BÖRNER, Dr. Markus


Portrait Markus Börner
© MEET/Lessmann

MEET - Münster Electrochemical Energy Technology
Room: L.0.015
Corrensstraße 46
D-48149 Muenster

Phone: +49 251 83-36830
markus.boerner@uni-muenster.de

ORCID ID: 0000-0002-8468-773X

Position: Bereichsleiter Cell System

Focus of research: Cell Technology, Safety, Aging

Topic of thesis: Investigations on the Main Degradation Effects of Different Layered and Spinel-Type Cathode Active Materials and the Influence of Aging on the Thermal Stability of Lithium Ion Batteries and Their Components

 
  • Publications

    • , , , , , , , , and . . “Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability.Batteries & Supercaps, Early View: e2023005. doi: 10.1002/batt.202300580.
    • . . “Tunable LiZn-Intermetallic Coating Thickness on Lithium Metal and Its Effect on Morphology and Performance in Lithium Metal Batteries.Advanced Materials Interfaces, 2300836 doi: 10.1002/admi.202300836.
    • , , , , , , , and . . “Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders.Advanced Energy and Sustainability Research, online first 2400117. doi: 10.1002/aesr.202400117.
    • , , , , , , , and . . “The role of lithium metal electrode thickness on cell safety.Cell Reports Physical Science, 6 (1) 102354. doi: 10.1016/j.xcrp.2024.102354.

    • , , , , , , , and . . “The Mechanism of Lithium Deposition in Open-Porous 3D Copper Micro-Foam Electrodes for Zero-Excess Lithium Metal Batteries (ZELMBs).” contributed to the 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , and . . “Suppressing gas evolution in Li4Ti5O12 -based pouch cells by high temperature formation.Journal of Power Sources, 575 doi: 10.1016/j.jpowsour.2023.233207.
    • , , , , , , , and . “Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries.Journal of Materials Chemistry A, 11 (33): 1782817840. doi: 10.1039/D3TA04060G.
    • , , , , , , , , and . . “Quantifying the Inactivation of Battery Electrode Material Particles.” contribution to the 244th ECS Meeting October, Göteburg doi: 10.1149/MA2023-022206mtgabs.
    • , , , , , and . . “Determining the Origin of Lithium Inventory Loss in NMC622|| Graphite Lithium Ion Cells Using an LiPF6-Based Electrolyte.Journal of The Electrochemical Society, 170 (1) 010530. doi: 10.1149/1945-7111/acb401.

    • , , , and . . “Quasi in Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy on High-Energy and High-Power Negative Active Materials for Lithium Ion Batteries.” contributed to the IMLB 2022 - 21st International Meeting on Lithium Batteries, Sydney
    • , , , and . . “Finding the Sweet Spot: The Effect of a Smaller Operating Voltage Window on Performance and Lifetime of Silicon Nanoparticle Anodes.” contributed to the AABC Europe 2022, Mainz
    • , , and . . “Quasi In Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy during Cyclic and Calendaric Aging of Silicon Nanoparticle Anodes.” contributed to the Advanced Battery Power, Münster
    • , , , , , , , and . . “Direct Investigation of the Interparticle-based State-of-Charge Distribution of Polycrystalline Lithium Transition Metal Oxides in Lithium Ion Batteries by Classification Single Particle Inductively Coupled Plasma Optical Emission Spectroscopy.Journal of Power Sources, 527: 231204. doi: 10.1016/j.jpowsour.2022.231204.
    • , , and . . “Visualization of Degradation Mechanisms of Negative Electrodes Based on Silicon Nanoparticles in Lithium-Ion Batteries via Quasi In Situ Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy.Journal of Physical Chemistry C, 126 (27): 1101611025. doi: 10.1021/acs.jpcc.2c03294.
    • , , , , and . . “Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats.Journal of The Electrochemical Society, 169 (3): 30533. doi: 10.1149/1945-7111/ac5c08.
    • , , , , , and . . “Strategies for formulation optimization of composite positive electrodes for lithium ion batteries based on layered oxide, spinel, and olivine-type active materials.Journal of Power Sources, 551 232179. doi: 10.1016/j.jpowsour.2022.232179.
    • , , , , , , , and . . “Optimization of graphite/silicon-based composite electrodes for lithium ion batteries regarding the interdependencies of active and inactive materials.Journal of Power Sources, 552 232252. doi: 10.1016/j.jpowsour.2022.232252.
    • , , , , , and . . “Making Aqueously Processed LiNi0.5Mn0.3Co0.2O2‑Based Electrodes Competitive in Performance: Tailoring Distribution and Interconnection of Active and Inactive Electrode Materials through Paste Surfactants.ACS Applied Energy Materials, 5 (11): 1315513160. doi: 10.1021/acsaem.2c02755.

