CV
Academic Education
- Promotion zum Dr. phil. nat. an der Fakultät für Physik der Universität Duisburg-Essen bei Frau Prof. Dr. Heike Theyßen und Herrn Prof. Dr. Claus Gößling (TU-Dortmund).
Positions
- Studienrat im Hochschuldienst am Institut für Didaktik der Physik der WWU Münster
- Wissenschaftlicher Mitarbeiter am Lehrstuhl für Technik und ihre Didaktik der TU Dortmund
- Lehraufträge am Lehrstuhl für Didaktik der Physik an der Universität Duisburg-Essen
- Projektkoordinator bei der Stabsstelle eLearning der Ruhr-Universität Bochum
- Wissenschaftlicher Mitarbeiter am Lehrstuhl für Didaktik der Physik der TU Dortmund
Teaching
- Vorlesung: Lecture: Introdruction to didactics of physics [118795]
[ - | | wöchentlich | Do | IG1 719 | Dr. Alexander Pusch] - Seminar: Seminar: Preparing the internship semester (HRGe) [118807]
(in cooperation with Prof. Dr. Susanne Heinicke)[ - | IG1 238 | Dr. Alexander Pusch]
[ - | IG1 238 | Dr. Alexander Pusch]
[ - | IG1 238 | Dr. Alexander Pusch]
[ - | IG1 238 | Dr. Alexander Pusch]
[ - | IG1 238 | Dr. Alexander Pusch]
[ - | IG1 238 | Dr. Alexander Pusch] - Seminar: Didactic reconstruction of selected topics of current physical research [118814]
(in cooperation with Prof. Dr. Stefan Heusler, Till-Hendrik Wende)
[ - | | wöchentlich | Do | IG1 238 | Prof. Dr. Stefan Heusler] - Seminar: Computer based experiments [118805]
[ - | | wöchentlich | Di | Dr. Alexander Pusch] - Seminar: Methods in physics lessons [118801]
(in cooperation with Nils Haverkamp)
[ - | | wöchentlich | Do | IG1 238 | Nils Haverkamp] - Praktikum: Production of physics - referred artifacts [118794]
(in cooperation with Till-Hendrik Wende)
[ - | | wöchentlich | Mi | Dr. Alexander Pusch] - Praktikum: Laboratory course for teachers demonstrations in physics lessens (GyGe) [118806]
(in cooperation with Nils Haverkamp)
[ - | | wöchentlich | Do | IG1 238 | Dr. Alexander Pusch] - Kolloquium: Colloquium (Kolloquium) [118810]
(in cooperation with Prof. Dr. Susanne Heinicke, Prof. Dr. Stefan Heusler, Dr. Daniel Laumann, Dr. Larissa Fühner)
[ - | | wöchentlich | Di | IG1 719 | Dr. Alexander Pusch]
- Vorlesung: Lecture: Introdruction to didactics of physics [118795]
Projects
- QuantumMiniLabs - Quantenphysik verstehen und erleben - eine skalierbare, offene und preiswerte Experimentalumgebung für alle - Teilvorhaben: QuantumMiniLabs: Education ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 13N16714 - BIOR3D – Low-Cost-Bioreaktoren aus dem 3D-Drucker - Kriteriengeleitete Entwicklung und Verfahrensanalyse zur Integration von Biotechnologie, Microcontrollern und 3D-Druck im Lehramtsstudium ( – )
Individual Granted Project: Joachim Herz Stiftung - DPG-Lehrerfortbildung: Bau eines Michelsen-Interferometers ( – )
Scientific Event: Joachim Herz Stiftung - Make it physics - Microcontroller und 3D-Druck im Physikunterricht (DPG-Lehrerfortbildung) ( – )
Individual Granted Project: Deutsche Physikalische Gesellschaft e.V. | Project Number: 2021-007 - O3Q – O3Q - Low-Cost High-Tech Experimente zu Quantencomputing und Quantensensorik (since )
Project Carried out outside the University Münster: Federal Ministry of Education and Research | Project Number: 13N15388
- QuantumMiniLabs - Quantenphysik verstehen und erleben - eine skalierbare, offene und preiswerte Experimentalumgebung für alle - Teilvorhaben: QuantumMiniLabs: Education ( – )
Publications
- . (). 3D-Druck im Chemieunterricht! Was man zum Einstieg wissen muss. Naturwissenschaften im Unterricht Chemie, 201, 45–47.
