Lehre aktuell
Wintersemester 2024/2025
Veranstaltung Zeit Ort Vorlesung Differentialgeometrie I Mo, 14-16 Uhr
Do, 14-16 UhrM5 Übungen Quispos Seminar Anwendungen der linearen Algebra Do, 16-18 Uhr Oberseminar Differentialgeometrie Mo, 16-18 Uhr SRZ 214 Frühere Semester
Sommersemester 2024
Veranstaltung Zeit Ort Vorlesung Differentialformen und Mannigfaltigkeiten Mo, 10-12 Uhr
Do, 10-12 UhrM6 Übungen siehe Quispos Oberseminar Differentialgeometrie Mo, 16-18 Uhr SRZ 214 Wintersemester 2023/2024
- keine Vorlesungen
Sommersemester 2023
Veranstaltung Zeit Ort Vorlesung Differentialgeometrie III siehe Quispos Seminar GKM-Theorie siehe Quispos Oberseminar Differentialgeometrie Mo, 16-18 Uhr Wintersemester 2022/2023
Veranstaltung Zeit Ort Vorlesung Differentialgeometrie II siehe Quispos Übungen siehe Quispos Oberseminar Differentialgeometrie Mo, 16-18 Uhr Sommersemester 2022
Veranstaltung Zeit Ort Vorlesung Liegruppen siehe Quispos Übungen siehe Quispos Bachelorseminar Differentialgeometrie siehe Quispos Oberseminar Differentialgeometrie Mo, 16-18 Uhr SR 4/Zoom Wintersemester 2021/2022
Veranstaltung Zeit Ort Vorlesung Differentialgeometrie 1, Learnweb Mo, 10-12 Uhr
Do, 10-12 UhrM4 Übungen siehe Quispos Oberseminar Differentialgeometrie Mo, 16-18 Uhr SR 4/Zoom Sommersemester 2020
Alle Informationen zum geplanten Sommersemester 2020 finden Sie unter folgendem Link
Wintersemester 2019/2020
Veranstaltung Zeit Ort Vorlesung Analysis I Mo, 8-10 Uhr M1 Do, 8-10 Uhr M1 Übungen zur Vorlesung Analysis I siehe Quispos Reading Seminar Mi, 16-18 Uhr SRZ 203 Oberseminar Differentialgeometrie Mo, 16-18 Uhr SR 4 Wintersemester 2018/2019
Veranstaltung Zeit Ort Vorlesung Kurven und Flächen Di, 14-16 Uhr M4 Do, 14-16 Uhr M4 Übungen zu Kurven und Flächen siehe Quispos Seminar Kurven und Flächen Di, 10-12 Uhr SR5 Oberseminar Differentialgeometrie Mo, 16-18 Uhr SR4 Sommersemester 2018
Veranstaltung Zeit Ort Vorlesung: Ausgewählte Kapitel aus der Differentialgeometrie Mo, 14-16 Uhr M6 Do, 14-16 Uhr M6 Seminar: Mannigfaltigkeiten und Differentialformen Di, 10-12 Uhr Oberseminar Differentialgeometrie Mo, 16-18 Uhr SR4 Reading Seminar Mi, 14-16 Uhr SR4 Wintersemester 2017/2018
Veranstaltung Zeit Ort Vorlesung Differentialgeometrie II Mo, 14-16 Uhr N2 Do, 16-18 Uhr SR4 Übungen zu Differentialgeometrie II Fr, 12-14 Uhr N1 Oberseminar Differentialgeometrie Mo, 16-18 Uhr SR4 Reading Seminar Mi, 14-16 Uhr SR4
Publikationen
-
Kennard, Lee, Wiemeler, Michael, Wilking, Burkhard. Positive curvature, torus symmetry, and matroids. arxiv
-
Kennard, Lee, Wiemeler, Michael, Wilking, Burkhard. Splitting of torus representations and applications in the Grove symmetry program. arxiv
-
Grove, Karsten, Wilking, Burkhard, Yeager, Joseph. Almost non-negative curvature and rational ellipticity in cohomogeneity two. Ann. Inst. Fourier (Grenoble) 69 (2019), no. 7, 2921-2939. pdf
-
Bamler, Richard H., Cabezas-Rivas, Esther, Wilking, Burkhard. The Ricci flow under almost non-negative curvature conditions. to app. in Inventiones mathematicae (2019). pdf
-
Ziller, Wolfgang; Wilking, Burkhard. Revisiting homogeneous spaces with positive curvature. J. Reine Angew. Mathematik (2018), 313-328. pdf
-
Radeschi, Marco; Wilking, Burkhard. On the Berger conjecture for manifolds all of whose geodesics are closed. Invent. math (2017), 911-962. pdf
-
