Forschungsschwerpunkte
- Theorie nichtlinearer partieller Differentialgleichungen
- Fluiddynamik
- Transport, Turbulenz und Mischungen
- Poröse Medien und dünne Filme
- Numerische Analysis
Publikationen
Auswahl
- Collingbourne, Sam C., und Holzegel, Gustav. . „Uniform Boundedness for Solutions to the Teukolsky Equation on Schwarzschild from Conservation Laws of Linearised Gravity.“ Communications in Mathematical Physics, Nr. 405 138. doi: 10.1007/s00220-024-04999-4.
- Holzegel, Gustav, und Shao, Arick. . „The bulk-boundary correspondence for the Einstein equations in asymptotically anti-de Sitter spacetimes.“ Archive for Rational Mechanics and Analysis, Nr. 247 (3) 56. doi: 10.1007/s00205-023-01890-9.
- Graf, Olivier, und Holzegel, Gustav. . „Mode stability results for the Teukolsky equations on Kerr-anti-de Sitter spacetimes.“ Classical and Quantum Gravity, Nr. 40 (4) 045003. doi: 10.1088/1361-6382/acb0ac.
- Holzegel, Gustav. . „The wave equation on the Schwarzschild spacetime with small non-decaying first-order terms.“ Journal of Hyperbolic Differential Equations, Nr. 20 (4): 825–834. doi: 10.1142/S0219891623500273.
- Holzegel, Gustav, Luk, Jonathan, Smulevici, Jacques, und Warnick, Claude. . „Asymptotic properties of linear field equations in anti-de Sitter space.“ Communications in Mathematical Physics, Nr. 374: 1125–1178. doi: 10.1007/s00220-019-03601-6.
- Dafermos, Mihalis, Holzegel, Gustav, und Rodnianski, Igor. . „The linear stability of the Schwarzschild solution to gravitational perturbations.“ Acta Mathematica, Nr. 222 (1): 1–214. doi: 10.4310/ACTA.2019.v222.n1.a1.
- Dafermos, Mihalis, Holzegel, Gustav, und Rodnianski, Igor. . „Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case |a|≪M.“ Annals of PDE, Nr. 5: Paper No. 2, 118. doi: 10.1007/s40818-018-0058-8.
- Holzegel, Gustav, und Shao, Arick. . „Unique continuation from infinity in asymptotically anti-de Sitter spacetimes.“ Communications in Mathematical Physics, Nr. 347 (3): 723–775. doi: 10.1007/s00220-016-2576-0.
- Speck, Jared, Holzegel, Gustav, Luk, Jonathan, und Wong, Willie. . „Stable Shock Formation for Nearly Simple Outgoing Plane Symmetric Waves.“ Annals of PDE, Nr. 2 (2) 10. doi: 10.1007/S40818-016-0014-4.
- Holzegel, Gustav. . „Conservation laws and flux bounds for gravitational perturbations of the Schwarzschild metric.“ Classical and Quantum Gravity, Nr. 33 (20): 205004. doi: 10.1088/0264-9381/33/20/205004.
Gesamtliste
- Collingbourne, Sam C., und Holzegel, Gustav. . „Uniform Boundedness for Solutions to the Teukolsky Equation on Schwarzschild from Conservation Laws of Linearised Gravity.“ Communications in Mathematical Physics, Nr. 405 138. doi: 10.1007/s00220-024-04999-4.
- Dafermos, M, Holzegel, G, und Rodnianski, I. . „A scattering theory construction of dynamical vacuum black holes.“ Journal of Differential Geometry, Nr. 126 (2): 633–740. doi: 10.4310/jdg/1712344221.
- Holzegel, Gustav, und Shao, Arick. . „The bulk-boundary correspondence for the Einstein equations in asymptotically anti-de Sitter spacetimes.“ Archive for Rational Mechanics and Analysis, Nr. 247 (3) 56. doi: 10.1007/s00205-023-01890-9.
- Graf, Olivier, und Holzegel, Gustav. . „Mode stability results for the Teukolsky equations on Kerr-anti-de Sitter spacetimes.“ Classical and Quantum Gravity, Nr. 40 (4) 045003. doi: 10.1088/1361-6382/acb0ac.
- Holzegel, G, und Kauffman, C. . „The wave equation on subextremal Kerr spacetimes with small non-decaying first order terms.“ arXiv doi: 10.48550/arXiv.2302.06387.
- Holzegel, Gustav. . „The wave equation on the Schwarzschild spacetime with small non-decaying first-order terms.“ Journal of Hyperbolic Differential Equations, Nr. 20 (4): 825–834. doi: 10.1142/S0219891623500273.
- Dafermos, M, Holzegel, G, Rodnianski, I, und Taylor, M. . „Quasilinear wave equations on asymptotically flat spacetimes with applications to Kerr black holes.“ arXiv doi: 10.48550/arXiv.2212.14093.
- Dafermos, M, Holzegel, G, Rodnianski, I, und Taylor, M. . „The non-linear stability of the Schwarzschild family of black holes.“ arXiv doi: 10.48550/arXiv.2104.08222.
- Holzegel, G, und Kauffman, C. . „A note on the wave equation on black hole spacetimes with small non-decaying first order terms.“ arXiv doi: 10.48550/arXiv.2005.13644.
- Holzegel, Gustav, Luk, Jonathan, Smulevici, Jacques, und Warnick, Claude. . „Asymptotic properties of linear field equations in anti-de Sitter space.“ Communications in Mathematical Physics, Nr. 374: 1125–1178. doi: 10.1007/s00220-019-03601-6.
- Dafermos, Mihalis, Holzegel, Gustav, und Rodnianski, Igor. . „The linear stability of the Schwarzschild solution to gravitational perturbations.“ Acta Mathematica, Nr. 222 (1): 1–214. doi: 10.4310/ACTA.2019.v222.n1.a1.
