Recent Publications of Dr. Felix Schindler
∙ Tizian Wenzel, Bernard Haasdonk, Hendrik Kleikamp, Mario Ohlberger, and Felix Schindler.
Application of deep kernel models for certified and adaptive RB-ML-ROM surrogate modeling.
In Ivan Lirkov and Svetozar Margenov, editors, Large-Scale Scientific Computations, 117–125. Springer Nature Switzerland, May 2024.
doi:10.1007/978-3-031-56208-2_11.
∙ Tim Keil, Mario Ohlberger, Felix Schindler, and Julia Schleuß.
Local training and enrichment based on a residual localization strategy.
arXiv e-prints, April 2024.
arXiv:2404.16537.
∙ Bernard Haasdonk, Hendrik Kleikamp, Mario Ohlberger, Felix Schindler, and Tizian Wenzel.
A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs.
SIAM J. Sci. Comput., pages A1039–A1065, June 2023.
doi:10.1137/22M1493318.
∙ Tim Keil, Mario Ohlberger, and Felix Schindler.
Adaptive localized reduced basis methods for large scale parameterized systems.
arXiv e-prints, March 2023.
arXiv:2303.03074.
∙ Tizian Wenzel, Bernard Haasdonk, Hendrik Kleikamp, Mario Ohlberger, and Felix Schindler.
Application of deep kernel models for certified and adaptive RB-ML-ROM surrogate modeling.
arXiv e-prints, February 2023.
arXiv:2302.14526.
∙ M. Ohlberger, S. Banholzer, B. Haasdonk, T. Keil, H. Kleikamp, L. Mechelli, M. Oguntola, F. Schindler, S. Volkwein, and T. Wenzel.
Model reduction and learning for PDE constrained optimization.
Oberwolfach Reports, 2023.
∙ Stefan Banholzer, Tim Keil, Mario Ohlberger, Luca Mechelli, Felix Schindler, and Stefan Volkwein.
An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization.
Pure Appl. Funct. Anal., 7(5):1561–1596, October 2022.
URL: yokohamapublishers.jp/online2/oppafa/vol7/p1561.html.
∙ Bernard Haasdonk, Mario Ohlberger, and Felix Schindler.
An adaptive model hierarchy for data-augmented training of kernel models for reactive flow.
In ARGESIM Report 17, 67–68. July 2022.
doi:10.11128/arep.17.a17155.
∙ Daria Fokina, Oleg Iliev, Pavel Toktaliev, Ivan Oseledets, and Felix Schindler.
On the performance of machine learning methods for breakthrough curve prediction.
arXiv e-prints, April 2022.
arXiv:2204.11719.
∙ Pavel Gavrilenko, Bernard Haasdonk, Oleg Iliev, Mario Ohlberger, Felix Schindler, Pavel Toktaliev, Tizian Wenzel, and Maha Youssef.
A full order, reduced order and machine learning model pipeline for efficient prediction of reactive flows.
In Large-Scale Scientific Computing, 378–386. March 2022.
doi:10.1007/978-3-030-97549-4_43.
∙ Tim Keil, Luca Mechelli, Mario Ohlberger, Felix Schindler, and Stefan Volkwein.
A non-conforming dual approach for adaptive Trust-Region reduced basis approximation of PDE-constrained parameter optimization.
ESAIM: M2AN, 55(3):1239–1269, May 2021.
doi:10.1051/m2an/2021019.
∙ Andreas Buhr, Laura Iapichino, Mario Ohlberger, Stephan Rave, Felix Schindler, and Kathrin Smetana.
Localized model reduction for parameterized problems.
In Model order reduction. Volume 2: Snapshot-based methods and algorithms, pages 245–305.
January 2021.
doi:10.1515/9783110671490-006.
∙ Stephan Rave and Felix Schindler.
A locally conservative reduced flux reconstruction for elliptic problems.
PAMM, November 2019.
doi:10.1002/pamm.201900026.