Topics in Mathematics Münster
T6: Singularities and PDEsT7: Field theory and randomness
Further Projects
• CRC 1442 - B06: Einstein 4-manifolds with two commuting Killing vectors online
Current Cluster Publications of Prof. Dr. Gustav Holzegel
$\bullet $ Olivier Graf and Gustav Holzegel. Linear stability of Schwarzschild-Anti-de Sitter spacetimes II: Logarithmic decay of solutions to the Teukolsky system. arXiv e-prints, August 2024. arXiv:2408.02252.
$\bullet $ Olivier Graf and Gustav Holzegel. Linear stability of Schwarzschild-Anti-de Sitter spacetimes I: the system of gravitational perturbations. arXiv e-prints, August 2024. arXiv:2408.02251.
$\bullet $ Sam C. Collingbourne and Gustav Holzegel. Uniform boundedness for solutions to the Teukolsky equation on Schwarzschild from conservation laws of linearised gravity. Communications in Mathematical Physics, 405:Paper No. 138, May 2024. doi:10.1007/s00220-024-04999-4.
$\bullet $ Gustav Holzegel, Georgios Mavrogiannis, and Renato Velozo Ruiz. A note on integrated local energy decay estimates for spherically symmetric black hole spacetimes. arXiv e-prints, March 2024. arXiv:2403.02533.
$\bullet $ Gustav Holzegel and Christopher Kauffman. The wave equation on the Schwarzschild spacetime with small non-decaying first-order terms. Journal of Hyperbolic Differential Equations, 20(04):825–834, December 2023. doi:10.1142/s0219891623500273.
$\bullet $ Sam C. Collingbourne and Gustav Holzegel. Uniform boundedness for solutions to the Teukolsky equation on Schwarzschild from conservation laws of linearised gravity. arXiv e-prints, July 2023. arXiv:2307.05458.
$\bullet $ Gustav Holzegel and Arick Shao. The bulk-boundary correspondence for the Einstein equations in asymptotically anti-de Sitter spacetimes. Archive for Rational Mechanics and Analysis, 247(3):56, May 2023. doi:10.1007/s00205-023-01890-9.
$\bullet $ Gustav Holzegel and Christopher Kauffman. The wave equation on subextremal Kerr spacetimes with small non-decaying first order terms. arXiv e-prints, February 2023. arXiv:2302.06387.
$\bullet $ Olivier Graf and Gustav Holzegel. Mode stability results for the Teukolsky equations on Kerr–anti-de Sitter spacetimes. Classical and Quantum Gravity, 40(4):045003, January 2023. doi:10.1088/1361-6382/acb0ac.
$\bullet $ Mihalis Dafermos, Gustav Holzegel, Igor Rodnianski, and Martin Taylor. Quasilinear wave equations on asymptotically flat spacetimes with applications to Kerr black holes. arXiv e-prints, December 2022. arXiv:2212.14093.
$\bullet $ Mihalis Dafermos, Gustav Holzegel, Igor Rodnianski, and Martin Taylor. The non-linear stability of the Schwarzschild family of black holes. arXiv e-prints, April 2021. arXiv:2104.08222.
$\bullet $ Gustav Holzegel and Christopher Kauffman. A note on the wave equation on black hole spacetimes with small non-decaying first order terms. arXiv e-prints, May 2020. arXiv:2005.13644.
$\bullet $ Gustav Holzegel, Jonathan Luk, Jacques Smulevici, and Claude Warnick. Asymptotic properties of linear field equations in anti–de Sitter space. Comm. Math. Phys., 374(2):1125–1178, March 2020. doi:10.1007/s00220-019-03601-6.
$\bullet $ Mihalis Dafermos, Gustav Holzegel, and Igor Rodnianski. The linear stability of the Schwarzschild solution to gravitational perturbations. Acta Math., 222(1):1–214, April 2019. doi:10.4310/ACTA.2019.v222.n1.a1.
$\bullet $ Mihalis Dafermos, Gustav Holzegel, and Igor Rodnianski. Boundedness and decay for the Teukolsky equation on Kerr spacetimes I: The case $|a| \ll m$. Ann. PDE, 5(1):2–2, January 2019. doi:10.1007/s40818-018-0058-8.