Forschung

 

Forschungsschwerpunkte

  • Numerik Partieller Differentialgleichungen
  • Fehlerkontrolle und Adaptivität für Finite Elemente und Finite Volumen Verfahren
  • Modellreduktion für parametrisierte partielle Differentialgleichungen
  • Entwicklung und Analyse von numerischen Mehrskalenmethoden
  • Softwareentwicklung und Wissenschaftliches Rechnen

  •  

    Betreute Habilitation

    Applications of numerical homogenization in geosciences and physics
  •  

    Betreute Promotionen

    Randomized Multiscale Methods for Parabolic Problems
    A Multi-Stage Model Order Reduction Framework for Efficient Simulations of Parametrized Lithium-Ion Battery Cells
    Adaptive Reduced Basis Methods for Multiscale Problems and Large-scale PDE-constrained Optimization
    Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition
    Stable and efficient Petrov-Galerkin methods for certain (kinetic) transport equations
    Towards Automatic and Reliable Localized Model Order Reduction. Local Training, a Posteriori Error Estimation and Online Enrichment.
    Numerical multiscale methods for Maxwell's equations in heterogeneous media
    Combined State and Parameter Reduction for Nonlinear Systems with an Application in Neuroscience
    Model Reduction for Parametric Multi-Scale Problems
    Kaulmann, SvenEffiziente Verfahren für parametrisierte Mehrskalenmethoden
    A dimensional reduction approach based on the application of reduced basis methods in the context of hierarchical model reduction
    Reduzierte Basis Modellreduktion für nichtlineare Evolutionsgleichungen
    Heterogeneous multiscale finite element methods for advection-diffusion and nonlinear elliptic multiscale problems
    Klöfkorn RobertNumerics for Evolution Equations - A General Interface Based Design Concept