    • , , , , , , , , , , , , and . . “Understanding the Role of Commercial Separators and their Reactivity towards LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells.Advanced Energy Materials, 12 (2): 2102599. doi: 10.1002/aenm.202102599.
    • , , , , , , , , and . . “Demonstrating Apparently Inconspicuous, but Sensitive Impacts on Rollover Failure of Lithium Ion Batteries at High Voltage.ACS applied materials & interfaces, 13 (48): 5724157251. doi: 10.1021/acsami.1c17408.
    • , , , , , , , , , and . . “Cover Picture "Li‐Ion Batteries: Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte (Adv. Energy Mater. 14/2021)".Advanced Energy Materials, 11 (14): 2170053. doi: 10.1002/aenm.202170053.
    • , , , , , , and . . “Effect of Li plating during formation of lithium ion batteries on their cycling performance and thermal safety.Journal of Power Sources, 484 doi: 10.1016/j.jpowsour.2020.229306.
    • , , , , , , , , , and . . “Understanding the Outstanding High-Voltage Performance of NCM523 || Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, 11 (14): 2003738. doi: 10.1002/aenm.202003738.
    • , , , , and . . “Comprehensive Insights into the Porosity of Lithium-Ion Battery Electrodes: A Comparative Study on Positive Electrodes Based on LiNi0.6Mn0.2Co0.2O2 (NMC622).Batteries, 7: 70. doi: 10.3390/batteries7040070.
    • , , , , , and . . “Enabling Aqueous Processing for LiNi0.5Mn1.5O4-Based Positive Electrodes in Lithium-Ion Batteries by Applying Lithium-Based Processing Additives.Advanced Energy and Sustainability Research, 1: 2100075. doi: 10.1002/aesr.202100075.
    • , , , , , , and . . “Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells.Journal of Energy Storage, 41: 102812. doi: 10.1016/J.EST.2021.102812.
    • , , , and . . “Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells.Journal of Energy Storage, 44: 103208. doi: 10.1016/J.EST.2021.103208.
    • , , , , , , , and . . “Quantitative Manganese Dissolution Investigation in Lithium-Ion Batteries by Means of X-ray Spectrometry Techniques.Journal of Analytical Atomic Spectrometry, 36: 20562062. doi: 10.1039/D0JA00491J.
    • , , , , , , , , , and . “Understanding the Outstanding High-Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, 11 doi: 10.1002/aenm.202003738.
    • , , , , , , , , and . “Demonstrating Apparently Inconspicuous but Sensitive Impacts on the Rollover Failure of Lithium-Ion Batteries at a High Voltage.ACS applied materials & interfaces, 13 (48): 5724157251. doi: 10.1021/acsami.1c17408.

    • , , , , , , , , and . . “Towards High-Performance Li-rich NCM || Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material.Journal of The Electrochemical Society, 167 (6): 060524. doi: 10.1149/1945-7111/ab8401.
    • , , , , , , , and . . “Galvanic Corrosion of Lithium‐Powder‐Based Electrodes.Advanced Energy Materials, 10 (15): 2000017. doi: 10.1002/aenm.202070065.
    • , , , , , , and . . “The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.
    • , , , , , , and . . “The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.
    • , , , and . . “Protective coatings on silicon particles and their effect on energy density and specific energy in lithium ion battery cells: A model study.Journal of Energy Storage, 29 (March): 101376. doi: 10.1016/j.est.2020.101376.
    • , , , , , , , , , , , , and . . “Non-flammable Fluorinated Phosphorus(III)-based Electrolytes for Advanced Lithium Ion Battery Performance.ChemElectroChem, 7 (6): 14991508. doi: 10.1002/celc.202000386.