- Dafermos, Mihalis, Holzegel, Gustav, und Rodnianski, Igor. . „Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: the case |a|≪M.“ Annals of PDE, Nr. 5: Paper No. 2, 118. doi: 10.1007/s40818-018-0058-8.
- Holzegel, G, und Shao, A. . „Unique continuation from infinity in asymptotically anti-de Sitter spacetimes II: Non-static boundaries.“ Communications in Partial Differential Equations, Nr. 42 (12): 1871–1922. doi: 10.1080/03605302.2017.1390677.
- Holzegel, G, Klainerman, S, Speck, J, und Wong, W. . „Small-data shock formation in solutions to 3D quasilinear wave equations: An overview.“ Journal of Hyperbolic Differential Equations, Nr. 13 (1): 1–105. doi: 10.1142/S0219891616500016.
- Holzegel, Gustav, und Shao, Arick. . „Unique continuation from infinity in asymptotically anti-de Sitter spacetimes.“ Communications in Mathematical Physics, Nr. 347 (3): 723–775. doi: 10.1007/s00220-016-2576-0.
- Speck, Jared, Holzegel, Gustav, Luk, Jonathan, und Wong, Willie. . „Stable Shock Formation for Nearly Simple Outgoing Plane Symmetric Waves.“ Annals of PDE, Nr. 2 (2) 10. doi: 10.1007/S40818-016-0014-4.
- Holzegel, Gustav. . „Conservation laws and flux bounds for gravitational perturbations of the Schwarzschild metric.“ Classical and Quantum Gravity, Nr. 33 (20): 205004. doi: 10.1088/0264-9381/33/20/205004.
- Holzegel, G, und Warnick, C. . „The Einstein–Klein–Gordon–AdS system for general boundary conditions.“ Journal of Hyperbolic Differential Equations, Nr. 12 (2): 293–342. doi: 10.1142/S0219891615500095.
- Holzegel, G, und Smulevici, J. . „Quasimodes and a lower bound on the uniform energy decay rate for Kerr-AdS spacetimes.“ Analysis and PDE, Nr. 7 (5): 1057–1090. doi: 10.2140/apde.2014.7.1057.
- Holzegel, G, und Warnick, C. . „Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes.“ Journal of Functional Analysis, Nr. 226 (4): 2436–2485. doi: 10.1016/j.jfa.2013.10.019.
- Holzegel, G, und Smulevici, J. . „Stability of Schwarzschild-AdS for the sphericallysymmetric Einstein-Klein-Gordon system.“ Communications in Mathematical Physics, Nr. 317: 205–251. doi: 10.1007/s00220-012-1572-2.
- Holzegel, G, und Smulevici, J. . „Decay Properties of Klein-Gordon Fields on Kerr-AdS Spacetimes.“ Communications on Pure and Applied Mathematics, Nr. 66 (11): 1751–1802. doi: 10.1002/cpa.21470.
- Holzegel, G, und Smulevici, J. . „Self-gravitating Klein–Gordon fields in asymptotically anti-de Sitter spacetimes.“ Annales Henri Poincare, Nr. 13: 991–1038. doi: 10.1007/s00023-011-0146-8.
- Holzegel, G. . „Well-posedness for the massive wave equation on asymptotically anti-de Sitter spacetimes.“ Journal of Hyperbolic Differential Equations, Nr. 9 (2): 239–261. doi: 10.1142/S0219891612500087.
- Holzegel, G. . „Stability and decay rates for the five-dimensional Schwarzschild metric under biaxial perturbations.“ Advances in Theoretical and Mathematical Physics, Nr. 14 (5): 1245–1372. doi: 10.4310/ATMP.2010.v14.n5.a1.
- Holzegel, G. . „On the massive wave equation on slowly rotating Kerr-AdS spacetimes.“ Communications in Mathematical Physics, Nr. 294: 169–197. doi: 10.1007/s00220-009-0935-9.
- Holzegel, G, Schmelzer, T, und Warnick, C. . „Ricci flows connecting Taub–Bolt and Taub–NUT metrics.“ Classical and Quantum Gravity, Nr. 24 (24): 6201–6217. doi: 10.1088/0264-9381/24/24/004.
- Holzegel, G. . „On the instability of Lorentzian Taub–NUT space.“ Classical and Quantum Gravity, Nr. 23 (11): 3951–3962. doi: 10.1088/0264-9381/23/11/017.
- Gibbons, GW, und Holzegel, G. . „The positive mass and isoperimetric inequalities for axisymmetric black holes in four and five dimensions.“ Classical and Quantum Gravity, Nr. 23 (22): 6459–6478. doi: 10.1088/0264-9381/23/22/022.
- Dafermos, M, und Holzegel, G. . „On the nonlinear stability of higher dimensional triaxial Bianchi-{IX} black holes.“ Advances in Theoretical and Mathematical Physics, Nr. 10 (4): 503–523. doi: 10.4310/ATMP.2006.v10.n4.a2.
Ereignisse
2021 Mitorganisator der Workshops New Trends in Geometric PDEs (zusammen mit C. Boehm, G. Holzegel und B. Wilking) an der WWU. Dieser Workshop ist Teil des Fokusprogramms Geometry and PDEs: From Theory to Applications.
2019 Mitorganisator des 5. Symposiums der Angewandten Mathematik Münster Transport, Mixing and Fluids (zusammen mit E. Wiedemann) an der WWU.
2015 Mitorganisator der Hausdorff-Schule Nonlinear evolutions: Kinetic equations and defect dynamics (zusammen mit B. Niethammer und J.J.L. Velázquez) am Hausdorff-Zentrum in Bonn.