Promotion
Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition
- Betreuer
- Professor Dr. Mario Ohlberger
- Promotionsfach
- Mathematik
- Abschlussgrad
- Dr. rer. nat.
- Verleihender Fachbereich
- Fachbereich 10 – Mathematik und Informatik
Publikationen
- Singh, A, Thale, S, Leibner, T, Lamparter, L, Ricker, A, Nüsse, H, Klingauf, J, Galic, M, Ohlberger, M, und Matis, M. . „Dynamic interplay of microtubule and actomyosin forces drive tissue extension.“ Nature Communications, Nr. 15 (1): 3198–3198. doi: 10.1038/s41467-024-47596-8.
- Singh, A, Thale, S, Leibner, T, Ricker, A, Nüsse, H, Klingauf, J, Ohlberger, M, und Matis, M. . „Dynamic interplay of protrusive microtubule and contractile actomyosin forces drives tissue extension.“ eLife, Nr. 2022 doi: 10.1101/2022.06.21.496930.
- Leibner, Tobias. . „Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition.“ Dissertationsschrift, Universität Münster.
- Leibner, T, und Ohlberger, M. . „A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations.“ ESAIM: Mathematical Modelling and Numerical Analysis, Nr. 55: 2567–2608. doi: 10.1051/m2an/2021065.
- Leibner, T, Matis, M, Ohlberger, M, und Rave, S. . „Distributed model order reduction of a model for microtubule-based cell polarization using HAPOD.“ arXiv [math.NA], Nr. 2111.00129
- Schneider, Florian, und Leibner, Tobias. . „First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: Model derivation and realizability theory.“ Journal of Computational Physics, Nr. 416: 109547. doi: 10.1016/j.jcp.2020.109547.
- Schneider, Florian, und Leibner, Tobias. . „First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: realizability-preserving splitting scheme and numerical analysis.“ arXiv, Nr. 2019
- Himpe, C, Leibner, T, und Rave, S. . „Hierarchical Approximate Proper Orthogonal Decomposition.“ SIAM Journal on Scientific Computing, Nr. 40 (5): A3267–A3292.
- Himpe, C, Leibner, T, und Rave, S. . „HAPOD - Fast, Simple and Reliable Distributed POD Computation.“ In Bd. 55 aus ARGESIM Report doi: 10.11128/arep.55.a55283.
- Leibner, T, Milk, R, und Schindler, F. . „Extending DUNE: The dune-xt modules.“ Archive of Numerical Software, Nr. 5 (1): 193–216. doi: 10.11588/ans.2017.1.27720.
- Himpe, C, Leibner, T, Rave, S, und Saak, J. . „Fast Low-Rank Empirical Cross Gramians.“ PAMM, Nr. 17 (1): 841–842. doi: 10.1002/pamm.201710388.
- Brunken, Julia, Leibner, Tobias, Ohlberger, Mario, und Smetana, Kathrin. . „Problem adapted hierachical model reduction for the Fokker-Planck equation.“ In ALGORITMY 2016 Proceedings of contributed papers and posters, herausgegeben von Angela Handlovicova und Daniel Sevcovic. Bratislava: Publishing House of Slovak University of Technology.
- Leibner, Tobias. . Numerical methods for kinetic equations (Master's thesis),