Contents
- 1. Working group Prof. Dr. Jochen Heitger – Theory of elementary particles & quantum chromodynamics on the lattice
- 2. Working group Prof. Dr. Michael Klasen – Physics beyond the Standard Model & quantum chromodynamics
- 3. Working group Prof. Dr. Anna Kulesza – Hadron collider phenomenology
- 4. Working group Prof. Dr. Stefan Linz – Structure formation & nonlinear dynamics
- 5. Working group Prof. Dr. Uwe Thiele – Self-organization and complexity
- 6. Working group Jun. Prof. Dr. Raphael Wittkowski – Theory of active soft matter
Institute of Theoretical Physics
Working group Prof. Dr. Jochen Heitger – Theory of elementary particles & quantum chromodynamics on the lattice
Das Standardmodell der Elementarteilchenphysik (SM) beschreibt mit der elektromagnetischen, der schwachen und der starken Wechselwirkung diejenigen drei der uns bekannten vier fundamentalen Kräfte, welche auf Ebene der Bausteine der Materie relevant sind. Die theoretische Grundlage dieses Modells bildet die Quantentheorie der Felder. Obwohl das SM bis heute mit beeindruckender Genauigkeit experimentell bestätigt ist, gibt es Phänomene, die es nicht oder nur unzureichend erklären kann. Deshalb sind die Elementarteilchenphysiker davon überzeugt, dass das SM in geeigneter Weise erweitert werden muss. Die Suche nach Anzeichen für Physik jenseits dieses etablierten Modells und nach Einschränkungen möglicher Erweiterungen zählt daher weltweit zu den intensivsten Aktivitäten in der Teilchenphysik.
Eine zur direkten Suche nach „Neuer Physik“ an Teilchenbeschleunigern komplementäre Strategie, bei der der theoretischen Physik eine bedeutende Rolle zukommt, besteht darin, durch Kombination mit experimentellen Daten das SM zu testen und Abweichungen von seinen Vorhersagen aufzuspüren.
Da an den zugrundeliegenden physikalischen Prozessen Hadronen, also gebundene Zustände aus Quarks und Gluonen, als Anfangszustände beteiligt sind, gilt es dabei insbesondere, die Effekte der starken Wechselwirkung (Quantenchromodynamik – QCD) zu quantifizieren. Dies wiederum umfasst Fragestellungen, die mittels einer Störungsreihenentwicklung nicht behandelbar sind, da die QCD-Kopplungskonstante im niederenergetischen,hadronischen Regime zu groß und somit kein guter Entwicklungsparameter mehr ist. Die Formulierung der QCD auf einem Raumzeit-Gitter bietet hingegen den Rahmen für eine systematische, nichtstörungstheoretische Behandlung der Theorie bei niedrigen Energien mithilfe von numerischen Simulationen auf Computern.
In meiner Arbeitsgruppe beschäftigen wir uns mit Präzisionsberechnungen von QCD- und SM-Parametern mit Methoden der Gitter-QCD, derzeit vor allem für die Flavourphysik mit schweren Quarks. Weitere Schwerpunkte sind die nichtstörungstheoretische Renormierung und O(a)-Verbesserung auf dem Gitter.
Unter Berücksichtigung des Ausbildungsstandes nach dem 5. Semester sind von mir betreute Bachelorarbeiten vorrangig im Themenkreis der Quantenmechanik angesiedelt, wobei analytische und numerische Methoden, Näherungsverfahren oder das Feynman’sche Pfadintegral zum Einsatz kommen können.
Bei entsprechendem Wissensstand (oder der Bereitschaft, sich diesen in vertretbarem Umfang im Rahmen der Arbeit anzueignen) sind auch Untersuchungen von Fragestellungen aus den Gebieten Relativitätstheorie, Statistische Physik oder Feldtheorie auf dem Gitter denkbar.