    • , , , , , , , , and . . “Surface Modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium Ion Batteries.ACS applied materials & interfaces, 11: 1840418414. doi: 10.1021/acsami.9b02889.
    • , , , , and . . “Influence of different electrolyte compositions on silicon/graphite anodes and LiNi0.6Co0.2Mn0.2O2 cathodes in lithium ion cells.” contribution to the Batterieforum Deutschland, Berlin
    • , , , and . . “Do Increased Ni Contents in LiNixMnyCozO2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio.ACS Appl. Energy Mater, 2019 doi: 10.1021/acsaem.9b01440.
    • , , , , and . . “Thermal profiling of lithium ion battery electrodes at different states of charge and aging conditions.Journal of Power Sources, 433: 226709. doi: 10.1016/j.jpowsour.2019.226709.
    • , , , , and . . “Systematic Optimization of the Electrolyte Composition – Towards High Temperature Lithium Ion Batteries.” contributed to the 11. Kraftwerk Batterie Fachtagung, Aachen
    • , , , , and . . “Thermal Profiling of LIB Electrodes by Evolved Gas Analysis and Analytical Pyrolysis.” contributed to the ANAKON 2019, Münster
    • , , , , , and . . “Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: Influence of the cell inner pressure distribution on the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1[Ni1/3Mn1/3Co1/3]O2 cathode.” contributed to the Batterieforum Deutschland, Berlin
    • , , , , , and . . “First insights into the safety properties of lithium metal batteries.” contribution to the Batterieforum Deutschland, Berlin
    • , , , , and . . “Factors influencing the thermal stability of lithium ion batteries - from active materials to state-of-charge and degradation.” contribution to the AABC Europe 2019, Strasbourg

    • , , , , , , , , and . . “Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1[Ni1/3Mn1/3Co1/3]O2 and LiMn1.5 Ni0.5O4 cathode.Journal of Power Souces, 380: 194201. doi: 10.1016/j.jpowsour.2018.01.088.
    • , , , , , and . . “Hydrothermal-derived carbon as stabilizing matrix for an improved cycling performance of silicon-based anodes for lithium ion full cells.Beilstein Journal of Nanotechnology, 9: 2381–2395. doi: 10.3762/bjnano.9.223.
    • , , , , and . . “MATRIX-MATCHED STANDARDS FOR GLOW DISCHARGE SECTOR FIELD-MASS SPECTROMETRY FOR THE ANALYSIS OF LITHIUM ION BATTERY ELECTRODES.” contributed to the 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , and . . “Visualizing elemental deposition patterns on graphite anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt.” contributed to the 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , and . . “Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries.” contributed to the 10. Kraftwerk Batterie Fachtagung, Münster

    • , , , , , , , and . . “Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior.Journal of Power Sources, 363: 7077. doi: 10.1016/j.jpowsour.2017.07.062.
    • , , , , and . . “Determination of the state of safety (SOS) of lithium ion cells in dependency of the state of health (SOH) and state of charge (SOC).” contribution to the Batterieforum 2017, Berlin
    • , , , , and . . “Matrix-Matched Standards for the Quantification of Elemental Lithium Ion Battery Degradation Products Deposited on Carbonaceous Negative Electrodes using Pulsed-Glow Discharge-Sector Field-Mass Spectrometry.Journal of Analytical Atomic Spectrometry, 32: 18621867. doi: 10.1039/C7JA00129K.
    • , , , , , and . . “Matrix-Matched Standard Calibration Approach in Glow Discharge Sector Field-Mass Spectrometry (SF GD MS) for Lithium Ion Battery Electrodes.” contributed to the Anwendertreffen Analytische Glimmentladungsspektrometrie, Bremen
    • , , , , , , and . . “Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells.Electrochimica Acta, xxx doi: 10.1016/j.electacta.2017.03.092.
    • , , , , , , and . . “Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells.Electrochimica Acta, 2017 doi: 10.1016/j.electacta.2017.03.092.
    • , , , , , , , , , , , , and . . “Investigation of Nano-Sized Cu(II)O As a High Capacity Conversion Material for Li Metal Cells and Lithium Ion Full Cells.Journal of Materials Chemistry A, xxx doi: 10.1039/C6TA10944F.
    • , , , , and . . “Calibration Approaches in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and Sector Field Glow Discharge-Mass Spectrometry (SF-GD-MS).” contributed to the European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    • , , , , , , , , and . . “Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries.Journal of Power Sources, 342: 382–392. doi: 10.1016/j.jpowsour.2016.12.041.
    • , , , , , and . . “Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis.Journal of Power Sources, 342: 8897. doi: 10.1016/j.jpowsour.2016.12.040.

