Research
Research Foci
- Numerical analysis for partial differential equations
- Model reduction for parametrized partial differential equations
- Machine Learning and Scientific Computing
- Development and analysis of numerical multiscale methods
- Software development
Projects
In Process
- MaRDI – Mathematical Research Data Initiative - TA2: Scientific Computing ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - National Research Data Infrastructure | Project Number: NFDI 29 /1 - EXC 2044 – Cluster of Excellence 2044 - Mathematics Münster: Dynamics – Geometry – Structure ( – )
Main DFG-Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/1 - EXC 2044 - C2: Multi-scale phenomena and macroscopic structures ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/1 - EXC 2044 - C4: Geometry-based modelling, approximation, and reduction ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC 2044/1
Finished
- ML-MORE – ML-MORE: Machine learning and model order reduction to predict the efficiency of catalytic filters. Subproject 1: Model Order Reduction ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 05M20PMA - LRB-Opt – Localized Reduced Basis Methods for PDE-constrained Parameter Optimization ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: OH 98/11-1; SCHI 1493/1-1 - pyMOR – pyMOR - Sustainable Software for Model Order Reduction ( – )
Individual Granted Project: DFG - Scientific Library Services and Information Systems | Project Number: RA 3055/1-1 - MALLi2 – Modellbasierte Abschätzung der Lebensdauer von gealterten Li-Batterien für die 2nd Life Anwendung als stationärer Stromspeicher ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 05M18PMA - GlioMaTh – Verbundprojekt 05M2016 - GlioMaTh: Gliomen, Mathematische Modelle und Therapieansätze - Teilprojekt 2 ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 05M16PMA - EXC 1003 A6 - Motion Analysis in Cellular Systems ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence | Project Number: EXC1003/1 - EXA-DUNE – SPP 1648 - Subproject: EXA-DUNE - Flexible PDE Solvers, Numerical Methods, and Applications ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: EN 1042/2-2; OH 98/5-2 - Wave propagation in periodic structures and negative refraction mechanisms ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: OH 98/6-1 - EXC 1003 FF-2015-07 - Mechanobiology, Mathematical Modeling and Simulation of Forces During Tissue Morphogenesis ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Cluster of Excellence - Derivation, analysis and validation of model reduction methods for the approximation of parameterized Maxwell equations ( – )
Individual Granted Project: CST AG - CRC 656 B07 - Mathematical Modelling of Atherosclerotic Plaque Formation Based on Data from Multiparametric Imaging ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre - MULTIBAT – Verbundprojekt 05M2013 - MULTIBAT: Multiskalenmodelle und Modellreduktionsverfahren zur Vorhersage der Lebensdauer von Lithium-Ionen-Batterien - Teilprojekt 1 ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 05M13PMA - EXA-DUNE – SPP 1648: Software for Exascale Computing - Subproject: EXA-DUNE - Flexible PDE Solvers, Numerical Methods, and Applications ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: EN 1042/2-1; OH 98/5-1 - Multi-scale analysis of two-phase flow in porous media with complex heterogenities ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: OH 98/4-2 - Reduced basis methods for model reduction of nonlinear parameterized evolution equations ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: OH 98/2-2 - Multi-scale – Multi-scale analysis of two-phase flow in porous media with complex heterogeneities ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: 568656 - SFB 656 PM09 – CRC 656 PM09 - Modeling of blood flow for a arteriosclerosis model ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre - RBevol – Reduced basis methods for model reduction of nonlinear parameterized evolution equations ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: OH 98/2-1 - AdaptHydroMod – Co-operative Project "Adaptive hydrological modeling with application in water resource management", Sub-project "Multi-scale modelling and system reduction for ground water flow" ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 03OMPAF1
- MaRDI – Mathematical Research Data Initiative - TA2: Scientific Computing ( – )
Publications
- Kleikamp, Hendrik, Lazar, Martin, and Molinari, Cesare. . “Be greedy and learn: efficient and certified algorithms for parametrized optimal control problems.” ESAIM: Mathematical Modelling and Numerical Analysis, № 59 (1): 291–330. doi: 10.1051/m2an/2024074.
- Engwer, Christian, Ohlberger, Mario, and Renelt, Lukas. . “Model order reduction of an ultraweak and optimally stable variational formulation for parametrized reactive transport problems.” SIAM Journal on Scientific Computing, № 46 (5): A3205–A3229. doi: 10.1137/23M1613402.
- Kleikamp, Hendrik, and Wenzel, Tizian. . “Kernel Methods in the Deep Ritz framework: Theory and practice.” arXiv doi: 10.48550/arXiv.2410.03503.
