BÖRNER, Dr. Markus


Porträt Markus Börner
© MEET/Lessmann

MEET - Münster Electrochemical Energy Technology
Raum: L.1.015
Corrensstraße 46
D-48149 Muenster

Tel.: +49 251 83-36830
markus.boerner@uni-muenster.de

ORCID ID: 0000-0002-8468-773X

Position: Bereichsleiter Cell System

Forschungsschwerpunkte: Cell Technology, Safety, Aging

Dissertationsthema: Investigations on the Main Degradation Effects of Different Layered and Spinel-Type Cathode Active Materials and the Influence of Aging on the Thermal Stability of Lithium Ion Batteries and Their Components

 
  • Publikationen

    • , , , , , , , , und . . „Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability.Batteries & Supercaps, Nr. Early View: e2023005. doi: 10.1002/batt.202300580.
    • . . „Tunable LiZn-Intermetallic Coating Thickness on Lithium Metal and Its Effect on Morphology and Performance in Lithium Metal Batteries.Advanced Materials Interfaces, Nr. 2300836 doi: 10.1002/admi.202300836.
    • , , , , , , , und . . „Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders.Advanced Energy and Sustainability Research, Nr. online first 2400117. doi: 10.1002/aesr.202400117.
    • , , , , , , , und . . „The role of lithium metal electrode thickness on cell safety.Cell Reports Physical Science, Nr. 6 (1) 102354. doi: 10.1016/j.xcrp.2024.102354.

    • , , , , , , , und . . „The Mechanism of Lithium Deposition in Open-Porous 3D Copper Micro-Foam Electrodes for Zero-Excess Lithium Metal Batteries (ZELMBs).“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , und . . „Suppressing gas evolution in Li4Ti5O12 -based pouch cells by high temperature formation.Journal of Power Sources, Nr. 575 doi: 10.1016/j.jpowsour.2023.233207.
    • , , , , , , , und . „Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries.Journal of Materials Chemistry A, Nr. 11 (33): 1782817840. doi: 10.1039/D3TA04060G.
    • , , , , , , , , und . . „Quantifying the Inactivation of Battery Electrode Material Particles.“ Beitrag präsentiert auf der 244th ECS Meeting October, Göteburg doi: 10.1149/MA2023-022206mtgabs.
    • , , , , , und . . „Determining the Origin of Lithium Inventory Loss in NMC622|| Graphite Lithium Ion Cells Using an LiPF6-Based Electrolyte.Journal of The Electrochemical Society, Nr. 170 (1) 010530. doi: 10.1149/1945-7111/acb401.

    • , , , und . . „Quasi in Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy on High-Energy and High-Power Negative Active Materials for Lithium Ion Batteries.“ präsentiert auf der IMLB 2022 - 21st International Meeting on Lithium Batteries, Sydney
    • , , , und . . „Finding the Sweet Spot: The Effect of a Smaller Operating Voltage Window on Performance and Lifetime of Silicon Nanoparticle Anodes.“ präsentiert auf der AABC Europe 2022, Mainz
    • , , und . . „Quasi In Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy during Cyclic and Calendaric Aging of Silicon Nanoparticle Anodes.“ präsentiert auf der Advanced Battery Power, Münster
    • , , , , , , , und . . „Direct Investigation of the Interparticle-based State-of-Charge Distribution of Polycrystalline Lithium Transition Metal Oxides in Lithium Ion Batteries by Classification Single Particle Inductively Coupled Plasma Optical Emission Spectroscopy.Journal of Power Sources, Nr. 527: 231204. doi: 10.1016/j.jpowsour.2022.231204.
    • , , und . . „Visualization of Degradation Mechanisms of Negative Electrodes Based on Silicon Nanoparticles in Lithium-Ion Batteries via Quasi In Situ Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy.Journal of Physical Chemistry C, Nr. 126 (27): 1101611025. doi: 10.1021/acs.jpcc.2c03294.
    • , , , , und . . „Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats.Journal of The Electrochemical Society, Nr. 169 (3): 30533. doi: 10.1149/1945-7111/ac5c08.
    • , , , , , und . . „Strategies for formulation optimization of composite positive electrodes for lithium ion batteries based on layered oxide, spinel, and olivine-type active materials.Journal of Power Sources, Nr. 551 232179. doi: 10.1016/j.jpowsour.2022.232179.
    • , , , , , , , und . . „Optimization of graphite/silicon-based composite electrodes for lithium ion batteries regarding the interdependencies of active and inactive materials.Journal of Power Sources, Nr. 552 232252. doi: 10.1016/j.jpowsour.2022.232252.
    • , , , , , und . . „Making Aqueously Processed LiNi0.5Mn0.3Co0.2O2‑Based Electrodes Competitive in Performance: Tailoring Distribution and Interconnection of Active and Inactive Electrode Materials through Paste Surfactants.ACS Applied Energy Materials, Nr. 5 (11): 1315513160. doi: 10.1021/acsaem.2c02755.