    • , , , , , , , , and . . “Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis.J. Power Sources, 334: 111. doi: 10.1016/j.jpowsour.2016.09.120.
    • , , , , , , , , and . . “Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes.Journal of Power Sources, 335: 4555. doi: 10.1016/j.jpowsour.2016.09.071.
    • , , , , , and . . “Comparison of Different Synthesis Methods for LiNi0.5Mn1.5O4—Influence on Battery Cycling Performance, Degradation, and Aging.Energy Technology, 12 (4): 16311640. doi: 10.1002/ente.201600383.
    • , , , , , and . . “Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes.Journal of Power Sources, 328: 114123. doi: 10.1016/j.jpowsour.2016.07.102.
    • , , , , , and . . “Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique.Journal of Power Sources, 239: 364371. doi: 10.1016/j.jpowsour.2016.08.099.
    • , , , , , , , , and . . “Influence of Electrolyte Additives on the Cathode Electrolyte Interphase (CEI) Formation on LiNi1/3Mn1/3Co1/3O2 in Half Cells with Li Metal Counter Electrode.Journal of Power Sources, 329: 3140. doi: 10.1016/j.jpowsour.2016.08.023.
    • , , , , and . . “GLIMMENTLADUNG-SEKTROFELD-MASSENSPEKTROMETRIE IN DER ANALYTIK VON BATTERIEMATERIALIEN.” contributed to the 5. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen
    • , , , , , , , , and . . “Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode.Scientific Reports, 6 doi: 10.1038/srep30109.
    • , , , , , , , , , , , , , and . “Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries.Advanced Materials Interfaces, null (null) doi: 10.1002/admi.201600096.
    • , , , , and . . “ADAPTION OF GLOW-DISCHARGE SECTOR FIELD MASS SPECTROMETRY IN THE FIELD OF BATTERY RESEARCH.” contributed to the 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , , , and . . “Investigations on the C-rate and temperature dependence of manganese dissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries.Journal of The Electrochemical Society, 163 (6): A831–A837. doi: 10.1149/2.0191606jes.
    • , , , and . . “Influence of lithium-xyxlo-difluoromethane-1,1-bis(sulfonyl)imide as electrlyte additive on the reversibility of lithium metal batteries.Journal of Applied Electrochemistry, xxx: 110.

    • , , , , , and . . “Impact of cycling at low temperatures on the safety behavior of 18650-type lithium-ion cells.” contribution to the International Battery Safety Workshop, München, Deutschland
    • , , , , , , and . . “Influence of different aging mechanisms on the abuse behavior of commercial lithium-ion 18650 type cells.” contribution to the Kraftwerk Batterie 2015, Aachen, Deutschland
    • , , , , , , , , and . . “Sicherheitstests an Lithium-Ionen Zellen - Nageltests und HWS-Experimente an gealterten Zellen.” contributed to the Batterieforum Deutschland 2015, Berlin
    • , , , , , , , , , , , , , , and . . “Metal salts: Novel electrolyte additives for high-voltage lithium-ion batteries.” contribution to the Advanced Automotive Batterie Conference (AABC), Mainz
    • , , , , , , , and . . “Correlation of aging and the thermal stability of commercial 18650-type lithium-ion batteries based on LiNi0.5Co0.2Mn0.3O2 / C.” contribution to the 1st International Battery Safety Workshop, München, Deutschland
    • , , , , , , and . . “Studie zur Korrelation von Alterung und Sicherheit von Lithium-Ionen Batterien anhand kommerzieller Zellen des Typs 18650 basierend auf LiNi0.5Co0.2Mn0.3O2 / C.” contribution to the Batterieforum Deutschland 2015, Berlin, Deutschland