- Kartmann, Michael, Keil, Tim, Ohlberger, Mario, Volkwein, Stephan, and Kaltenbacher, Barbara. . “Adaptive Reduced Basis Trust Region Methods for Parameter Identification Problems.” Computational Science and Engineering, № 1 (3): 1–30. doi: 10.1007/s44207-024-00002-z.
- Engwer, Christian, Ohlberger, Mario, and Renelt, Lukas. . “Construction of local reduced spaces for Friedrichs' systems via randomized training.” contribution to the Central-European Conference on Scientific Computing, ALGORITMY, Podbanské
- Gander, Martin J, Ohlberger, Mario, and Rave, Stephan. . “A Parareal algorithm without Coarse Propagator?” arXiv doi: 10.48550/arXiv.2409.02673.
- Kleikamp, Hendrik, and Renelt, Lukas. . “Two-stage model reduction approaches for the efficient and certified solution of parametrized optimal control problems.” arXiv doi: 10.48550/arXiv.2408.15900.
- Kleikamp, Hendrik. . “Application of an adaptive model hierarchy to parametrized optimal control problems.” in
- Schembera, Björn, Wübbeling, Frank, Kleikamp, Hendrik, Biedinger, Christine, Fiedler, Jochen, Reidelbach, Marco, Shehu, Aurela, Schmidt, Burkhard, Koprucki, Thomas, Iglezakis, Dorothea, and Göddeke, Dominik. . “Ontologies for Models and Algorithms in Applied Mathematics and Related Disciplines.” in Metadata and Semantic Research - 17th Research Conference, MTSR 2023, Milan, Italy, October 25–27, 2023, Revised Selected Papers, Vol. 2048 of Communications in Computer and Information Science, edited by Emmanouel Garoufallou and Fabio Sartori. Heidelberg: Springer. doi: 10.1007/978-3-031-65990-4_14.
- Singh, A, Thale, S, Leibner, T, Lamparter, L, Ricker, A, Nüsse, H, Klingauf, J, Galic, M, Ohlberger, M, and Matis, M. . “Dynamic interplay of microtubule and actomyosin forces drive tissue extension.” Nature Communications, № 15 (1): 3198–3198. doi: 10.1038/s41467-024-47596-8.
- Tim, Keil, Mario, Ohlberger, Felix, Schindler, and Julia, Schleuß. . “Local training and enrichment based on a residual localization strategy.” in Proceedings of the Conference Algoritmy 2024, Vol. 8 of Proceedings of the Conference Algoritmy, edited by P Frolkovič, K Mikula and D Ševčovič. Bratislava: Jednota slovenských matematikov a fyzikov.
- Schembera, Björn, Wübbeling, Frank, Kleikamp, Hendrik, Schmidt, Burkhard, Shehu, Aurela, Reidelbach, Marco, Biedinger, Christine, Fiedler, Jochen, Koprucki, Thomas, Iglezakis, Dorothea, and Göddeke, Dominik. Forthcoming. “Towards a Knowledge Graph for Models and Algorithms in Applied Mathematics.” in Proceedings of the 18th International Conference on Metadata and Semantics Research 2024 Heidelberg: Springer.
- Kleikamp, Hendrik, and Ohlberger, Mario. . “Adaptive Model Hierarchies for Multi-Query Scenarios.” arXiv doi: 10.48550/arXiv.2411.17252.
- Wenzel, Tizian, Haasdonk, Bernard, Kleikamp, Hendrik, Ohlberger, Mario, and Schindler, Felix. . “Application of Deep Kernel Models for Certified and Adaptive RB-ML-ROM Surrogate Modeling.” in Large-Scale Scientific Computations, Vol. 13952 of Lecture Notes in Computer Science, edited by I. Lirkov and S. Margenov. Berlin: Springer Nature. doi: 10.1007/978-3-031-56208-2_11.
- Keil, Tim, Ohlberger, Mario, and Schindler, Felix. . “Adaptive Localized Reduced Basis Methods for Large Scale PDE-constrained Optimization.” in Large-Scale Scientific Computations, Vol. 13952 of Lecture Notes in Computer Science, edited by I Lirkov and S Margenov. Berlin: Springer Nature. doi: 10.1007/978-3-031-56208-2_10.
- Keil, Tim, and Ohlberger, Mario. . “A Relaxed Localized Trust-Region Reduced Basis Approach for Optimization of Multiscale Problems.” ESAIM: Mathematical Modelling and Numerical Analysis, № 58: 79–105. doi: 10.1051/m2an/2023089.
