Dr. Christoph Lehrenfeld

Professur für Angewandte Mathematik, insbesondere Numerik (Prof. Ohlberger)
Dr. Christoph Lehrenfeld

Einsteinstr. 62
48149 Münster

Akademisches Profil

Externes Profil

  • Vita

    Preise

    Borchers-Plakette – RWTH Aachen

    Ruf

    Ruf auf eine Juniorprofessur für Numerische Mathematik (W1), Georg-August-Universität Göttingen
    , Numerische Mathematik (W1) – angenommen
  • Publikationen

    • , und . . „Optimal Preconditioners for Nitsche-XFEM Discretizations of Interface Problems.Numerische Mathematik, Nr. 2016 doi: 10.1007/s00211-016-0801-6.
    • , , , , , , , , und . . „Numerical and Experimental Analysis of Local Flow Phenomena in Laminar Taylor Flow in a Square Mini-Channel.Physics of Fluids, Nr. 28 (1): 012109.
    • , und . . „High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows.Comp. Meth. Appl. Mech. Eng., Nr. 2016 doi: 10.1016/j.cma.2016.04.025.
    • , und . . „L2-estimates for a high order unfitted finite element method for elliptic interface problems.arXiv eprints.
    • . . „High order unfitted finite element methods on level set domains using isoparametric mappings.Comp. Meth. Appl. Mech. Eng., Nr. 300 (1): 716733. doi: 10.1016/j.cma.2015.12.005.
    • , und . . „Analysis of a high order unfitted finite element method for elliptic interface problems.arXiv preprint arXiv:1602.02970, Nr. 1602.02970
    • , und . . „Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport.“ In Computational Methods for Complex Liquid-Fluid Interfaces, herausgegeben von CRC Press.
    • . . „The Nitsche XFEM-DG Space-Time Method and its Implementation in Three Space Dimensions.SIAM J. Sci. Comput., Nr. 37: A245–A270. doi: 10.1137/130943534.
    • . . „On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems.Dissertationsschrift, RWTH Aachen.
    • , , , , , , , und . . „Validation of Interface Capturing and Tracking Techniques with different Surface Tension Treatments against a Taylor Bubble Benchmark Problem.Comput. & Fluids, Nr. 102: 336352. doi: 10.1016/j.compfluid.2014.06.030.
    • , und . . „Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes.“ In Advanced Finite Element Methods and Applications, Bd.66 aus Lecture Notes in Applied and Computational Mechanics, herausgegeben von Steinbach Olaf Apel Thomas. Düsseldorf: Springer VDI Verlag.
    • , und . . „Analysis of a DG-XFEM Discretization for a Class of Two-Phase Mass Transport Problems.SIAM J. Numer. Anal., Nr. 51: 958983. doi: 10.1137/120875260.
    • , , , , und . . „Accuracy of Two-Phase Flow Simulations.“ In Proc. Appl. Math. Mech., Bd.13 aus Proc. Appl. Math. Mech. Heidelberg: Springer. doi: 10.1002/pamm.201310278.
    • , und . . „Nitsche-XFEM with Streamline Diffusion Stabilization for a Two-Phase Mass Transport Problem.SIAM J. Sci. Comput., Nr. 34: 27402759. doi: 10.1137/110855235.
    • , , und . . „Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwells Equations.“ In Numerical and Symbolic Scientific Computing: Progress and Prospects, herausgegeben von Ulrich Langer PP. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-7091-0794-2_6.
    • . . „Nitsche-XFEM for a Transport Problem in Two- Phase Incompressible Flows.“ In Proc. Appl. Math. Mech., Bd.11 New York City: John Wiley & Sons. doi: 10.1002/pamm.201110296.
    • . . Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems,