Dr. Hendrik Ranocha
Publikationen
- Ranocha, H. . A Note on Numerical Fluxes Conserving Harten's Entropies for the Compressible Euler Equations,
- Abgrall, R, Öffner, P, und Ranocha, H. . „Reinterpretation and Extension of Entropy Correction Terms for Residual Distribution and Discontinuous Galerkin Schemes: Application to Structure Preserving Discretization.“ Journal of Computational Physics, Nr. 2022: 110955. doi: 10.1016/j.jcp.2022.110955.
- Ranocha, H, Schlottke-Lakemper, M, Winters, AR, Faulhaber, E, Chan, J, und Gassner, G. . „Adaptive numerical simulations with Trixi.jl: A case study of Julia for scientific computing.“ Proceedings of the JuliaCon Conferences, Nr. 1 (1): 77. doi: 10.21105/jcon.00077.
- Schlottke-Lakemper, M, Winters, AR, Ranocha, H, und Gassner, GJ. . „A purely hyperbolic discontinuous Galerkin approach for self-gravitating gas dynamics.“ Journal of Computational Physics, Nr. 2021: 110467. doi: 10.1016/j.jcp.2021.110467.
- Mitsotakis Dimitrios, Ranocha Hendrik, und Ketcheson David I, Süli Endre. . „A conservative fully-discrete numerical method for the regularized shallow water wave equations.“ SIAM Journal on Scientific Computing, Nr. 42 doi: 10.1137/20M1364606.
- LeFloch, PG, und Ranocha, H. . „Kinetic functions for nonclassical shocks, entropy stability, and discrete summation by parts.“ Journal of Scientific Computing, Nr. 87 doi: 10.1007/s10915-021-01463-6.
- Ranocha, H, und Nordström, J. . „A New Class of A Stable Summation by Parts Time Integration Schemes with Strong Initial Conditions.“ Journal of Scientific Computing, Nr. 87 doi: 10.1007/s10915-021-01454-7.
- Ranocha, H, Mitsotakis, D, und Ketcheson, DI. . „A Broad Class of Conservative Numerical Methods for Dispersive Wave Equations.“ Communications in Computational Physics, Nr. 29 (4): 979–1029. doi: 10.4208/cicp.OA-2020-0119.
- Ranocha, H. . „On Strong Stability of Explicit Runge-Kutta Methods for Nonlinear Semibounded Operators.“ IMA Journal of Numerical Analysis, Nr. 41 (1): 654–682. doi: 10.1093/imanum/drz070.
- Rojas, D, Boukharfane, R, Dalcin, L, Fernández, DCDR, Ranocha, H, Keyes, DE, und Parsani, M. . „On the robustness and performance of entropy stable discontinuous collocation methods.“ Journal of Computational Physics, Nr. 426: 109891. doi: 10.1016/j.jcp.2020.109891.
- Ranocha, H, Schlottke-Lakemper, M, Chan, J, Rueda-Ramírez, AM, Winters, AR, Hindenlang, F, und Gassner, GJ. . Efficient implementation of modern entropy stable and kinetic energy preserving discontinuous Galerkin methods for conservation laws,
- Ketcheson, DI, und Ranocha, H. . Computing with B-series,
- Torlo, D, Öffner, P, und Ranocha, H. . A New Stability Approach for Positivity-Preserving Patankar-type Schemes,
- Ranocha, H, Dalcin, L, Parsani, M, und Ketcheson, DI. . „Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics.“ Communications on Applied Mathematics and Computation, Nr. 2021 doi: 10.1007/s42967-021-00159-w.
- Nüßlein, S, Ranocha, H, und Ketcheson, DI. . „Positivity-Preserving Adaptive Runge-Kutta Methods.“ Communications in Applied Mathematics and Computational Science, Nr. 16 (2): 155–179. doi: 10.2140/camcos.2021.16.155.
- Ranocha, H, Luna, M, und Ketcheson, DI. . „On the Rate of Error Growth in Time for Numerical Solutions of Nonlinear Dispersive Wave Equations.“ Partial Differential Equations and Applications, Nr. 2 (6): 76. doi: 10.1007/s42985-021-00126-3.
- Ranocha, H. . „SummationByPartsOperators.jl: A Julia library of provably stable semidiscretization techniques with mimetic properties.“ Journal of Open Source Software, Nr. 6 (64): 3454. doi: 10.21105/joss.03454.
- Ranocha, H, und Gassner, GJ. . „Preventing pressure oscillations does not fix local linear stability issues of entropy-based split-form high-order schemes.“ Communications on Applied Mathematics and Computation, Nr. 2021 doi: 10.1007/s42967-021-00148-z.