- Renelt, Lukas, Ohlberger, Mario, and Engwer, Christian. . “An optimally stable approximation of reactive transport using discrete test and infinite trial spaces.” in Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems, Springer Proceedings in Mathematics & Statistics, edited by Emmanuel Franck, Jürgen Fuhrmann, Michel-Dansac Victor and Laurent Navoret. Heidelberg: Springer. doi: 10.1007/978-3-031-40860-1_30.
- Haasdonk, B, Kleikamp, H, Ohlberger, M, Schindler, F, and Wenzel, T. . “A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs.” SIAM Journal on Scientific Computing, № 45 (3): A1039–1065. doi: 10.1137/22M1493318.
- Schleuß, Julia, Smetana, Kathrin, and ter Maat, Lukas. . “Randomized quasi-optimal local approximation spaces in time.” SIAM Journal on Scientific Computing, № 45 (3) doi: 10.1137/22M1481002.
- Julia, Schleuß, and Kathrin, Smetana. . “DEIM vs. leverage scores for time-parallel construction of problem-adapted basis functions.” arXiv doi: 10.48550/arXiv.2302.00348.
- Himpe, Christian, and Grundel, sara. . “System Order Reduction for Gas and Energy Networks.” contribution to the 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Aachen doi: 10.1002/pamm.202200201.
- Landstorfer, M, Ohlberger, M, Rave, S, and Tacke, M. . “A Modeling Framework for Efficient Reduced Order Simulations of Parametrized Lithium-Ion Battery Cells.” European Journal of Applied Mathematics, № 34 (3): 554–591. doi: 10.1017/S0956792522000353.
- Ohlberger, M., Banholzer, S., Haasdonk, B., Keil, T.Kleikamp H., Mechelli, L., Oguntola, M, Schindler F., Volkwein, S., and Wenzel, T. . “Model Reduction and Learning for PDE Constrained Optimization.” contribution to the Oberwolfach Workshop on Optimization Problems for PDEs in Weak Space-Time Form, Oberwolfach doi: 10.4171/OWR/2023/13.
- Keil, T, Kleikamp, H, Lorentzen, R, Oguntola, M, and Ohlberger, M. . “Adaptive machine learning based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery.” Advances in Computational Mathematics, № 2022 (48) 73. doi: 10.1007/s10444-022-09981-z.
- Fritze, René, and Rave, Stephan. . “Specification and Validation of Numerical Algorithms with the Gradual Contracts Pattern.” in Testing Software and Systems, Lecture Notes in Computer Science, edited by David Clark, Hector Menendez and Ana Rosa Cavalli. Basel: Springer International Publishing.
- Himpe, Christian, Grundel, Sara, and Benner, Peter. . “Next-Gen Gas Network Simulation.” in Progress in Industrial Mathematics at ECMI 2021, Vol. 39 of Mathematics in Industry, edited by Matthias Ehrhardt and Michael Günther. Heidelberg: Springer. doi: 10.1007/978-3-031-11818-0_15.
- Gavrilenko, Pavel, Haasdonk, Bernard, Iliev, Oleg, Ohlberger, Mario, Schindler, Felix, Toktaliev, Pavel, Wenzel, Tizian, and Youssef, Maha. . “A full order, reduced order and machine learning model pipeline for efficient prediction of reactive flows.” in Large-Scale Scientific Computing, Vol. 13127 of Lecture Notes in Computer Science (LNCS), edited by Ivan Lirkov and Svetozar Margenov. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-030-97549-4_43.
- Keil, Tim, and Ohlberger, Mario. . “Model Reduction for Large Scale Systems.” in Large-Scale Scientific Computing, Vol. 13127 of Lecture Notes in Computer Science (LNCS), edited by Ivan Lirkov and Svetozar Margenov. Basel: Springer International Publishing. doi: 10.1007/978-3-030-97549-4_2.
- Gander, Martin, and Rave, Stephan. . “Localized Reduced Basis Additive Schwarz Methods.” in Domain Decomposition Methods in Science and Engineering XXVI, edited by Susanne C. Brenner Brenner, Eric Chung, Axel Klawonn, Felix Kwok, Jinchao Xu and Jun Zou. Basel: Springer International Publishing. doi: 10.1007/978-3-030-95025-5_52.
- Banholzer, S, Keil, T, Mechelli, L, Ohlberger, M, Schindler, F, and Volkwein, S. . “An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization.” Pure and Applied Functional Analysis, № 7 (5): 1561–1596.
- Fokina, D, Iliev, O, Toktaliev, P, Oseledets, I, and Schindler, F. . “On the Performance of Machine Learning Methods for Breakthrough Curve Prediction.” arXiv [physics.flu-dyn], № 2204.11719 doi: 10.48550/arXiv.2204.11719.
