Selected publications and preprints
since 2019
$\bullet $ Christopher Deninger, Theo Grundhöfer, and Linus Kramer.
Weil tensors, strongly regular graphs, multiplicative characters, and a quadratic matrix equation.
J. Algebra, 656:170–195, October 2024.
doi:10.1016/j.jalgebra.2023.08.028.
$\bullet $ Johannes Ebert and Michael Wiemeler.
On the homotopy type of the space of metrics of positive scalar curvature.
Journal of the European Mathematical Society, 26(9):3327–3363, July 2024.
doi:10.4171/JEMS/1333.
$\bullet $ Christoph Böhm, Timothy Buttsworth, and Brian Clarke.
Scalar curvature along Ebin geodesics.
Journal für die reine und angewandte Mathematik (Crelles Journal), 2024(813):159–196, June 2024.
doi:10.1515/crelle-2024-0033.
$\bullet $ Simone Cecchini and Rudolf Zeidler.
Scalar and mean curvature comparison via the Dirac operator.
Geometry and Topology, 28:1167–1212, May 2024.
doi:10.2140/gt.2024.28.1167.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente.
Non-compact Einstein manifolds with symmetry.
J. Amer. Math. Soc., 36(3):591–651, February 2023.
doi:10.1090/jams/1022.
$\bullet $ Lee Kennard, Michael Wiemeler, and Burkhard Wilking.
Positive curvature, torus symmetry, and matroids.
arXiv e-prints, December 2022.
arXiv:2212.08152.
$\bullet $ Hanne Hardering and Benedikt Wirth.
Quartic $L^p$-convergence of cubic Riemannian splines.
IMA J. Numer. Anal., 42(4):3360–3385, October 2022.
doi:10.1093/imanum/drab077.
$\bullet $ Rudolf Zeidler.
Band width estimates via the Dirac operator.
J. Differ. Geom., September 2022.
doi:10.4310/jdg/1668186790.
$\bullet $ Johannes Ebert and Oscar Randal-Williams.
The positive scalar curvature cobordism category.
Duke Math. J., 171(11):2275–2406, August 2022.
doi:10.1215/00127094-2022-0023.
$\bullet $ Alexander Effland, Behrend Heeren, Martin Rumpf, and Benedikt Wirth.
Consistent curvature approximation on Riemannian shape spaces.
IMA J. Numer. Anal., 42(1):78–106, January 2022.
doi:10.1093/imanum/draa092.
$\bullet $ Zhizhang Xie, Guoliang Yu, and Rudolf Zeidler.
On the range of the relative higher index and the higher rho-invariant for positive scalar curvature.
Adv. Math., 390:Paper No. 107897, 24, October 2021.
doi:10.1016/j.aim.2021.107897.
$\bullet $ Lee Kennard, Michael Wiemeler, and Burkhard Wilking.
Splitting of torus representations and applications in the Grove symmetry program.
arXiv e-prints, June 2021.
arXiv:2106.14723.
$\bullet $ Julio Backhoff-Veraguas, Mathias Beiglböck, Martin Huesmann, and Sigrid Källblad.
Martingale Benamou-Brenier: a probabilistic perspective.
Ann. Probab., 48(5):2258–2289, September 2020.
doi:10.1214/20-AOP1422.
$\bullet $ Richard Bamler, Esther Cabezas-Rivas, and Burkhard Wilking.
The Ricci flow under almost non-negative curvature conditions.
Invent. Math., 217:95–126, July 2019.
doi:10.1007/s00222-019-00864-7.
$\bullet $ Johannes Ebert and Oscar Randal-Williams.
Infinite loop spaces and positive scalar curvature in the presence of a fundamental group.
Geom. Topol., 23(3):1549–1610, May 2019.
doi:10.2140/gt.2019.23.1549.
$\bullet $ Behrend Heeren, Martin Rumpf, and Benedikt Wirth.
Variational time discretization of Riemannian splines.
IMA J. Numer. Anal., 39(1):61–104, January 2019.
doi:10.1093/imanum/drx077.
$\bullet $ Johannes Ebert.
Index theory in spaces of manifolds.
Math. Ann., 374(1-2):931–962, January 2019.
doi:10.1007/s00208-019-01809-4.
Back to top