . . A putative transcription factor inducing mobility in Mycoplasma pneumoniae.,
    • , , , , , , und . . „BioMiner--modeling, analyzing, and visualizing biochemical pathways and networks.Bioinformatics, Nr. 18 Suppl 2: 30. doi: 10.1093/bioinformatics/18.suppl_2.S219.
    • , und . . „Perspectives on protein evolution from simple exact models.Applied Bioinformatics, Nr. 1 (3): 12144.
    • , und . . „Conceptual data modelling for bioinformatics.Briefings in Bioinformatics, Nr. 3 (2): 16680. doi: 10.1093/bib/3.2.166.
    • , und . . „TreeWiz: interactive exploration of huge trees.Bioinformatics, Nr. 18 (1): 10914. doi: 10.1093/bioinformatics/18.1.109.
    • , , , und . . „Recombinatoric exploration of novel folded structures: A heteropolymer-based model of protein evolutionary landscapes.Proc. Natl. Acad. Sci., Nr. 99: 809814. doi: 10.1073/pnas.022240299.
    • , , , , , und . . „Switching from simple to complex oscillations in calcium signaling.Biophysical Journal, Nr. 79 (3): 118895. doi: 10.1016/S0006-3495(00)76373-9.
    • , und . . „Modeling evolutionary landscapes: mutational stability, topology, and superfunnels in sequence space.Proceedings of the National Academy of Sciences of the United States of America, Nr. 96 (19): 1068994. doi: 10.1073/pnas.96.19.10689.
    • , , und . . „Application of constraint programming techniques for structure prediction of lattice proteins with extended alphabets.Bioinformatics, Nr. 15 (3): 23442. doi: 10.1093/bioinformatics/15.3.234.
    • , , , , und . . „WWW access to the SYSTERS protein sequence cluster set.Bioinformatics, Nr. 15 (3): 2623. doi: 10.1093/bioinformatics/15.3.262.
    • , , und . . „Computational approaches to identify leucine zippers.Nucleic Acids Res., Nr. 26 (11): 27402746. doi: 10.1093/nar/26.11.2740.
    • , und . . „Exploring the fitness landscapes of lattice proteins.Pacific Symposium on Biocomputing: 36172.
    • . . „How are model protein structures distributed in sequence space?Biophysical Journal, Nr. 73 (5): 2393403. doi: 10.1016/S0006-3495(97)78268-7.
    • . . „Structure formation of biopolymers is complex, their evolution may be simple.Pacific Symposium on Biocomputing: 97108.
    • , , , , , , , , und . . „RNA folding and combinatory landscapes.Physical Review E - Statistical, nonlinear, and soft matter physics, Nr. 47 (3): 20832099.
  • Betreute Arbeiten

    Promotionen

    Contribution of non-coding RNAs to the pathogenesis of cardiovascular diseases
    Genomische und evolutionäre Untersuchung des Sekundärmetaboliten Colibactin in Enterobacteriaceae
    Gandhi, ShreyIncRNAs as a novel epigenetic layer in the genetic predisposition to heart failure
    Analysis of non-coding RNA sequence, structure and function using comparative transcriptomics and biophysics approaches
    Investigation of non-coding RNA in the cardiovascular system
    Ancestral reconstruction and experimental test of long- and short term evolvability using the AP-superfamily as a model system
    Reconstructing de novo gene emergence
    Wiechers, SarahEntwicklung von Softwarekomponenten für und Analyse von DNA Barcoding Daten der deutschen Flora
    Epistasis, robustness and evolvability in biomolecules
    Benefits and hazards of novel protein coding genes
    The role of the NMDA receptor subunit 2B (NR2B) in the regulation of autoimmune neuroinflammation
    Cryptic Mutations in Protein Evolution
    Properties in de novo genes in vertebrates
    Modular protein evolution in insects: On the emergence of novel domains and domain arrangements
    Next-generation sequencing-based genome and transcriptome studies of unicellular Apicomplexa and Kinetoplastida parasites
    Evolution of Substrate Specificity in the Alkaline Phosphatase Superfamily
    Evolution of Protein Domain Repeats in Metazoa
    Mona RiemenschneiderOn the evolution of modularity in gene regulatory networks affecting complex traits / diseases
    Coevolution between the red flour beetle and Bacillus thuringiensis bacteria
    Poos, KathrinThe pathogenesis of Osteosarcoma - systems biological approaches to explain cancer development and progression
    Hiersche, MilanMultifaktorielle Assoziationsmuster con SNP/CNV Daten zu kardiovaskulären Phänotypen
    Phyletic distribution and evolution of ancient globin genes
    Computational Analysis of Genome Evolution in Holmetabolous Insects (Endopterygota)
    RNA-seq in non-model organisms: Microevolutionary and ecological insights from gene expression of seagrasses under global warming
    The resolution of adaptive conflicts in protein evolution through shifts in thermodynamic stability and gene duplication
    Conserved Motifs in Plant Genome Evolution
    On the evolution of complex genetic diseases
    Mechanisms of Modular Protein Evolution
    Specht, MichaelNovel strategies for high-throughput data analysis in computational proteomics and proteogenesis
    Characterization of the "sieve element occlusion" gene family with special emphasis on gene expression
    Friedrichs, FraukeEpidemiological, statistical and molecular biology approaches to assess the role of inflammatory genes in the pathogenesis of complex diseases
    Veron, AmélieAdaptive Evolution of Networks
    Spitzer, MichaelAutomating the Analysis of Protein Family Evolution

    Habilitation

    Weiner, JanuaryDomain-wise evolution of proteins