- . (). Demonstrationsexperimente gestalten - Konzeption und Umsetzung in Theorie und Praxis. 1st Ed. Heidelberg. Springer Spektrum. doi: 10.1007/978-3-662-68520-4.
- . (). Die physikalische Faszination des Fliegens mit einem Low-cost Flugzeugmodell untersuchen. Der mathematisch-naturwissenschaftliche Unterricht, 2, 155–161.
- . (). Astronomie phänomenologisch. Anregungen und Materialien für den Anfangsunterricht. Naturwissenschaften im Unterricht Physik, 34(194).
- . (). A low cost ripple tank experiment with 3D printed components and an Arduino control unit. Physics Education, 58(6), 1–7. doi: 10.1088/1361-6552/acf7a2.
- . (). Quantenoptik mit modularen Schülerexperimenten. Low-Cost-Experimente mit dem 3-D-Drucker zur Anwendungsbeispielen von Quantentechnologien. Naturwissenschaften im Unterricht Physik, 34(198), 21–26.
- . (). Modulare Low-Cost Experimente zur Wellen- und Quantenoptik. PhyDid B - Didaktik der Physik - Beiträge zur DPG-Frühjahrstagung, 2023, 1–4.
- . (). Low-Cost Schülerexperimente zur Wellenoptik. Ein modulares 3D-gedrucktes Experimentierset. Der mathematisch-naturwissenschaftliche Unterricht, 05, 413–420.
- . (). How Does Our Solar System Work? Tracking Planetary Motion in the Classroom by Using Video Analysis in Astronomical Model Experiments. Physics Teacher, 61, 492–495. doi: 10.1119/5.0072740.
- . (). Erzeugung zeitkritischer Frequenzsignale mit dem Arduino. Verbindung von Physik und Informatik im Schülerexperiment zum Kundt’schen Rohr aus dem 3D-Drucker mit Arduino-Betriebsgerät. Der mathematisch-naturwissenschaftliche Unterricht, 2023(2), 165–172.
- . (). Wie beginne ich mit dem Arduino? Über Anfangsschwierigkeiten von Lernenden und einen einfachen Einstieg in die textuelle Programmierung. Der mathematisch-naturwissenschaftliche Unterricht, 2023(2), 94–98.
- . (). Federpendel mit Arduino und Ultraschallsensor (Aufgabenstellung). Der mathematisch-naturwissenschaftliche Unterricht, 2023(2), 181–182.
- . (). Sensordaten drahtlos zur Smartphone-App phyphox übertragen und grafisch auswerten – ein einfaches Beispiel mit dem ESP32 und dem Ultraschallsensor HC-SR04. Der mathematisch-naturwissenschaftliche Unterricht, 76(1), 36–43.
- AR Lineale - Astronomie und Planeten im Klassenzimmer. In (Eds.): Beiträge zur DPG-Frühjahrstagung , pp. 25–28. Bad Honnef. ().
- . (). Experimentierwagen aus dem 3D-Drucker Experimentiervorschläge samt Bauanleitung für den Mechanikunterricht. Naturwissenschaften im Unterricht Physik, 33, 41–44.
- . (). Stromstärken mir einem Spulenclip messen. In (Hrsg.), Für alles eine App (S. 237–242). Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-662-63901-6.
- . (). Integration von 3D-Druck in den Unterricht. Der mathematisch-naturwissenschaftliche Unterricht, 01.2022, 6–6.
- . (). Fotos mit visueller Lesebrille. Naturwissenschaften im Unterricht Physik, 33(188), 15–17.
- . (). Visualisieren - ein Muss für heterogene Lerngruppen. Naturwissenschaften im Unterricht Physik, 33(188), 22–25.
- . (). Das NinU-Raster zur Planung und Reflexion inklusiven naturwissenschaftlichen Unterrichts für Lehramtsstudierende. In (Hrsg.), Inklusion in der Lehramtsausbildung - Lerngegenstände, Interaktionen und Prozesse (S. 63–78). Münster: Waxmann.