    • , , , , , , , , , , , , und . . „Understanding the Role of Commercial Separators and their Reactivity towards LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells.Advanced Energy Materials, Nr. 12 (2): 2102599. doi: 10.1002/aenm.202102599.
    • , , , , , , , , und . . „Demonstrating Apparently Inconspicuous, but Sensitive Impacts on Rollover Failure of Lithium Ion Batteries at High Voltage.ACS applied materials & interfaces, Nr. 13 (48): 5724157251. doi: 10.1021/acsami.1c17408.
    • , , , , , , , , , und . . „Cover Picture "Li‐Ion Batteries: Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte (Adv. Energy Mater. 14/2021)".Advanced Energy Materials, Nr. 11 (14): 2170053. doi: 10.1002/aenm.202170053.
    • , , , , , , und . . „Effect of Li plating during formation of lithium ion batteries on their cycling performance and thermal safety.Journal of Power Sources, Nr. 484 doi: 10.1016/j.jpowsour.2020.229306.
    • , , , , , , , , , und . . „Understanding the Outstanding High-Voltage Performance of NCM523 || Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, Nr. 11 (14): 2003738. doi: 10.1002/aenm.202003738.
    • , , , , und . . „Comprehensive Insights into the Porosity of Lithium-Ion Battery Electrodes: A Comparative Study on Positive Electrodes Based on LiNi0.6Mn0.2Co0.2O2 (NMC622).Batteries, Nr. 7: 70. doi: 10.3390/batteries7040070.
    • , , , , , und . . „Enabling Aqueous Processing for LiNi0.5Mn1.5O4-Based Positive Electrodes in Lithium-Ion Batteries by Applying Lithium-Based Processing Additives.Advanced Energy and Sustainability Research, Nr. 1: 2100075. doi: 10.1002/aesr.202100075.
    • , , , , , , und . . „Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells.Journal of Energy Storage, Nr. 41: 102812. doi: 10.1016/J.EST.2021.102812.
    • , , , und . . „Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells.Journal of Energy Storage, Nr. 44: 103208. doi: 10.1016/J.EST.2021.103208.
    • , , , , , , , und . . „Quantitative Manganese Dissolution Investigation in Lithium-Ion Batteries by Means of X-ray Spectrometry Techniques.Journal of Analytical Atomic Spectrometry, Nr. 36: 20562062. doi: 10.1039/D0JA00491J.
    • , , , , , , , , , und . „Understanding the Outstanding High-Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, Nr. 11 doi: 10.1002/aenm.202003738.
    • , , , , , , , , und . „Demonstrating Apparently Inconspicuous but Sensitive Impacts on the Rollover Failure of Lithium-Ion Batteries at a High Voltage.ACS applied materials & interfaces, Nr. 13 (48): 5724157251. doi: 10.1021/acsami.1c17408.

    • , , , , , , , , und . . „Towards High-Performance Li-rich NCM || Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material.Journal of The Electrochemical Society, Nr. 167 (6): 060524. doi: 10.1149/1945-7111/ab8401.
    • , , , , , , , und . . „Galvanic Corrosion of Lithium‐Powder‐Based Electrodes.Advanced Energy Materials, Nr. 10 (15): 2000017. doi: 10.1002/aenm.202070065.
    • , , , und . . „Protective coatings on silicon particles and their effect on energy density and specific energy in lithium ion battery cells: A model study.Journal of Energy Storage, Nr. 29 (March): 101376. doi: 10.1016/j.est.2020.101376.
    • , , , , , , , , , , , , und . . „Non-flammable Fluorinated Phosphorus(III)-based Electrolytes for Advanced Lithium Ion Battery Performance.ChemElectroChem, Nr. 7 (6): 14991508. doi: 10.1002/celc.202000386.
    • , , , , , , und . . „The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, Nr. 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.
    • , , , , , , und . . „The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, Nr. 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.