    • , , , , , , and . . “Aging behavior of commercial NMC cells.” contribution to the Kraftwerk Batterie 2014, Münster, Deutschland
    • , , , , , , , , , and . . “Nageltests an kommerziellen Lithium-Ionen Zellen (Typ 18650).” contribution to the Batterieforum Deutschland 2014, Berlin, Deutschland

    • , , , , , , , , and . . “Insights of Aging Mechanisms: An Electrochemical Survey of LiMn2O4vs Li4Ti5O12 Cells & Post Mortem Analysis.” in Vol.MA2013-01 399 of ECS Meeting Abstracts doi: 10.1149/MA2013-01/7/399.
    • , , and . . “Cross-linked monolithic xerogels based on silica nanoparticles.Chemistry of Materials, 25: 36483653. doi: 10.1021/cm401717q.
  • Scientific Talks

    • Wiemers-Meyer, Simon; Vahnstiege Marc; Kröger, Till-Niklas; Harte, Patrick; Beuse, Thomas; Wölke, Mathis Jan; Klein, Svem; Börner, Markus; Winter, Martin; Nowak, Sascha : “Quantifying the Contact Loss of Battery Active Material Particles”. Advanced Battery Power Conference, Münster, .
    • Wiemers-Meyer, Simon; Vahnstiege, Marc; Kröger, Till-Niklas; Harte, Patrick; Beuse, Thomas; Wölke, Jan Mathis; Klein, Sven; Börner, Markus; Winter, Martin; Nowak, Sascha : “Quantifying the Inactivation of Battery Electrode Material Particles”. 244th ECS Meeting (The Electrochemical Society), Göteburg, .
    • Ingber, Tjark T. K.; Bela, Marlena M.; Püttmann, Frederik; Dohmann, Jan F.; Bieker, Peter; Börner, Markus; Winter, Martin; Stan, Marian C. : “How does Lithium Electrodeposit in Open-Porous Cu Micro-Foams for Zero-Excess Lithium Metal Batteries?COMPASS Conference: Transferable Skills for Research & Innovation, Helsinki, .
    • Kröger, Till-Niklas; Harte, Patrick; Vahnstiege, Marc; Beuse, Thomas; Jan Mathis Wölke; Klein, Sven; Börner, Markus; Winter, Martin, Nowak, Sascha; Wiemers-Meyer, Simon : “Single particle ICP-OES analysis of battery materials determining particleinactivation and its consequences for the battery”. 10th Nordic Conference on Plasma Spectrochemistry, Loen, .
    • Börner, Markus; Ibing, Lukas; Dienwiebel, Iris; Winter, Martin : “Enabling aqueous processing of positive electrodes for lithium ion batteries – Challenges and opportunities for process and electrode design”. International Battery Production Conference, Braunschweig, Deutschland, .
    • Börner, Markus; Stan, Marian; Kolek, Martin; Küpers, Verena; Noll, Pascal; Winter, Martin : “Chancen und Herausforderungen bei der Modifizierung und Verarbeitung von Lithium-Metall-Folien”. Batterietag NRW 2020, Essen (online), Deutschland, .
    • Börner, Markus; Ibing, Lukas; Keßler, Elizaveta; Ambrock, Karina; Dienwiebel, Iris; Winter, Martin : “Enabling aqueous processing of high-energy and high-power electrodes for lithium ion batteries – Issues and mitigation strategies”. 236th ECS Meeting, Atlanta, USA, .
    • Börner, Markus; Beuse, Thomas; Badillo Jimenez, Juan Pablo; Imholt, Laura; Winter, Martin : “Assessing Safety Properties of Lithium Metal Batteries”. The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow, Schottland, .
    • Nowak, Sascha; Evertz, Marco; Horsthemke, Fabian; Kasnatscheew, Johannes; Börner, Markus; Winter, Martin : “Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique”. 9. TXRF und µ-XRF-Workshop, Münster, Deutschland, .