- . (). Inklusion durch 3D-Druck und moderne Technologien - Teilhabe durch ein Stück Plastik? In (Eds.), Digitale NAWIgation von Inklusion. Digitale Werkzeuge für einen inklusiven Naturwissenschaftsunterricht (pp. 79–89). Wiesbaden: VS Verlag für Sozialwissenschaften.
- . (). Raumkrümmung zum Anfassen – Sektormodelle aus dem 3D-Drucker. Physik und Didaktik in Schule und Hochschule, 1(21).
- . (). 3D-Druck für Schule und Hochschule Konstruktion von naturwissenschaftlichem Experimentiermaterial mit Best-Practice-Beispielen. 1st Ed. Heidelberg. Springer Spektrum. doi: 10.1007/978-3-662-64807-0.
- . (). "Holes in the atmosphere of the universe" - An empirical qualitative study on mental models of students regarding black holes. Astronomy Education Journal, 2(1). doi: 10.32374/AEJ.2022.2.1.029ra.
- . (). Diagramme - aber welche und wie? Diagramme geeignet auswählen und gestalten. Naturwissenschaften im Unterricht Physik, 33(188), 26–27.
- . (). Modeling in nuclear physics: a visual approach to the limitations of the semi-empirical mass formula. European Journal of Physics, 43(3), 1–8. doi: 10.1088/1361-6404/ac4d7c.
- . (). 3D-Druck im Mathematikunterricht – Konstruktion maßtäblicher geometrische Körper. Der mathematisch-naturwissenschaftliche Unterricht, 1|2022, 32–37.
- . (). Ultraschalllevitation als Zugang zu stehenden Wellen. Ein Low-Cost-Experimentieraufbau mit 3D-Druck Komponenten. Der mathematisch-naturwissenschaftliche Unterricht, 1|2022, 14–18.
- . (). Experimentiermaterial aus dem 3D-Drucker - Relevante Kriterien zur Konzeption am Beispiel eines Flaschenzuges. Der mathematisch-naturwissenschaftliche Unterricht, 1|2022, 70–73.
- . (). A simple modular kit for various wave optic experiments using 3D printed cubes for education . Physics Education, 2022(57), 1–13. doi: 10.1088/1361-6552/ac4106.
- . (). Physics competitions in the time of a pandemic: 3D printing as a new approach to the quantitative investigation of cartesian divers at home. European Journal of Physics, 2022(43/1), 1–13. doi: 10.1088/1361-6404/ac3a12.
- . (). Real-time data acquisition using Arduino and phyphox: measuring the electrical power of solar panels in contexts of exposure to light in physics classroom. Physics Education, 56, 1–13. doi: 10.1088/1361-6552/abe993.
- . (). Hören mit dem Arduino. Ein "elektronisches Ohr" zur Messung von Laufzeitunterschieden und Lautstärke akustischer Signale. Der mathematisch-naturwissenschaftliche Unterricht, 74(02), 146–149.
- . (). Videoanalyse von Kinematik-Experimenten. Hinweise zur Aufnahme von Videos sowie Vorschläge für Experimente aus dem Physikunterricht, Sport und Alltag. Naturwissenschaften im Unterricht Physik, 181, 14–16.
- . (). Eigene Smartphones im MINT-Unterricht – Gelingensbedingungen. In (Hrsg.): Naturwissenschaftlicher Unterricht und Lehrerbildung im Umbruch? , S. 757–760. Essen: Gesellschaft für Didaktik der Chemie und Physik.
- . (). A new implementation of Kundt’s tube: 3D-printed low-cost set-up using ultrasonic speakers. Physics Education, 56, 9. doi: 10.1088/1361-6552/abd0d7.
- . (). pH-Messung mit dem Arduino – Auslesen einer potentiometrischen pH-Sonde. Der mathematisch-naturwissenschaftliche Unterricht, 2021(6), 491–494.
- . (). smart for science - Gelingensbedingungen für den Einsatz schülereigener Smartphones im mathematisch-naturwissenschaftlichen Unterricht. In (Hrsg.): PhyDid-B - Didaktik der Physik – DPG-Frühjahrstagung, 2020 , S. 319–326. Berlin.
- . (). Mentor sein. Wie reagiere ich auf Fehler und welche Reaktionen wünschen sich Schülerinnen und Schüler? Naturwissenschaften im Unterricht Physik, 177/178, 48–53.