- Ostaszewski, K, Glassmeier, K, Goetz, C, Heinisch, P, Henri, P, Park, SA, Ranocha, H, Richter, I, Rubin, M, und Tsurutani, B. . „Steepening of magnetosonic waves in the inner coma of comet 67P/Churyumov-Gerasimenko.“ Annales Geophysicae, Nr. 39 (4): 721–742. doi: 10.5194/angeo-39-721-2021.
- Abgrall, R, Mélédo, El, Öffner, P, und Ranocha, H. . „Error Boundedness of Correction Procedure via Reconstruction/Flux Reconstruction and the Connection to Residual Distribution Schemes.“ In Hyperbolic Problems: Theory, Numerics, Applications, Bd. 10 aus AIMS on Applied Mathematics, herausgegeben von A Bressan, M Lewicka, D Wang und Y Zheng. Heidelberg: Springer.
- Heinisch, P, Ostaszewski, K, und Ranocha, H. . „Towards Green Computing: A Survey of Performance and Energy Efficiency of Different Platforms using OpenCL.“ In Proceedings of the International Workshop on OpenCL, IWOCL '20, April 2020, Munich (Germany) New York, NY: ACM Press. doi: 10.1145/3388333.3403035.
- Ranocha, H. . „Entropy Conserving and Kinetic Energy Preserving Numerical Methods for the Euler Equations Using Summation-by-Parts Operators.“ In Spectral and High Order Methods for Partial Differential Equations {ICOSAHOM} 2018, Bd. 134 aus Lecture Notes in Computational Science and Engineering, herausgegeben von SJ Sherwin, D Moxey, J Peiró, PE Vincent und C Schwab. Heidelberg: Springer. doi: 10.1007/978-3-030-39647-3_42.
- Ranocha, H, Ostaszewski, K, und Heinisch, P. . „Discrete Vector Calculus and Helmholtz Hodge Decomposition for Classical Finite Difference Summation by Parts Operators.“ Communications on Applied Mathematics and Computation, Nr. 2: 581–611. doi: 10.1007/s42967-019-00057-2.
- Ranocha, H, Sayyari, M, Dalcin, L, Parsani, M, und Ketcheson, DI. . „Relaxation Runge-Kutta Methods: Fully-Discrete Explicit Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations.“ SIAM Journal on Scientific Computing, Nr. 42 (2): A612–A638. doi: 10.1137/19M1263480.
- Öffner, P, Glaubitz, J, und Ranocha, H. . „Analysis of Artificial Dissipation of Explicit and Implicit Time-Integration Methods.“ International Journal of Numerical Analysis and Modeling, Nr. 17 (3): 332–349.
- Ranocha, H, und Ketcheson, DI. . „Relaxation Runge-Kutta Methods for Hamiltonian Problems.“ Journal of Scientific Computing, Nr. 84 (1) doi: 10.1007/s10915-020-01277-y.
- Ranocha, H, Dalcin, L, und Parsani, M. . „Fully-Discrete Explicit Locally Entropy-Stable Schemes for the Compressible Euler and Navier-Stokes Equations.“ Computers and Mathematics with Applications, Nr. 80 (5): 1343–1359. doi: 10.1016/j.camwa.2020.06.016.
- Ranocha, H, Lóczi, L, und Ketcheson, DI. . „General Relaxation Methods for Initial-Value Problems with Application to Multistep Schemes.“ Numerische Mathematik, Nr. 146 doi: 10.1007/s00211-020-01158-4.
- Ketcheson, DI, Parsani, M, Grant, ZJ, Ahmadia, A, und Ranocha, H. . „RK-Opt: A package for the design of numerical ODE solvers.“ Journal of Open Source Software, Nr. 5 (54): 2514. doi: 10.21105/joss.02514.
- Ranocha, H, und Ketcheson, DI. . „Energy Stability of Explicit Runge-Kutta Methods for Nonautonomous or Nonlinear Problems.“ SIAM Journal on Numerical Analysis, Nr. 58 (6): 3382–3405. doi: 10.1137/19M1290346.
- Ketcheson, DI, Ranocha, H, Parsani, M, Waheed, U, und Hadjimichael, Y. . „NodePy: A package for the analysis of numerical ODE solvers.“ Journal of Open Source Software, Nr. 5 (55): 2515. doi: 10.21105/joss.02515.
- Ranocha, H. . „Mimetic Properties of Difference Operators: Product and Chain Rules as for Functions of Bounded Variation and Entropy Stability of Second Derivatives.“ BIT Numerical Mathematics, Nr. 59 (2): 547–563. doi: 10.1007/s10543-018-0736-7.