    • Börner, Markus; Evertz, Marco; Kollmer, Felix; Schappcher, Falko Mark; Winter, Martin; Nowak, Sascha : “ANALYSIS OF ACTIVE MATERIAL DEGRADATION IN LITHIUM ION BATTERIES BY MEANS OF TIME-OF-FLIGHT SECONDARY MASS SPECTROMETRY ”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Börner, Markus; Nowak, Sascha; Kollmer, Felix; Zech, Claudia; Beckhoff, Burkhard; Schappacher, Falko M.; Winter, Martin : “Analysis of the transition metal dissolution/deposition process in lithium ion batteries”. European Materials Research Society - ALTECH, Straßburg, Frankreich, .
    • Zech, Claudia; Graetz, O; Raguzin, I; Ivanov, S; Müller, M; Stamm, M; Bund, A; Börner, Markus; Evertz, Marco; Pyschik, Marcelina; Nowak, Sascha; Grötzsch, D; Malter, W; Beckhoff, Burkhard : “Traceable chemical analyses of new liquid and solid battery components by X-ray spectrometry in UHV environment”. European Materials Research Society Spring Meeting, Straßburg, Frankreich, .
    • Evertz, Marco; Schiweters, Timo; Börner, Markus; Winter, Martin; Nowak, Sascha : “Matrix-Matched Calibration Approach for Sector-Field Glow Discharge- Mass Spectrometry in the Field of Lithium Ion Batteries”. Anwendertreffen Analytische Glimmentladungsspektrometrie, Bremen, Deutschland, .
    • Evertz, Marco; Schwieters, Timo; Börner, Markus; Winter, Martin; Nowak, Sascha : “Investigation of Lithium Ion Battery Electrodes by means of Sector Field-Glow Discharge-Mass Spectrometry (SF-GD-MS)”. European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton, Österreich, .
    • Friesen, Alex; Schultz, Carola; Brunklaus, Gunther; Rodehorst, Uta; Börner, Markus; Mönnighoff, Xaver; Haetge, Jan; Schappacher, Falko; Winter, Martin : “Long term aging of automotive type lithium-ion cells”. 228th ECS Meeting, Conference, Phoenix, USA, .
    • Börner, Markus; Vortmann, Britta; Niehoff, Philip; Schappacher, Falko; Winter, Martin : “Comparison of different synthesis methods for LiNi0.5Mn1.5O4: Electrochemical performance and aging mechanisms”. 227th ECS Meeting, Chicago, USA, .
    • Börner, Markus; Stenzel, Yannick; Schappacher, Falko; Winter, Martin : “Analysis of the aging mechanisms on the surface of LiNi0.5Co0.2Mn0.3O2 cathodes in commercial 18650 lithium ion batteries”. Kraftwerk Batterie, Aachen, Deutschland, .
    • Börner, Markus; Friesen, Alex; Haetge, Jan; Berghus, Debbie; Meier, Vladislav; Winter, Martin; Schappacher, Falko : „Studie zur Korrelation von Alterung und Sicherheit von Lithium-Ionen Batterien anhand kommerzieller Zellen des Typs 18650 basierend auf LiNi0.5Co0.2Mn0.3O2 / C“. Batterieforum Deutschland 2015, Berlin, Deutschland, .
    • Börner, Markus; Klamor, Sebastian; Hoffmann, Björn; Schroeder, Melanie; Winter, Martin; Schappacher, Falko : “Analysis of the manganese dissolution and deposition in LiMn2O4/Li5Ti5O12 based lithium-ion batteries”. 224th ECS Meeting, San Francisco, USA, .
    • Börner, Markus; Klamor, Sebastian; Hoffmann, Björn; Schroeder, Melanie; Winter, M; Schappacher, Falko : “Analysis of the manganese dissolution and deposition in LiMn2O4/Li4Ti5O12 based lithium-ion batteries”. XXXVIII Colloquim Spectroscopium Internationale, Tromso, Norwegen, .