- . (). Audiodigitale Stifte im Sachunterricht - Eine neue Möglichkeit für Arbeitsblätter? In (Hrsg.), Digitales Lernen in der Grundschule II - Aktuelle Trends in Forschung und Praxis (S. 146–157). Münster: Waxmann.
- . (). Hochschuldidaktische Seminarkonzeption für eine inklusionsvorbereitende Lehramtsausbildung in den Naturwissenschaften. Das Hochschulwesen, 2020, 40–44.
- . (). Einmal Erdmagnetfeld zum Mitnehmen. Ein Low-Cost-Schülerexperiment. Der mathematisch-naturwissenschaftliche Unterricht, 73, 26–30.
- . (). 3D-Druck im Physikunterricht. Physik Journal, 19, 42–44.
- . (). Do Powerbanks deliver what they advertise? Measuring voltage, current, power, energy and charge of powerbanks with an Arduino. Physics Education, 55, 1–7. doi: 10.1088/1361-6552/ab630c.
- . (). Smarte Physik. Stromstärken mit dem Handy messen. Physik in unserer Zeit, 2020(02), 96–97. doi: 10.1002/piuz.202070212.
- . (). 3D-Dateien selber konstruieren. Prinzipien und Vorgehensweise am Beispiel einer Magnetfeldsonde. Plus Lucis, 4, 10–13.
- . (). 3D-Druck im Physikunterricht. Von den Grundlagen zu vielfältigen Anwendungsfeldern. Plus Lucis, 4, 4–9.
- . (). Messwerterfassung am (eigenen?) Smartphone. Ein Beispiel für eine digital angereicherte Lernumgebung zum Thema Elektromobilität. Naturwissenschaften im Unterricht Physik, 179, 18–22.
- . (). Measuring Wavelengths with LEGO® Bricks: Building a Michelson Interferometer for Quantitative Experiments. Physics Teacher, 58. doi: 10.1119/10.0002734.
- . (). Low Cost Kinematik-Experimente - Mit Luftkissenscheiben aus dem 3D-Drucker. In (Hrsg.): PhyDid B, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung in Aachen 2019. Berlin. , S. 357–364. Berlin.
- . (). Gestaltung von variablenkontrollierten Experimenten für Schülerinnen und Schüler mit Lernbeeinträchtigungen. In (Hrsg.): PhyDid B, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung in Aachen 2019. Berlin. , S. 261–264. Berlin.
- . (). Schnell wie der Schall. Experimente zur digitalen Bestimmung der Schallgeschwindigkeit in unterschiedlichen Medien. Naturwissenschaften im Unterricht Physik, 171/172.
- . (). Wie tief kann’s noch sinken? Experimentelle Bestimmung des absoluten Nullpunktes mit einem digitalen Temperatur- und Drucksensor. Naturwissenschaften im Unterricht Physik, 171/172.
- . (). Wie fliegt eine Wasserbombe am weitesten? Handlungsorientiertes Experimentieren an einer Wasserbombenschleuder. Naturwissenschaften im Unterricht Physik, 170, 21–25.
- . (). Was macht ein Arbeitsblatt inklusionsspezifisch? Tipps und Hinweise zur Überarbeitung von Arbeitsblättern. Naturwissenschaften im Unterricht Physik, 170, 40–43.
- . (). Einfache Maschinen im Alltag. Klassifizierung, Beispiele und ein Kartenspiel für den Unterricht. Naturwissenschaften im Unterricht Physik, 169, 18–23.
- . (). Stromstärke und Permeabilitätszahl mit dem Smartphone messen. Ein Spulenclip aus dem 3D-Drucker für Phyphox-Experimente. Naturwissenschaften im Unterricht Physik, 169, 46–47.
- . (). Audiodigitale Lernstifte - Eine digitale Ergänzung für den Unterricht? Computer + Unterricht, 29(114), 46–48.
- . (). Experimentieren im inklusiven naturwissenschaftlichen Unterricht. In (Hrsg.), Inklusive Lehr-Lernprozesse gestalten (S. 77–93). N/A: Selbstverlag / Eigenverlag.
- . (). Inklusion in der Lehramtsaus- und fortbildung. In (Hrsg.), Inklusive Lehr-Lernprozesse gestalten (S. 95–111). N/A: Selbstverlag / Eigenverlag.