    • , , , , , , , , und . . „Surface Modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium Ion Batteries.ACS applied materials & interfaces, Nr. 11: 1840418414. doi: 10.1021/acsami.9b02889.
    • , , , , und . . „Influence of different electrolyte compositions on silicon/graphite anodes and LiNi0.6Co0.2Mn0.2O2 cathodes in lithium ion cells.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , und . . „Do Increased Ni Contents in LiNixMnyCozO2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio.ACS Appl. Energy Mater, Nr. 2019 doi: 10.1021/acsaem.9b01440.
    • , , , , und . . „Thermal profiling of lithium ion battery electrodes at different states of charge and aging conditions.Journal of Power Sources, Nr. 433: 226709. doi: 10.1016/j.jpowsour.2019.226709.
    • , , , , und . . „Systematic Optimization of the Electrolyte Composition – Towards High Temperature Lithium Ion Batteries.“ präsentiert auf der 11. Kraftwerk Batterie Fachtagung, Aachen
    • , , , , und . . „Thermal Profiling of LIB Electrodes by Evolved Gas Analysis and Analytical Pyrolysis.“ präsentiert auf der ANAKON 2019, Münster
    • , , , , , und . . „Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: Influence of the cell inner pressure distribution on the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1[Ni1/3Mn1/3Co1/3]O2 cathode.“ präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , , und . . „First insights into the safety properties of lithium metal batteries.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , und . . „Factors influencing the thermal stability of lithium ion batteries - from active materials to state-of-charge and degradation.“ Beitrag präsentiert auf der AABC Europe 2019, Strasbourg

    • , , , , , , , , und . . „Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1[Ni1/3Mn1/3Co1/3]O2 and LiMn1.5 Ni0.5O4 cathode.Journal of Power Souces, Nr. 380: 194201. doi: 10.1016/j.jpowsour.2018.01.088.
    • , , , , , und . . „Hydrothermal-derived carbon as stabilizing matrix for an improved cycling performance of silicon-based anodes for lithium ion full cells.Beilstein Journal of Nanotechnology, Nr. 9: 2381–2395. doi: 10.3762/bjnano.9.223.
    • , , , , und . . „MATRIX-MATCHED STANDARDS FOR GLOW DISCHARGE SECTOR FIELD-MASS SPECTROMETRY FOR THE ANALYSIS OF LITHIUM ION BATTERY ELECTRODES.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , und . . „Visualizing elemental deposition patterns on graphite anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster

    • , , , , , , , und . . „Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior.Journal of Power Sources, Nr. 363: 7077. doi: 10.1016/j.jpowsour.2017.07.062.
    • , , , , und . . „Determination of the state of safety (SOS) of lithium ion cells in dependency of the state of health (SOH) and state of charge (SOC).“ Beitrag präsentiert auf der Batterieforum 2017, Berlin
    • , , , , und . . „Matrix-Matched Standards for the Quantification of Elemental Lithium Ion Battery Degradation Products Deposited on Carbonaceous Negative Electrodes using Pulsed-Glow Discharge-Sector Field-Mass Spectrometry.Journal of Analytical Atomic Spectrometry, Nr. 32: 18621867. doi: 10.1039/C7JA00129K.
    • , , , , , und . . „Matrix-Matched Standard Calibration Approach in Glow Discharge Sector Field-Mass Spectrometry (SF GD MS) for Lithium Ion Battery Electrodes.“ präsentiert auf der Anwendertreffen Analytische Glimmentladungsspektrometrie, Bremen
    • , , , , , , und . . „Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells.Electrochimica Acta, Nr. xxx doi: 10.1016/j.electacta.2017.03.092.
    • , , , , , , und . . „Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells.Electrochimica Acta, Nr. 2017 doi: 10.1016/j.electacta.2017.03.092.
    • , , , , , , , , , , , , und . . „Investigation of Nano-Sized Cu(II)O As a High Capacity Conversion Material for Li Metal Cells and Lithium Ion Full Cells.Journal of Materials Chemistry A, Nr. xxx doi: 10.1039/C6TA10944F.
    • , , , , und . . „Calibration Approaches in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and Sector Field Glow Discharge-Mass Spectrometry (SF-GD-MS).“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    • , , , , , , , , und . . „Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries.Journal of Power Sources, Nr. 342: 382–392. doi: 10.1016/j.jpowsour.2016.12.041.
    • , , , , , und . . „Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis.Journal of Power Sources, Nr. 342: 8897. doi: 10.1016/j.jpowsour.2016.12.040.

