Research Interests

Research Interests

$\bullet$ Model theory.
$\bullet$ Group theory.
$\bullet$ Groups and geometries.

Selected Publications

Selected Publications of Prof. Dr. Dr. Katrin Tent

$\bullet$ I. Müller and K. Tent. Building-like geometries of finite Morley Rank. J. Eur. Math. Soc. (JEMS) (to appear), 2018.

$\bullet$ E. Rips, Y. Segev, and K. Tent. A sharply 2-transitive group without a non-trivial abelian normal subgroup. J. Eur. Math. Soc. (JEMS), 19(10):2895–2910, 2017.

$\bullet$ E. Rips and K. Tent. Sharply 2-transitive groups of characteristic 0. J. Reine Angew. Math. (ahead of print), 2017. doi.org/10.1515/crelle-2016-0054

$\bullet$ K. Tent. Sharply 3-transitive groups. Adv. Math., 286:722–728, 2016.

$\bullet$ K. Tent. The free pseudospace is n-ample, but not (n+ 1)-ample. The Journal of Symbolic Logic, 79(02):410–428, 2014.

$\bullet$ K. Tent and M. Ziegler. On the isometry group of the Urysohn space. J. Lond. Math. Soc. (2), 87(1):289–303, 2013.

$\bullet$ M. W. Liebeck, D. Macpherson, and K. Tent. Primitive permutation groups of bounded orbital diameter. Proc. Lond. Math. Soc. (3), 100(1):216–248, 2010.

$\bullet$ K. Tent. Split $BN$-pairs of rank 2: the octagons. Adv. Math., 181(2):308–320, 2004.

$\bullet$ K. Tent and H. Van Maldeghem. Moufang polygons and irreducible spherical {BN}-pairs of rank 2, I. Adv. Math., 174(2):254–265, 2003.

$\bullet$ K. Tent. Very homogeneous generalized $n$-gons of finite Morley rank. J. London Math. Soc. (2), 62(1):1–15, 2000.

Current Cluster Publications

Current Cluster Publications of Prof. Dr. Dr. Katrin Tent

$\bullet $ Dugald Macpherson and Katrin Tent. Omega-categorical pseudofinite groups. arXiv e-prints, March 2024. arXiv:2403.17684.

$\bullet $ Marco Amelio, Simon André, and Katrin Tent. Non-split sharply 2-transitive groups of odd positive characteristic. arXiv e-prints, December 2023. arXiv:2312.16992.

$\bullet $ Anna-Maria Ammer and Katrin Tent. On the model theory of open generalized polygons. arXiv e-prints, August 2023. arXiv:2308.03677.

$\bullet $ Simon André and Katrin Tent. Simple sharply 2-transitive groups. Transactions of the American Mathematical Society, 376(06):3965–3993, June 2023. doi:10.1090/tran/8846.

$\bullet $ Agatha Atkarskaya, Eliyahu Rips, and Katrin Tent. The Burnside problem for odd exponents. arXiv e-prints, April 2023. arXiv:2303.15997.

$\bullet $ Dan Segal and Katrin Tent. Defining $r$ and $g(r)$. Journal of the European Mathematical Society, 25(8):3325–3358, 2023. doi:10.4171/jems/1255.

$\bullet $ Aristotelis Panagiotopoulos and Katrin Tent. Universality vs genericity and $C_4$-free graphs. Eur. J. Comb., 106:103590, December 2022. doi:10.1016/j.ejc.2022.103590.

$\bullet $ André Nies, Philipp Schlicht, and Katrin Tent. Coarse groups, and the isomorphism problem for oligomorphic groups. J. Math. Log., 22(01):2150029, April 2022. doi:10.1142/S021906132150029X.

$\bullet $ Filippo Calderoni, Aleksandra Kwiatkowska, and Katrin Tent. Simplicity of the automorphism groups of order and tournament expansions of homogeneous structures. J. Algebra, 580:43–62, August 2021. doi:10.1016/j.jalgebra.2021.03.028.

$\bullet $ Andre Nies, Dan Segal, and Katrin Tent. Finite axiomatizability for profinite groups. Proc. Lond. Math. Soc., 123(6):597–635, August 2021. doi:10.1112/plms.12420.

$\bullet $ Tim Clausen and Katrin Tent. Mock hyperbolic reflection spaces and Frobenius groups of finite Morley rank. arXiv e-prints, April 2021. arXiv:2104.10096.

$\bullet $ Tim Clausen and Katrin Tent. On the geometry of sharply 2-transitive groups. arXiv e-prints, February 2020. arXiv:2002.05187.

$\bullet $ Isabel Müller and Katrin Tent. Building-like geometries of finite Morley rank. J. Eur. Math. Soc. (JEMS), 21(12):3739–3757, August 2019. doi:10.4171/jems/912.

$\bullet $ Eliyahu Rips and Katrin Tent. Sharply 2-transitive groups of characteristic 0. J. Reine Angew. Math., 2019(750):227–238, May 2019. doi:10.1515/crelle-2016-0054.

$\bullet $ Malte Scherff and Katrin Tent. Addendum to sharply 2-transitive groups of characteristic 0. J. Reine Angew. Math., 2019(750):239–240, May 2019. doi:10.1515/crelle-2017-0022.

$\bullet $ Andre Nies, Philipp Schlicht, and Katrin Tent. Oligomorphic groups are essentially countable. arXiv e-prints, March 2019. arXiv:1903.08436.