- Öffner, P, und Ranocha, H. . „Error Boundedness of Discontinuous Galerkin Methods with Variable Coefficients.“ Journal of Scientific Computing, Nr. 79 (3): 1572–1607. doi: 10.1007/s10915-018-00902-1.
- Öffner, P, Glaubitz, J, und Ranocha, H. . „Stability of Correction Procedure via Reconstruction With Summation-by-Parts Operators for Burgers' Equation Using a Polynomial Chaos Approach.“ ESAIM: Mathematical Modelling and Numerical Analysis (ESAIM: M2AN), Nr. 52 (6): 2215–2245. doi: 10.1051/m2an/2018072.
- Ranocha, H. . „Some Notes on Summation by Parts Time Integration Methods.“ Results in Applied Mathematics, Nr. 1: 100004. doi: 10.1016/j.rinam.2019.100004.
- Ranocha, H. . „Generalised Summation-by-Parts Operators and Entropy Stability of Numerical Methods for Hyperbolic Balance Laws.“ Dissertationsschrift, TU Braunschweig.
- Glaubitz, J, Öffner, P, Ranocha, H, und Sonar, T. . „Artificial Viscosity for Correction Procedure via Reconstruction Using Summation-by-Parts Operators.“ In Theory, Numerics and Applications of Hyperbolic Problems II, Bd. 237 aus Springer Proceedings in Mathematics & Statistics, herausgegeben von C Klingenberg und M Westdickenberg. Basel: Springer International Publishing. doi: 10.1007/978-3-319-91548-7_28.
- Öffner, P, Ranocha, H, und Sonar, T. . „Correction Procedure via Reconstruction Using Summation-by-Parts Operators.“ In Theory, Numerics and Applications of Hyperbolic Problems II, Bd. 237 aus Springer Proceedings in Mathematics & Statistics, herausgegeben von C Klingenberg und M Westdickenberg. Basel: Springer International Publishing. doi: 10.1007/978-3-319-91548-7_37.
- Ostaszewski, K, Heinisch, P, und Ranocha, H. . „Advantages and Pitfalls of OpenCL in Computational Physics.“ In Proceedings of the International Workshop on OpenCL, IWOCL '18, May 2018, Oxford (United Kingdom) New York, NY: ACM Press. doi: 10.1145/3204919.3204929.
- Ranocha, H, Glaubitz, J, Öffner, P, und Sonar, T. . „Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators.“ Applied Numerical Mathematics, Nr. 128: 1–23. doi: 10.1016/j.apnum.2018.01.019.
- Ranocha, H. . „Generalised Summation-by-Parts Operators and Variable Coefficients.“ Journal of Computational Physics, Nr. 362: 20–48. doi: 10.1016/j.jcp.2018.02.021.
- Ranocha, H, und Öffner, P. . „L_2 Stability of Explicit Runge-Kutta Schemes.“ Journal of Scientific Computing, Nr. 75 (2): 1040–1056. doi: 10.1007/s10915-017-0595-4.
- Ranocha, H. . „Comparison of Some Entropy Conservative Numerical Fluxes for the Euler Equations.“ Journal of Scientific Computing, Nr. 76 (1): 216–242. doi: 10.1007/s10915-017-0618-1.
- Ranocha, H, Öffner, P, und Sonar, T. . „Summation-by-Parts and Correction Procedure via Reconstruction.“ In Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, Bd. 119 aus Lecture Notes in Computational Science and Engineering, herausgegeben von ML Bittencourt, NA Dumont und JS Hesthaven. Heidelberg: Springer. doi: 10.1007/978-3-319-65870-4_45.
- Ranocha, H. . „Shallow water equations: Split-form, entropy stable, well-balanced, and positivity preserving numerical methods.“ GEM - International Journal on Geomathematics, Nr. 8 (1): 85–133. doi: 10.1007/s13137-016-0089-9.
- Ranocha, H, Öffner, P, und Sonar, T. . „Extended skew-symmetric form for summation-by-parts operators and varying Jacobians.“ Journal of Computational Physics, Nr. 342: 13–28. doi: 10.1016/j.jcp.2017.04.044.
- Ranocha, H, Öffner, P, und Sonar, T. . „Summation-by-parts operators for correction procedure via reconstruction.“ Journal of Computational Physics, Nr. 311: 299–328. doi: 10.1016/j.jcp.2016.02.009.
- Koenders, C, Glassmeier, K, Richter, I, Ranocha, H, und Motschmann, U. . „Dynamical features and spatial structures of the plasma interaction region of 67P/Churyumov-Gerasimenko and the solar wind.“ Planetary and Space Science, Nr. 105: 101–116. doi: 10.1016/j.pss.2014.11.014.