Geochemiker messen neue Zusammensetzung des Erdmantels
Wie ist das Innere der Erde chemisch aufgebaut? Da es nicht möglich ist, mehr als etwa zehn Kilometer tief in die Erde zu bohren, sind es häufig vulkanische Gesteine, die darüber Aufschluss geben. Geochemikerinnen und Geochemiker der Universitäten Münster und Amsterdam haben sich die vulkanischen Schmelzen, die die portugiesische Inselgruppe der Azoren aufbauen, genauer angesehen. Ihr Ziel war es, daraus Rückschlüsse auf die Beschaffenheit des Erdmantels zu ziehen, also die Schicht zwischen etwa 30 und 2.900 Kilometern tief im Erdinneren. Mithilfe eines spezialisierten Verfahrens fanden sie jetzt heraus, dass das untersuchte Material anders zusammengesetzt ist als bisher gedacht: Große Teile enthalten viel weniger sogenannte inkompatible Elemente – das sind die chemischen Elemente, die sich durch stetiges Schmelzen des Erdmantels bevorzugt in der Erdkruste anreichern, der äußersten Schale der Erde.
Die Wissenschaftler folgern, dass über die Erdgeschichte hinweg ein größerer Teil des Erdmantels aufgeschmolzen ist und letztendlich die Erdkruste gebildet hat als bisher angenommen. „Um die Stoffbilanz zwischen Erdinnerem und Erdkruste aufrecht zu erhalten, muss deshalb auch der Materialtransfer zwischen der Erdoberfläche und dem Inneren der Erde höher sein als gedacht“, betont Studienleiter Prof. Dr. Andreas Stracke von der Westfälischen Wilhelms-Universität Münster (WWU).
Da das Material unter den Azoren aus sehr tiefen Regionen des Erdmantels aufsteigt, es aber auch Hinweise darauf gibt, dass besonders der obere Teil des Erdmantels ähnlich zusammengesetzt ist, könnten die Ergebnisse auf weite Teile des Erdmantels übertragbar sein. „Unsere Ergebnisse öffnen ein neues Fenster, denn wir müssen die Zusammensetzung des größten Teils der Erde überdenken. Immerhin macht der Erdmantel mehr als 80 Prozent des Erdvolumens aus“, fügt Andreas Stracke hinzu. Die Studie ist in der Fachzeitschrift „Nature Geoscience“ erschienen.
Hintergrund und Methode:
In ihrer Studie untersuchten die Geochemiker das Mineral Olivin und die darin eingeschlossenen Schmelzen, also Gesteine, die durch das Erstarren flüssigen Magmas entstanden sind. Die Wissenschaftler isolierten die nur wenige Mikrometer großen sogenannten Schmelzeinschlüsse, lösten sie mithilfe von chemischen Verfahren auf und trennten bestimmte chemische Elemente ab. Diese Elemente verändern sich durch radioaktiven Zerfall während ihres langen Aufenthalts im Erdinnern – vermutlich steigen sie dort bis zu 1.000 Kilometer weit auf, was mehrere hundert oder sogar mehrere tausend Millionen Jahre dauert.
Die Wissenschaftler analysierten die isotopische Zusammensetzung der Schmelzen mithilfe hochempfindlicher Massenspektrometer. Mit solchen Verfahren ist es möglich, die relative Häufigkeit von verschiedenen Atomen eines Elements, sogenannten Isotopen, zu messen. „Durch eine hohe Ausbeute bei der Messung waren wir in der Lage, die Isotopenzusammensetzung von einem milliardstel Gramm des Elements zu bestimmen“, sagt Co-Autor Dr. Felix Genske vom Institut für Mineralogie an der WWU, der den Großteil der methodischen Arbeit übernahm. Auf diese Weise erhielten die Forscher indirekt Auskunft über die Zusammensetzung des Materials im Erdmantel: Die isotopischen Untersuchungen ergaben, dass das Material viel weniger von den seltenen Erdelementen Samarium und Neodymium, aber auch chemisch ähnlichen Elementen wie zum Beispiel Thorium und Uran enthielt als bisher angenommen.
„Anhand von ähnlichen geochemischen Daten in anderen vulkanischen Gesteinen, zum Beispiel aus Hawaii, schließen wir, dass auch andere Teile des Erdmantels einen größeren Anteil an Material enthalten, das ungewöhnlich stark an inkompatiblen Elementen verarmt ist“, sagt Andreas Stracke. Die Forscher vermuten, dass dieses globale Defizit im Erdmantel dadurch kompensiert wird, dass mehr Erdkruste mit einem hohen Gehalt an inkompatiblen Elementen zurück in den Erdmantel recycelt wird als bisher angenommen.
In zukünftigen Studien wollen die Wissenschaftler ihr Verfahren anhand weiterer Proben und in anderen Regionen der Erde testen, um ihre Ergebnisse zu überprüfen und ihre Arbeitshypothese zu untermauern.
Förderung:
Die Studie erhielt finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft und den internationalen Forschungsverbund „Europlanet 2020 RI“, der im Rahmen des Programms „Horizon 2020“ der Europäischen Union gefördert wird.
Originalpublikation:
A. Stracke et al. (2019): Ubiquitous ultra-depleted domains in Earth’s mantle. Nature Geoscience; DOI: 10.1038/s41561-019-0446-z