Courses of the IT centre

These courses are usually held in German.

Audiovisuelle Medienkompetenz: Videoproduktion

Date: 21.09. – 02.10.20, Mon–Fri 09:30–16:30 h, ZIV SR, Scharnhorststr. 100

Lecturer: Olaf Glaser

Einführung in MariaDB/MySQL

Date: 06.04. – 13.07.20, Mon 10–12 h, ZIV Computer-Lab 3, Einsteinstr. 60

Lecturer: Martin Leweling

High Performance Computing

Date: 24.08. – 28.08.20, Mon–Fri 10–16 h, SRZ 102, Orléans-Ring 12

Lecturer: Holger Angenent

Programmieren in Java

Date: 08.04. – 15.07.20, Wed 14–16 h, ZIV Computer-Lab 3, Einsteinstr. 60

Lecturer: Dr. Marcel Wunderlich

Programmieren in Python

Date: 21.09. – 25.09.20, Mon–Fri 09–16 h, ZIV Computer-Lab 3, Einsteinstr. 60

Lecturer: Dr. Markus Blank-Burian

Publizieren mit LateX

Date: 31.08. – 04.09.20, Mon–Fri 09–15 h, ZIV Computer-Lab 3, Einsteinstr. 60

Lecturers: Dr. Damian Bucher, Christian Schild

Vektorbasierte Illustration

Date: 09.04. – 16.07.20, Thu 10–12 h, ZIV Computer-Lab 3, Einsteinstr. 60

Lecturer: Christopher Burgholz

Courses open to all who are interested

AI@WWU - A practical introduction to Al theory and techniques for interdisciplinary research

Date: Mo 16–19 h (start: 6 April 2020), VSH 2019 (Aula)

Lecturer: Jun.-Prof. Dr. Benjamin Risse

Short Summary:
AI and in particular machine learning (ML) tools become more and more accessible due to easy to
use programming environments (esp. Python) and libraries (esp. Tensorflow and Pytorch). In order
to apply these powerful tools for a variety of research projects, some basic understanding is
required to tackle data preparation, visualisation and successful ML algorithm usage. In this
course we will (1) teach AI and machine learning basics (70% of the course) and (2) apply these
techniques to custom problems and custom data provided by the participants (30% of the
course). In particular, we will introduce several state of the art deep learning algorithms like CNNs,
LSTMs and Autoencoder. The entire course will be interactive and the participants will implement
and use all presented techniques in pre-configured test environments.

Goal:
- Teach AI and machine learning basics (70%)
- Work on own data and project (30%)

Organisation:
- 10 sessions á 3 hours
- Each Session would be 40-60 minutes presentation and ~ 2 hours of practical coding
- Programming will be done in Python and Tensorflow2
- Programming environment will be provided by pre-installed Jupyter Notebooks (software, own
hardware has to be used)
• Jupyter Notebooks allow interactive worksheets (only some code passages need to be filled
in, the result is then plotted interactively)
- Limited to 50 participants max.

Participants allowed: University staff from all disciplines (PhDs, PostDocs, Group Leaders, etc.)

  • Participants should be interested in learning the basic theory and practical usage of AI (in particular deep learning) algorithms
  • All disciplines are welcome (i.e. science and humanities with interest in quantitative methods)
  • Own datasets / problem sets are welcome; if these can be used needs to be evaluated in the beginning of this course

Please register at b.risse(at)uni-muenster.de.

Workshop des Career Service: Digitalisierung als Laufbahnchance für Geistes- und Sozialwissenschaftler*innen

This course is held in German.

Date: Thu, 28.05.2020, 10.15–16.45 h and Fri, 29.05.2020, 10.15–16.45 h; Career Service, Schlossplatz 3, Seminarraum 2

Lecturers: Dr. Mareike Menne, Andreas Eimer

Courses of the departments

These courses are usually held in German.

Übung: Digitales Arbeiten zur Konsumgeschichte: Münsterländische Nachlassinventare des 18. Jahrhunderts

Date: Wed 8–10 h, F 072

Lecturer: Henning Bovenkerk

Übung: Methoden der digitalen Geschichtswissenschaft. Texte, Daten, Netze

Date: Mon 14–16 h, F 042

Lecturer: Jun.-Prof. Dr. Christine Fertig

Übung: Hacking Mühlhausen - Digitale Sozialtopographie einer spätmittelalterlichen Stadt (Summer School mit Exkursion)

Lecturer: Colin Arnaud, Dr. Daniel Stracke

 More information

Hauptseminar: Künstliche Intelligenz als anthropologische Herausforderung (Ethik)

Date: Thu 16-18 h, ETH 203

Lecturer: Prof. Dr. Anne Käfer

Seminar: Digitale Literaturwissenschaft

Date: Fri, 17.04., 8.05., 29.05, 14–20 h, BB 302 , BB 107, BA 006

Lecturer: Priv.-Doz. Dr. Christian Sieg

Übung: GIS-Grundkurs

Lecturers: Prof. Dr. Angela Schwering, Julian Kuhlmann

 More information

V/Ü (Master): Advanced GIS Methods in Digital Cartography

Date: Mon 18–20 h, StudLab 125, Heisenbergstr. 2

Lecturer: Sven Harpering

Übung: Python in GIS

Date: Tue 8–10 h and Thu 8–10 h, StudLab 126

Lecturer: Jun.-Prof. Dr. Judith Verstegen

Seminar: 'R' you ready? Datenanalyse für Sozialwissenschaftler*innen

Date: Tue 16–18 h, SCH 100.301

Lecturer: Phillip Hocks

Übung: Analyse und Visualisierung ökologischer Daten in R

Date: Wed 12–14 h, StudLab 126

Lecturer: Lilian-Maite Lezama-Valdes

Seminar: Digitale Kommunikation

Date: Fri 10–12 h, VSH 06

Lecturer: Dr. Katharina König

Seminar: Medienkompetenz als Teil der Lehrerprofessionalität - ein Forschungsseminar zur Erkundung digitaler Kompetenzen angehender LehrerInnen

Date: Mon 12–14 h, BB 208

Lecturer: Dr. Kris-Stephen Besa

Seminar: Zahl und Sinn - Digitalisierung, Quantifizierung und Metrisierung als Realabstraktionen sozialer Ordnung

Date: Tue 16–18 h, SCH 121.555

Lecturer: Prof. Dr. Joachim Renn