Lytchak, Alexander; Wilking, Burkhard. Riemannian foliations on spheres. Geometry and Topology 20 (2016), 1257-1274. pdf
-
Cabezas-Rivas, Esther; Wilking, Burkhard. How to produce a Ricci flow via Cheeger-Gromoll exhaustion. J. Eur. Math. Soc.17 (2015), 3153-3194. pdf
-
Grove, Karsten; Wilking, Burkhard. A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Geometry and Topology 18 (2014), 3091-3110. pdf
-
Wilking, Burkhard. A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities. J. Reine Angew. Mathematik 679 (2013), 223-247. pdf
-
Ni, Lei; Wilking, Burkhard. Manifolds with 1/4 - pinched flag curvature. Geom. Funct. Anal. 20, (2010), no. 2, 571-591. pdf
-
Böhm, Christoph; Wilking, Burkhard. Manifolds with positive curvature operators are space forms. Ann. of Math. (2), 167 (2008), no. 3, 1079-1097. pdf
-
Grove, Karsten; Wilking, Burkhard; Ziller, Wolfgang. Positively curved cohomogeneity one manifolds and 3-Sasakian geometry. J. Differential Geom. 78 (2008), no. 1, 33-111. pdf
-
Wilking, Burkhard. Nonnegatively and positively curved manifolds. Surveys in Differential Geometry, volume XI, 25-62, (2007). pdf
-
Wilking, Burkhard. A duality theorem for Riemannian foliations in nonnegative sectional curvature. Geom. Func. Anal., 17 (2007), , no. 4, 1297-1320. Download über Leibniz-Publik oder über das Journal.
-
Böhm, Christoph; Wilking, Burkhard. Nonnegatively curved manifolds with finite fundamental groups admit metrics with positive Ricci curvature. Geom. Func. Anal., 17 (2007), , no. 3, 665-681. pdf
-
Grove, Karsten; Verdiani, Luigi; Wilking, Burkhard. Non-negative curvature obstructions in cohomogeneity one and the Kervaire spheres. Ann.Sc. Norm. Super. Pisa Cl. Sci. (5) 5 (2006), no. 2, 159-170. pdf
-
Wilking, Burkhard. Positively curved manifolds with symmetry. Ann. of Math. (2) 163 (2006), no. 2, 607-668. Download über Leibniz-Publik oder über das Journal.
-
Shankar, K.; Spatzier, R.; Wilking, Burkhard. Spherical rank rigidity and Blaschke manifolds. Duke Math. J. 128 (2005), no. 1, 65-81. pdf
-
Dessai, Annand; Wilking, Burkhard. Torus actions on homotopy complex projective spaces. Math. Z. 247 (2004), no. 3, 505-511. pdf
-
Wilking, Burkhard. Torus actions on manifolds of positive sectional curvature. Acta Math. 191 (2003), no. 2, 259-297. Download über Leibniz-Publik oder über das Journal.
-
Wilking, Burkhard. Group actions on manifolds of positive sectional curvature. XII Escola de Geometria Diferencial. 2002. ISBN 85-902605-1-8.
-
Wilking, Burkhard. Manifolds with positive sectional curvature almost everywhere. Invent. Math. 148 (2002), no. 1, 117-141. Download über Leibniz-Publik.
-
Wilking, Burkhard. Index parity of closed geodesics and rigidity of Hopf fibrations. Invent. Math. 144 (2001), no. 2, 281-295. pdf
-
Wilking, Burkhard. On fundamental groups of manifolds of nonnegative curvature. Differential Geom. Appl. 13 (2000), no. 2, 129-165. pdf
-
Wilking, Burkhard. Rigidity of group actions on solvable Lie groups. Math. Ann. 317 (2000), no. 2, 195-237. pdf
-
Wilking, Burkhard. On compact Riemannian manifolds with noncompact holonomy groups. J. Differential Geom. 52 (1999), no. 2, 223-257. Download über Leibniz-Publik.
-
Wilking, Burkhard. The normal homogeneous space (SU(3) x SO(3))/U´(2) has positive sectional curvature. Proc. Amer. Math. Soc. 127 (1999), no. 4, 1191-1194. pdf
-