    • , , , , , , , , und . . „Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis.J. Power Sources, Nr. 334: 111. doi: 10.1016/j.jpowsour.2016.09.120.
    • , , , , , , , , und . . „Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes.Journal of Power Sources, Nr. 335: 4555. doi: 10.1016/j.jpowsour.2016.09.071.
    • , , , , , und . . „Comparison of Different Synthesis Methods for LiNi0.5Mn1.5O4—Influence on Battery Cycling Performance, Degradation, and Aging.Energy Technology, Nr. 12 (4): 16311640. doi: 10.1002/ente.201600383.
    • , , , , , und . . „Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes.Journal of Power Sources, Nr. 328: 114123. doi: 10.1016/j.jpowsour.2016.07.102.
    • , , , , , und . . „Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique.Journal of Power Sources, Nr. 239: 364371. doi: 10.1016/j.jpowsour.2016.08.099.
    • , , , , , , , , und . . „Influence of Electrolyte Additives on the Cathode Electrolyte Interphase (CEI) Formation on LiNi1/3Mn1/3Co1/3O2 in Half Cells with Li Metal Counter Electrode.Journal of Power Sources, Nr. 329: 3140. doi: 10.1016/j.jpowsour.2016.08.023.
    • , , , , und . . „GLIMMENTLADUNG-SEKTROFELD-MASSENSPEKTROMETRIE IN DER ANALYTIK VON BATTERIEMATERIALIEN.“ präsentiert auf der 5. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen
    • , , , , , , , , und . . „Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode.Scientific Reports, Nr. 6 doi: 10.1038/srep30109.
    • , , , , , , , , , , , , , und . „Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries.Advanced Materials Interfaces, Nr. null (null) doi: 10.1002/admi.201600096.
    • , , , , und . . „ADAPTION OF GLOW-DISCHARGE SECTOR FIELD MASS SPECTROMETRY IN THE FIELD OF BATTERY RESEARCH.“ präsentiert auf der 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , , , und . . „Investigations on the C-rate and temperature dependence of manganese dissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries.Journal of The Electrochemical Society, Nr. 163 (6): A831–A837. doi: 10.1149/2.0191606jes.
    • , , , und . . „Influence of lithium-xyxlo-difluoromethane-1,1-bis(sulfonyl)imide as electrlyte additive on the reversibility of lithium metal batteries.Journal of Applied Electrochemistry, Nr. xxx: 110.

    • , , , , , und . . „Impact of cycling at low temperatures on the safety behavior of 18650-type lithium-ion cells.“ Beitrag präsentiert auf der International Battery Safety Workshop, München, Deutschland
    • , , , , , , und . . „Influence of different aging mechanisms on the abuse behavior of commercial lithium-ion 18650 type cells.“ Beitrag präsentiert auf der Kraftwerk Batterie 2015, Aachen, Deutschland
    • , , , , , , , , und . . „Sicherheitstests an Lithium-Ionen Zellen - Nageltests und HWS-Experimente an gealterten Zellen.“ präsentiert auf der Batterieforum Deutschland 2015, Berlin
    • , , , , , , , , , , , , , , und . . „Metal salts: Novel electrolyte additives for high-voltage lithium-ion batteries.“ Beitrag präsentiert auf der Advanced Automotive Batterie Conference (AABC), Mainz
    • , , , , , , , und . . „Correlation of aging and the thermal stability of commercial 18650-type lithium-ion batteries based on LiNi0.5Co0.2Mn0.3O2 / C.“ Beitrag präsentiert auf der 1st International Battery Safety Workshop, München, Deutschland
    • , , , , , , und . . „Studie zur Korrelation von Alterung und Sicherheit von Lithium-Ionen Batterien anhand kommerzieller Zellen des Typs 18650 basierend auf LiNi0.5Co0.2Mn0.3O2 / C.“ Beitrag präsentiert auf der Batterieforum Deutschland 2015, Berlin, Deutschland