Working group Prof. Dr. Michael Klasen – Physics beyond the Standard Model & quantum chromodynamics
Quantenchromodynamik
Die Quantenchromodynamik (QCD) ist heute als Theorie der starken Wechselwirkung allgemein anerkannt. Dennoch sind viele konzeptionelle Fragen, etwa nach den Eigenschaften des Quark-Gluon-Plasmas, immer noch offen. Darüber hinaus sind viele freie Parameter der QCD bislang nur unzureichend bestimmt. Zur Verbesserung des QCD-Verständnisses ist es erforderlich, für die dort beobachteten Streuprozesse theoretische Vorhersagen zu machen, die die experimentelle Genauigkeit erreichen oder übertreffen. Dies ist wegen der Größe der starken Kopplungskonstante nur mit Rechnungen möglich, die über die (führende Ordnung der) Störungstheorie hinausgehen. Ebenso wichtig ist es, den Experimentalphysikern diese Rechnungen in Form von flexiblen, benutzerfreundlichen Monte-Carlo-Programmen zur Verfügung zu stellen und sie bei der Interpretation von einzelnen Analysen theoretisch zu unterstützen.
Physik jenseits des Standardmodells
Die eindrucksvollen theoretischen Einsichten und experimentellen Entdeckungen in der Hochenergiephysik während der vergangenen 40 Jahre haben sich zu einem äußerst kohärenten Bild gefügt, dem sogenannten „Standardmodell“ der Teilchenphysik. Diese Leistungen werden bis heute durch zahlreiche Nobelpreise gewürdigt (z. B. ’t Hooft und Veltman 1999; Gross, Politzer und Wilczek 2004; und Nambu, Kobayashi und Maskawa 2008).
Zugleich ist die Tatsache heute weithin akzeptiert, dass das Standardmodell nur eine effektive Theorie sein kann, da es viele wichtige physikalische Fragen offenlässt, wie z. B.: Was sind die wirklich fundamentalen Teilchen, Kräfte und Symmetrien in der Natur? Wie entstand unser Universum, und wie hat es sich in seinen heutigen Zustand fortentwickelt? Experimentelle Hinweise können aus der direkten Beobachtung neuer Teilchen und Symmetrien bei Hochenergie-Kollidern, indirekten Präzisionsmessungen bei niedrigen Energien und astrophysikalischen Beobachtungen gewonnen werden. Aufgabe der Theoretiker ist es, die Experimentalphysiker bei der theoretischen Interpretation der Messungen durch Vorschläge neuer attraktiver Modelle und möglichst präzise Vorhersagen daraus folgender neuer Phänomene zu unterstützen.
Working group Klasen – homepage
Completed bachelor’s and master’s theses from working group Klasen
Working group Prof. Dr. Anna Kulesza – Hadron collider phenomenology
Die AG Kulesza beschäftigt sich mit der Phänomenologie von Hadronen-Beschleunigern. Im besonderen Fokus steht dabei der Large Hadron Collider (LHC) am CERN, dem leistungsstärksten und komplexesten Teilchenbeschleuniger, der bis heute gebaut wurde. Im Juli 2012 wurde von den beiden großen LHC-Experimenten verkündet, dass ein neues Elementarteilchen entdeckt wurde, dessen Eigenschaften denen des Higgs-Bosons entsprechen. Diese bahnbrechende Entdeckung könnte bedeuten, dass nach langer Suche mit dem Higgs-Boson der fehlende Baustein der aktuellen theoretischen Beschreibung des Standardmodells der Teilchenphysik experimentell nachgewiesen wurde. Um den größten möglichen Nutzen aus dieser Entdeckung und den weiteren Messergebnissen bzw. experimentellen Daten zu ziehen, sind Präzisionsberechnungen für die Signal- und Hintergrundprozesse am LHC von zentraler Bedeutung.
