Topics in Mathematics Münster
T1: K-Groups and cohomologyT2: Moduli spaces in arithmetic and geometry
Further Projects
• CRC 1442 - C03: K-theory of group algebras online
Research Interests
$\bullet$ Algebraic $K$-and $L$-theory.
$\bullet$ Geometric group theory.
$\bullet$ Conformal nets, topological quantum field theory.
Selected Publications of Prof. Dr. Arthur Bartels
$\bullet$ A. Bartels, C. L. Douglas, and A. Henriques. Conformal nets {II}: Conformal blocks. Comm. Math. Phys., 354(1):393–458, 2017.
$\bullet$ A. Bartels. Coarse flow spaces for relatively hyperbolic groups. Compos. Math., 153(4):745–779, 2017.
$\bullet$ A. Bartels, C. L. Douglas, and A. Henriques. Conformal nets I: Coordinate-free nets. Int. Math. Res. Not. IMRN, 2015(13):4975–5052, 2015.
$\bullet$ A. Bartels, W. Lück, H. Reich, and H. Rüping. K- and L-theory of group rings over $GL_n({\bf Z})$. Publ. Math. Inst. Hautes \'Etudes Sci., 119(1):97–125, 2014.
$\bullet$ A. Bartels, F. T. Farrell, and W. Lück. The Farrell- Jones conjecture for cocompact lattices in virtually connected Lie groups. J. Amer. Math. Soc., 27(2):339–388, 2014.
$\bullet$ A. Bartels and W. Lück. The Borel conjecture for hyperbolic and ${\rm CAT}(0)$-groups. Ann. of Math. (2), 175(2):631–689, 2012.
$\bullet$ A. Bartels, W. Lück, and S. Weinberger. On hyperbolic groups with spheres as boundary. J. Differential Geom., 86(1):1–16, 2010.
$\bullet$ A. Bartels, W. Lück, and H. Reich. The $K$-theoretic Farrell- Jones conjecture for hyperbolic groups. Invent. Math., 172(1):29–70, 2008.
$\bullet$ A. Bartels, F. T. Farrell, L. Jones, and H. Reich. On the isomorphism conjecture in algebraic $K$-theory. Topology, 43(1):157–213, 2004.
$\bullet$ A. Bartels. Squeezing and higher algebraic $K$-theory. $K$-Theory, 28(1):19–37, 2003.
Current Cluster Publications of Prof. Dr. Arthur Bartels
$\bullet $ Arthur Bartels and Wolfgang Lueck. Algebraic $\mathrm K$-theory of reductive $p$-adic groups. arXiv e-prints, June 2023. arXiv:2306.03452.
$\bullet $ Arthur Bartels and Wolfgang Lueck. Inheritance properties of the Farrell-Jones conjecture for totally disconnected groups. arXiv e-prints, June 2023. arXiv:2306.01518.
$\bullet $ Arthur Bartels and Wolfgang Lueck. Recipes to compute the algebraic $\mathrm K$-theory of Hecke algebras of reductive $p$-adic groups. arXiv e-prints, June 2023. arXiv:2306.01510.
$\bullet $ Arthur Bartels and Wolfgang Lueck. Almost equivariant maps for td-groups. arXiv e-prints, June 2023. arXiv:2306.00727.
$\bullet $ Arthur Bartels and Wolfgang Lück. On the algebraic $\mathrm K$-theory of Hecke algebras. In Mathematics Going Forward, Lecture Notes in Mathematics, pages 241–277. Springer International Publishing, January 2023. doi:10.1007/978-3-031-12244-6_19.
$\bullet $ Arthur Bartels, Christopher L. Douglas, and André Henriques. Conformal nets V: Dualizability. Comm. Math. Phys., 391(1):1–31, February 2022. doi:10.1007/s00220-021-04212-w.
$\bullet $ Arthur Bartels and Wolfgang Lueck. Vanishing of Nil-terms and negative K-theory for additive categories. arXiv e-prints, February 2020. arXiv:2002.03412v1.
$\bullet $ Arthur Bartels, Christopher L. Douglas, and André Henriques. Fusion of defects. Mem. Amer. Math. Soc., 258(1237):vii+100, March 2019. doi:10.1090/memo/1237.
$\bullet $ Arthur Bartels and Mladen Bestvina. The Farrell-Jones conjecture for mapping class groups. Invent. Math., 215(2):651–712, January 2019. doi:10.1007/s00222-018-0834-9.