- . (). Gründe die zum Misslingen von Inklusivem Unterricht führen können. In (Hrsg.), Inklusive Lehr-Lernprozesse gestalten (S. 41–49). Flensburg: Flensburg University Press.
- . (). Arduino im Physikunterricht. Physik Journal, 18(5), 26–29.
- . (). Physik des Skateboardings. Materialabhängige Elastizitätseigenschaften des Skateboard Decks. In (Hrsg.): PhyDid B, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung , S. 371–377. Berlin.
- . (). Low-Cost und High-End-Lärmampel. Naturwissenschaft im Unterricht Physik, 167, 16–19.
- . (). Ein Touchscreen Marke Eigenbau. Naturwissenschaft im Unterricht Physik, 167, 20–22.
- . (). Roboter-Navigation - Arduino findet durch Labyrinth. Make: Magazin, 2018(1), 114–123.
- . (). Von der Idee zum Produkt - Experimente aus dem 3D-Drucker. Der mathematisch-naturwissenschaftliche Unterricht, 71(1), 14–19.
- . (). there is more than meets the eye. Naturphänomene im nahen Infrarotbereich mit Webcams sichtbar machen. Naturwissenschaften im Unterricht Physik, 28(159+160), 44–48.
- . (). Interaktive Lernmaterialien mit dem tiptoi-Stift. In (Hrsg.): PhyDid B, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung in Dresden 2017 , S. 261–264. Berlin.
- . (). Schützenfische auf ungewöhnlicher Jagd. Eine Modellierung der Jagdmethode aus physikalischer Perspektive. Der mathematisch-naturwissenschaftliche Unterricht, 2016, 26–30.
- . (). Diagnose und individuelle Förderung im universitären Laborpraktikum - Ein Praxisbericht. Das Hochschulwesen, 2015(5+6), 201–205.
- . (). Qualitätsmerkmale von Blended Learning am Beispiel eines Seminars zum Projektmanagement. Hamburger eLearning Magazin, 14, 44–47.
- . (). Zweifel an der Mondlandung? (Aufgabe inkl. Lösung für die Sek. II). Der mathematisch-naturwissenschaftliche Unterricht, 2015(68), 251.
- . (). Fachspezifische Instrumente zur Diagnose und individuellen Förderung von Lehramtsstudierenden der Physik. (Dissertation thesis). Universität Duisburg-Essen. Berlin: Logos Verlag. doi: 10.17879/73099425591.
- . (). PhysikCheck für Studieninteressierte in NRW. Ergebnisse der Abfrage zum Bedarf einzelner Wissensbereiche an den Hochschulen NRW. In (Hrsg.): Naturwissenschaftliche Bildung zwischen Science- und Fachunterricht. , S. 537–539. Münster: LIT Verlag.
- . (). Diagnose und individuelle Förderung erleben. In (Hrsg.), Diagnose und individuelle Förderung in der MINT-Lehrerbildung - Das Projekt dortMINT (S. 27–96). Münster: Waxmann.
- . (). Umsetzung von Diagnose und individueller Förderung (DiF) am Beispiel eines DiF- Tutoriums in der fachinhaltlichen Lehramtsausbildung Physik. In (Hrsg.): Konzepte fachdidaktischer Strukturierung für den Unterricht. Gesellschaft für Didaktik der Chemie und Physik. , S. 440–442. Münster: LIT Verlag.
- . (). Umsetzung von Diagnose und individueller Förderung in der fachinhaltlichen Lehramtsausbildung Physik. In (Hrsg.): Naturwissenschaftliche Bildung als Beitrag zur Gestaltung partizipativer Demokratie. , S. 155–157. Münster: LIT Verlag.
- . (). Instrumente zur Diagnostik und individuellen Förderung in der fachwissenschaftlichen Lehramtsausbildung Physik - am Beispiel einer Diagnosecheckliste zur Bearbeitung von Übungsaufgaben. In (Hrsg.): PhyDid B, Didaktik der Physik, Beiträge zur DPG-Frühjahrstagung in Münster 2011 , S. 1–6. Berlin.
Dr. Alexander Pusch
Oberstudienrat im Hochschuldienst |
Studienfachberater für die lehramtsbezogenen Fragen