
Sensing interactions between molecules
In a recent study published in the scientific journal Nature Nanotechnology, physicists and chemists of the University of Münster describe an experimental approach to visualising structures of organic molecules with exceptional resolution. The key to this newly developed microscopic method is the high stability of a particularly sharp and atomically defined probe tip.

Prof. Dr. Harald Fuchs, co-author of the study, emphasises: “The potential of the new method is considerable as it allows us to investigate bonding structures of molecular networks with exceptional accuracy.” Providing fundamental insights into the interactions between molecules is important for the development of new so-called nanostructured materials. Such materials take advantage of the fact that very small deviations on the nanoscale can significantly alter the material properties. The difference between diamonds and graphite is a well-known example of such nanoscale deviations. Although both consist of pure carbon, diamond is extremely hard whereas graphite is comparatively soft. Only the structural arrangement and bonding between the carbon atoms are different.
This work was supported by the German Research Foundation (DFG).
Original publication:
Harry Mönig, Saeed Amirjalayer, Alexander Timmer, Zhixin Hu, Lacheng Liu, Oscar Díaz Arado, Marvin Cnudde, Cristian Alejandro Strassert, Wei Ji, Michael Rohlfing and Harald Fuchs (2018): Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips. Nature Nanotechnology Advance Online Publication, DOI: 10.1038/s41565-018-0104-4