Topics in Mathematics Münster
T4: Groups and actionsT5: Curvature, shape, and global analysis
T6: Singularities and PDEs
T10: Deep learning and surrogate methods
Further Projects
• CRC 1442 - B02: Geometric evolution equations online
• CRC 1442 - B04: Harmonic maps and symmetry online
• Dynamical systems and irregular gradient flows online
Current Cluster Publications of Prof. Dr. Christoph Böhm
$\bullet $ Christoph Böhm, Timothy Buttsworth, and Brian Clarke. Scalar curvature along Ebin geodesics. Journal für die reine und angewandte Mathematik (Crelles Journal), 2024(813):159–196, June 2024. doi:10.1515/crelle-2024-0033.
$\bullet $ Christoph Böhm and Urs Hartl. Moment map flow on real reductive Lie groups and GIT estimates. arXiv e-prints, June 2024. arXiv:2406.19340.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Non-compact Einstein manifolds with unimodular isometry group. arXiv e-prints, July 2023. arXiv:2307.13235.
$\bullet $ Christoph Böhm and Megan M. Kerr. Homogeneous Einstein metrics and butterflies. Annals of Global Analysis and Geometry, 63(4):92, June 2023. doi:10.1007/s10455-023-09905-0.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Non-compact Einstein manifolds with symmetry. J. Amer. Math. Soc., February 2023. doi:10.1090/jams/1022.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds. Geom. Topol., 26(2):899–936, June 2022. doi:10.2140/gt.2022.26.899.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Real geometric invariant theory. In Differential geometry in the large, volume 463 of London Math. Soc. Lecture Note Ser., pages 11–49. October 2020. doi:10.1017/9781108884136.003.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. The Ricci flow on solvmanifolds of real type. Adv. Math., 352:516–540, August 2019. doi:10.1016/j.aim.2019.06.014.
$\bullet $ Christoph Böhm, Ramiro Lafuente, and Miles Simon. Optimal curvature estimates for homogeneous Ricci flows. Int. Math. Res. Not. IMRN, 2019(14):4431–4468, July 2019. doi:10.1093/imrn/rnx256.
$\bullet $ Christoph Böhm and Ramiro A. Lafuente. Immortal homogeneous Ricci flows. Invent. Math., 212(2):461–529, November 2018. doi:10.1007/s00222-017-0771-z.