Current Cluster Publications

Current Cluster Publications of PD Dr. Michael Wiemeler

$\bullet $ Michael Wiemeler. Witten genera of complete intersections. arXiv e-prints, October 2024. arXiv:2410.21412.

$\bullet $ Johannes Ebert and Michael Wiemeler. On the homotopy type of the space of metrics of positive scalar curvature. Journal of the European Mathematical Society, 26(9):3327–3363, July 2024. doi:10.4171/JEMS/1333.

$\bullet $ Michael Wiemeler. On a conjecture of Stolz in the toric case. Proceedings of the American Mathematical Society, 152(8):3617–3621, June 2024. doi:10.1090/proc/16823.

$\bullet $ Anusha M. Krishnan and Michael Wiemeler. $10$-dimensional positively curved manifolds with $t^3$-symmetry. arXiv e-prints, October 2023. arXiv:2310.12689.

$\bullet $ Michael Wiemeler. On circle actions with exactly three fixed points. arXiv e-prints, March 2023. arXiv:2303.15396.

$\bullet $ Michael Wiemeler. Rigidity of elliptic genera for non-spin manifolds. arXiv e-prints, December 2022. arXiv:2212.01059.

$\bullet $ Lee Kennard, Michael Wiemeler, and Burkhard Wilking. Positive curvature, torus symmetry, and matroids. arXiv e-prints, December 2022. arXiv:2212.08152.

$\bullet $ Michael Wiemeler. Smooth classification of locally standard $T^k$-manifolds. Osaka J. Math, 59(3):549–557, July 2022. doi:10.18910/88486.

$\bullet $ Wilderich Tuschmann and Michael Wiemeler. On the topology of moduli spaces of non-negatively curved Riemannian metrics. Math. Ann., 384(3–4):1629–1651, December 2021. doi:10.1007/s00208-021-02327-y.

$\bullet $ Oliver Goertsches and Michael Wiemeler. Non-negatively curved GKM orbifolds. Math. Z., September 2021. doi:10.1007/s00209-021-02853-0.

$\bullet $ Lee Kennard, Michael Wiemeler, and Burkhard Wilking. Splitting of torus representations and applications in the Grove symmetry program. arXiv e-prints, June 2021. arXiv:2106.14723.

$\bullet $ Michael Wiemeler. On moduli spaces of positive scalar curvature metrics on highly connected manifolds. Int. Math. Res. Notices, January 2020. doi:10.1093/imrn/rnz386.

$\bullet $ Michael Wiemeler. Classification of rationally elliptic toric orbifolds. Arch. Math. (Basel), 114(6):641–647, January 2020. doi:10.1007/s00013-019-01430-6.

$\bullet $ Wilderich Tuschmann and Michael Wiemeler. Smooth stability and sphere theorems for manifolds and Einstein manifolds with positive scalar curvature. Comm. Anal. Geom., 27(2):491–509, August 2019. doi:10.4310/CAG.2019.v27.n2.a8.

$\bullet $ Michael Wiemeler. $S^1$-Equivariant bordism, invariant metrics of positive scalar curvature, and rigidity of elliptic genera. J. Topol. Anal., pages 1–54, January 2019. doi:10.1142/s1793525319500766.

$\bullet $ Bernhard Hanke and Michael Wiemeler. An equivariant Quillen theorem. Adv. Math., 340:48–75, December 2018. doi:10.1016/j.aim.2018.10.009.

$\bullet $ Fernando Galaz-García, Martin Kerin, Marco Radeschi, and Michael Wiemeler. Torus orbifolds, slice-maximal torus actions, and rational ellipticity. Int. Math. Res. Not. IMRN, pages 5786–5822, March 2018. doi:10.1093/imrn/rnx064.

$\bullet $ Anand Dessai and Michael Wiemeler. Complete intersections with $S^1$-action. Transform. Groups, 22(2):295–320, June 2017. doi:10.1007/s00031-017-9418-9.

$\bullet $ Michael Wiemeler. Circle actions and scalar curvature. Trans. Amer. Math. Soc., 368(4):2939–2966, January 2016. doi:10.1090/tran/6666.

$\bullet $ Michael Wiemeler. Torus manifolds and non-negative curvature. J. Lond. Math. Soc. (2), 91(3):667–692, April 2015. doi:10.1112/jlms/jdv008.

$\bullet $ Oliver Goertsches and Michael Wiemeler. Positively curved GKM-manifolds. Int. Math. Res. Not. IMRN, pages 12015–12041, February 2015. doi:10.1093/imrn/rnv046.

$\bullet $ Michael Wiemeler. Exotic torus manifolds and equivariant smooth structures on quasitoric manifolds. Math. Z., 273(3-4):1063–1084, April 2013. doi:10.1007/s00209-012-1044-6.

$\bullet $ Michael Wiemeler. Dirac operators and symmetries of quasitoric manifolds. Algebr. Geom. Topol., 13(1):277–312, February 2013. doi:10.2140/agt.2013.13.277.

$\bullet $ Michael Wiemeler. Torus manifolds with non-abelian symmetries. Trans. Amer. Math. Soc., 364(3):1427–1487, January 2012. doi:10.1090/S0002-9947-2011-05463-2.