Die Forschungsvorhaben in meiner Arbeitsgruppe konzentrieren sich darauf, präzise theoretische Vorhersagen für die LHC-Experimente zu produzieren. Es besteht die Hoffnung, bei der Auswertung der experimentellen Daten Abweichungen vom Standardmodell zu finden, weil das Standmodell keine vollständige Beschreibung der Natur liefert. Aus diesem Grund werden aktuell einige neue Modelle bzw. Erweiterungen des Standardmodells diskutiert. Eine der vielversprechendsten Erweiterungen ist die Supersymmetrie. In meiner Arbeitsgruppe werden Berechnungen im Rahmen des Standardmodells, insbesondere für Higgs-Boson-Produktionsprozesse, als auch im Rahmen supersymmetrischer Theorien durchgeführt. Die Ergebnisse dieser Berechnungen finden Verwendung in den Datenanalysen der Kollegen an den Experimenten am LHC.
Bachelorarbeiten und Masterarbeiten in den letzten Jahren haben sich mit den Eigenschaften von Teilchenproduktionsprozessen in Modellen „neuer Physik“, insb. Supersymmetrie, am LHC beschäftigt. Andere Themen, z. B. Fragestellungen aus dem Gebiet der Quantenmechanik, können auch angeboten werden.
Working group Prof. Dr. Stefan Linz – Structure formation & nonlinear dynamics
Die Arbeitsgruppe ist Teil des Forschungsschwerpunktes Nichtlineare Physik des Fachbereichs Physik. Generell steht im Fokus unserer Arbeiten die Modellierung und theoretische/numerische Analyse klassisch behandelbarer komplexer Systeme, die in diversen physikalischen Teilgebieten auftreten. Grob gesprochen sind komplexe Systeme (im Gegensatz zu Systemen im Gleichgewicht) Vielteilchensysteme, die dominiert werden vom Wechselspiel von (a) Nichtgleichgewicht, d. h. permanentem Antrieb der Systeme aus den Gleichgewicht, (b) Nichtlinearitäten in der dynamischen Beschreibung der Systeme, die aufgrund des Nichtgleichgewichts relevant werden, (c) Dissipation. Als generische Konsequenz zeigen Komplexe Systeme häufig spontan nichttriviale zeitliche Dynamik bzw. raumzeitliche Evolution (Strukturbildung), die je nach eingehenden Parametern von regulär bis hin zu (raumzeitlich) chaotisch reichen kann.
Spezifisch beschäftigen wir uns in der Arbeitsgruppe zur Zeit mit folgenden Themen
- Strukturbildung von Oberflächen, die Depositions-, Erosions- und/oder Redepositionsprozessen unterliegen, insbesondere im Hinblick auf Anwendung bei nanotechnologisch relevanten Systemen, wie z. B. Ionenstrahlerosion und PVD.
- Dynamik/Strukturbildung granularer Materie („Sand“), insbesondere im Hinblick auf granulare Oberflächenströmungen („Lawinen“), Kompaktionsprozesse, Segregationeffekte und Transportphänomene,
- Instabilitäten und Strukturbildung in Newtonschen und komplexen Fluiden, z. B. in konvektiv getriebenen Systemen oder Systemen, in denen externer Antrieb gekoppelt mit Oberflächenspannungseffekten dominant ist, und
- Theorie dynamischer Systeme, insbesondere im Hinblick auf (a) Identifikation, Analyse und Klassifizierung elementarer chaotischer Systeme sowie ihrer Wege zum Chaos (b) nichtglatte dynamische Systeme (Impact-Oszillatoren) und (c) biophysikalische Systeme (mean-field-Modelle in Form von Ratengleichugen)
Generelle mathematische Klammer ist die Frage, inwieweit mit „einfachen“ Modellen, typischerweise gegeben in Form von nichtlinearen Differentialgleichungen, d. h. nichtlinearen dynamischen Systemen bzw. nichtlinearen, z. T. nichtlokalen und stochastischen Feldgleichungen oder auch zellularen Automaten, die reichhaltige, von regulär bis hin zu chaotisch reichende (raum)zeitliche Evolution in solchen Systemen beschrieben, theoretisch verstanden und klassifiziert werden kann.