    • , , , , , , und . . „Aging behavior of commercial NMC cells.“ Beitrag präsentiert auf der Kraftwerk Batterie 2014, Münster, Deutschland
    • , , , , , , , , , und . . „Nageltests an kommerziellen Lithium-Ionen Zellen (Typ 18650).“ Beitrag präsentiert auf der Batterieforum Deutschland 2014, Berlin, Deutschland

    • , , , , , , , , und . . „Insights of Aging Mechanisms: An Electrochemical Survey of LiMn2O4vs Li4Ti5O12 Cells & Post Mortem Analysis.“ In Bd.MA2013-01 399 aus ECS Meeting Abstracts doi: 10.1149/MA2013-01/7/399.
    • , , und . . „Cross-linked monolithic xerogels based on silica nanoparticles.Chemistry of Materials, Nr. 25: 36483653. doi: 10.1021/cm401717q.
  • Wissenschaftliche Vorträge

    • Wiemers-Meyer, Simon; Vahnstiege Marc; Kröger, Till-Niklas; Harte, Patrick; Beuse, Thomas; Wölke, Mathis Jan; Klein, Svem; Börner, Markus; Winter, Martin; Nowak, Sascha : “Quantifying the Contact Loss of Battery Active Material Particles”. Advanced Battery Power Conference, Münster, .
    • Wiemers-Meyer, Simon; Vahnstiege, Marc; Kröger, Till-Niklas; Harte, Patrick; Beuse, Thomas; Wölke, Jan Mathis; Klein, Sven; Börner, Markus; Winter, Martin; Nowak, Sascha : “Quantifying the Inactivation of Battery Electrode Material Particles”. 244th ECS Meeting (The Electrochemical Society), Göteburg, .
    • Ingber, Tjark T. K.; Bela, Marlena M.; Püttmann, Frederik; Dohmann, Jan F.; Bieker, Peter; Börner, Markus; Winter, Martin; Stan, Marian C. : “How does Lithium Electrodeposit in Open-Porous Cu Micro-Foams for Zero-Excess Lithium Metal Batteries?COMPASS Conference: Transferable Skills for Research & Innovation, Helsinki, .
    • Kröger, Till-Niklas; Harte, Patrick; Vahnstiege, Marc; Beuse, Thomas; Jan Mathis Wölke; Klein, Sven; Börner, Markus; Winter, Martin, Nowak, Sascha; Wiemers-Meyer, Simon : “Single particle ICP-OES analysis of battery materials determining particleinactivation and its consequences for the battery”. 10th Nordic Conference on Plasma Spectrochemistry, Loen, .
    • Börner, Markus; Ibing, Lukas; Dienwiebel, Iris; Winter, Martin : “Enabling aqueous processing of positive electrodes for lithium ion batteries – Challenges and opportunities for process and electrode design”. International Battery Production Conference, Braunschweig, Deutschland, .
    • Börner, Markus; Stan, Marian; Kolek, Martin; Küpers, Verena; Noll, Pascal; Winter, Martin : “Chancen und Herausforderungen bei der Modifizierung und Verarbeitung von Lithium-Metall-Folien”. Batterietag NRW 2020, Essen (online), Deutschland, .
    • Börner, Markus; Ibing, Lukas; Keßler, Elizaveta; Ambrock, Karina; Dienwiebel, Iris; Winter, Martin : “Enabling aqueous processing of high-energy and high-power electrodes for lithium ion batteries – Issues and mitigation strategies”. 236th ECS Meeting, Atlanta, USA, .
    • Börner, Markus; Beuse, Thomas; Badillo Jimenez, Juan Pablo; Imholt, Laura; Winter, Martin : “Assessing Safety Properties of Lithium Metal Batteries”. The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow, Schottland, .
    • Nowak, Sascha; Evertz, Marco; Horsthemke, Fabian; Kasnatscheew, Johannes; Börner, Markus; Winter, Martin : “Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique”. 9. TXRF und µ-XRF-Workshop, Münster, Deutschland, .
    • Börner, Markus; Evertz, Marco; Kollmer, Felix; Schappcher, Falko Mark; Winter, Martin; Nowak, Sascha : “ANALYSIS OF ACTIVE MATERIAL DEGRADATION IN LITHIUM ION BATTERIES BY MEANS OF TIME-OF-FLIGHT SECONDARY MASS SPECTROMETRY ”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Börner, Markus; Nowak, Sascha; Kollmer, Felix; Zech, Claudia; Beckhoff, Burkhard; Schappacher, Falko M.; Winter, Martin : “Analysis of the transition metal dissolution/deposition process in lithium ion batteries”. European Materials Research Society - ALTECH, Straßburg, Frankreich, .
    • Zech, Claudia; Graetz, O; Raguzin, I; Ivanov, S; Müller, M; Stamm, M; Bund, A; Börner, Markus; Evertz, Marco; Pyschik, Marcelina; Nowak, Sascha; Grötzsch, D; Malter, W; Beckhoff, Burkhard : “Traceable chemical analyses of new liquid and solid battery components by X-ray spectrometry in UHV environment”. European Materials Research Society Spring Meeting, Straßburg, Frankreich, .
    • Evertz, Marco; Schiweters, Timo; Börner, Markus; Winter, Martin; Nowak, Sascha : “Matrix-Matched Calibration Approach for Sector-Field Glow Discharge- Mass Spectrometry in the Field of Lithium Ion Batteries”. Anwendertreffen Analytische Glimmentladungsspektrometrie, Bremen, Deutschland, .
    • Evertz, Marco; Schwieters, Timo; Börner, Markus; Winter, Martin; Nowak, Sascha : “Investigation of Lithium Ion Battery Electrodes by means of Sector Field-Glow Discharge-Mass Spectrometry (SF-GD-MS)”. European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton, Österreich, .
    • Friesen, Alex; Schultz, Carola; Brunklaus, Gunther; Rodehorst, Uta; Börner, Markus; Mönnighoff, Xaver; Haetge, Jan; Schappacher, Falko; Winter, Martin : “Long term aging of automotive type lithium-ion cells”. 228th ECS Meeting, Conference, Phoenix, USA, .
    • Börner, Markus; Vortmann, Britta; Niehoff, Philip; Schappacher, Falko; Winter, Martin : “Comparison of different synthesis methods for LiNi0.5Mn1.5O4: Electrochemical performance and aging mechanisms”. 227th ECS Meeting, Chicago, USA, .
    • Börner, Markus; Stenzel, Yannick; Schappacher, Falko; Winter, Martin : “Analysis of the aging mechanisms on the surface of LiNi0.5Co0.2Mn0.3O2 cathodes in commercial 18650 lithium ion batteries”. Kraftwerk Batterie, Aachen, Deutschland, .
    • Börner, Markus; Friesen, Alex; Haetge, Jan; Berghus, Debbie; Meier, Vladislav; Winter, Martin; Schappacher, Falko : „Studie zur Korrelation von Alterung und Sicherheit von Lithium-Ionen Batterien anhand kommerzieller Zellen des Typs 18650 basierend auf LiNi0.5Co0.2Mn0.3O2 / C“. Batterieforum Deutschland 2015, Berlin, Deutschland, .
    • Börner, Markus; Klamor, Sebastian; Hoffmann, Björn; Schroeder, Melanie; Winter, Martin; Schappacher, Falko : “Analysis of the manganese dissolution and deposition in LiMn2O4/Li5Ti5O12 based lithium-ion batteries”. 224th ECS Meeting, San Francisco, USA, .
    • Börner, Markus; Klamor, Sebastian; Hoffmann, Björn; Schroeder, Melanie; Winter, M; Schappacher, Falko : “Analysis of the manganese dissolution and deposition in LiMn2O4/Li4Ti5O12 based lithium-ion batteries”. XXXVIII Colloquim Spectroscopium Internationale, Tromso, Norwegen, .