Bachelorarbeiten in den letzten Jahren beschäftigten sich mit imperfekten Bifurkationen in stochastischen dynamischen Systemen, mechanischen Impact-Oszillatoren und biomathematischen Modellen der Infektionsausbreitung.
Ausführlichere Informationen
Working group Prof. Dr. Uwe Thiele – Self-organization and complexity
Bei komplexen Systemen handelt es sich um Nichtgleichgewichtssysteme wie z. B. Laser, hydrodynamische Flüsse und chemische Reaktionen, welche häufig aus vielen mikroskopischen, nichtlinear wechselwirkenden Komponenten bestehen. Solche Systeme können räumliche, raumzeitliche und funktionale Strukturen ausbilden, die nicht durch einfache Überlagerung des Verhaltens der Einzelkomponenten verstanden werden können. Die auftretende Strukturbildung wird häufig als Selbstorganisationsprozess interpretiert.
Das wissenschaftliche Ziel der Arbeitsgruppe Selbstorganisation und Komplexität ist es, universelle Eigenschaften von Nichtgleichgewichtssystemen mit theoretischen und numerischen Methoden zu erforschen. Von besonderem Interesse sind dabei Methoden der nichtlinearen Dynamik wie Bifurkations- und Chaostheorie, welche mit Methoden der statistischen Physik und der Theorie stochastischer Prozesse kombiniert werden.
Aktuelle Forschungsgebiete:
- Datengetriebene Analyse komplexer Systeme
- Raumzeitliche Strukturbildung in selbstassemblierenden Systemen und ihre Kontrolle
- Raumzeitliche Dynamik in Systemen der nichtlinearen Optik
- Grenzflächendynamik komplexer Fluide & weicher Materie
- Dynamik von Phasenübergängen und Wachstumsprozessen
- Kollektive Dynamik von Biofilmen, Bakterienkolonien, Geweben und Mikroschwimmern
Working group Jun. Prof. Dr. Raphael Wittkowski – Theory of active soft matter
Die AG Wittkowski befasst sich mit vielfältigen Themen im Bereich der Statistischen Physik und der Physik der weichen kondensierten Materie. Mit analytischen Methoden und Computersimulationen werden sowohl grundlegende Fragen der Statistischen Physik als auch viele anwendungsorientierte Systeme untersucht. Einen Schwerpunkt bildet die Untersuchung der Dynamik aktiver kolloidaler Teilchen. Dies sind Teilchen mit einer Größe im Nano- oder Mikrometerbereich, die über einen internen Antriebsmechanismus verfügen, mit dem sie sich (wie z.B. schwimmende Bakterien oder andere Mikroorganismen) selbstständig fortbewegen können. Die Arbeitsgruppe untersucht u.a. Anwendungen künstlicher Nano- und Mikroschwimmer in der Nanomedizin. Darüber hinaus werden die Eigenschaften sogenannter "aktiver weicher Materie" untersucht. Dies ist eine neuartige Klasse von Materialien, die aktive Teilchen enthalten und faszinierende Eigenschaften aufweisen. In aktiver weicher Materie werden Effekte wie der Casimir-Effekt oder Suprafluidität, die aus Quantensystemen bekannt sind, und exotische Effekte wie Flüssigkeiten mit negativer Viskosität, die bei keinen anderen bekannten Materialien auftreten können, beobachtet. Da es sich dabei um ein noch sehr neues Forschungsgebiet handelt, sind die meisten dieser Effekte wahrscheinlich noch zu entdecken. Entsprechend vielseitig sind die bei der Forschung der Arbeitsgruppe eingesetzten Methoden, die je nach Forschungsthema von klassischen bis zu quantenfeldtheoretischen Methoden reichen.
Nähere Informationen zu den Forschungsgebieten der Arbeitsgruppe, möglichen Themen für Abschlussarbeiten und aktuellen Stellenangeboten finden Sie auf der Homepage der AG Wittkowski.