- Kleikamp, Hendrik, Ohlberger, Mario, and Rave, Stephan. . “Nonlinear Model Order Reduction using Diffeomorphic Transformations of a Space-Time Domain.” in MATHMOD 2022 - Discussion Contribution Volume, Vol. 17 of ARGESIM Report, edited by Felix Breitenecker, Wolfgang Kemmetmüller, Andreas Körner, Andreas Kugi and Inge Troch. Wien: ARGESIM Verlag. doi: 10.11128/arep.17.a17129.
- Brecher, C, Buchmeiser, MR, Burkert, A, Busemeyer, MR, Conermann, S, Ertl, T, Friedrich, M, Helmig, R, Hohmann, V, Johnston, AJ, Kollmeier, B, Larkum, M, Louis, J, Menges, A, Morgner, U, Müller, J, Niessen, C, Ohlberger, M, Schäffner, W, Schmidt, P, Schmitz, D, Seeger, W, Stammer, D, Thomas, A, Traninger, A, Wegener, M, Colomb, J, Hermann, S, Kopsch-Xhema, J, Range, J, and Flemisch, B. . “Commitment zu aktivem Daten- und -softwaremanagement in großen Forschungsverbünden: Commitment to active data and software management in large research alliances.” Bausteine Forschungsdatenmanagement, № 1: 121–123. doi: 10.17192/bfdm.2022.1.8412.
- Himpe, C, Grundel, S, and Benner, P. . “Efficient Gas Network Simulations.” in German Success Stories in Industrial Mathematics, Vol. 35 of Mathematics in Industry, edited by HG Bock, KH Küfer, P Maass, A Milde and V Schulz. doi: 10.1007/978-3-030-81455-7_4.
- Haasdonk, B, Ohlberger, M, and Schindler, F. . “An adaptive model hierarchy for data-augmented training of kernel models for reactive flow.” in MATHMOD 2022 Discussion Contribution Volume, edited by Felix Breitenecker, Wolfgang Kemmetmüller, Andreas Körner, Andreas Kugi and Inge Troch. Wien: ARGESIM Verlag. doi: 10.11128/arep.17.a17155.
- Benner, P., Burger, M., Göddeke, D., Himpe, C., Hintermüller, M., Heiland, J., Koprucki, T., Ohlberger, M., Rave, S., Reidelbach, M., Saak, J., Schöbel, A., and Tabelow, K. . “Die Mathematische Forschungsdateninitiative in der NFDI: MaRDI (Mathematical Research Data Initiative).” GAMM Rundbrief, № 1/2022: 40–43.
- Singh, A, Thale, S, Leibner, T, Ricker, A, Nüsse, H, Klingauf, J, Ohlberger, M, and Matis, M. . “Dynamic interplay of protrusive microtubule and contractile actomyosin forces drives tissue extension.” eLife, № 2022 doi: 10.1101/2022.06.21.496930.
- Julia, Schleuß, and Kathrin, Smetana. . “Optimal local approximation spaces for parabolic problems.” Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, № 20 (1) doi: 10.1137/20M1384294.
- Leibner, Tobias. . “Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition.” Dissertation thesis, Universität Münster.
- Bastian, P, Blatt, M, Dedner, A, Dreier, N, Engwer, C, Fritze, R, Gräser, C, Kempf, D, Klöfkorn, R, Ohlberger, M, and Sander, O. . “The DUNE Framework: Basic Concepts and Recent Developments.” Computers & Mathematics with Applications, № 81: 75–112. doi: 10.1016/j.camwa.2020.06.007.
- Buhr, Andreas, Iapichino, Laura, Ohlberger, Mario, Rave, Stephan, Schindler, Felix, and Smetana, Kathrin. . “Localized model reduction for parameterized problems.” in Model Order Reduction: Volume 2 Snapshot-Based Methods and Algorithms, edited by P Benner, S Grivet-Talocia, A Quarteroni, G Rozza, W Schilders and L Sileira. doi: 10.1515/9783110671490-006.
- Fehr, J, Himpe, C, Rave, S, and Saak, J. . “Sustainable Research Software Hand-Over.” Journal of Open Research Software, № 9 (1) doi: 10.5334/jors.307/.
- Leibner, T, and Ohlberger, M. . “A new entropy-variable-based discretization method for minimum entropy moment approximations of linear kinetic equations.” ESAIM: Mathematical Modelling and Numerical Analysis, № 55: 2567–2608. doi: 10.1051/m2an/2021065.
- Keil, T, Mechelli, L, Ohlberger, M, Schindler, F, and Volkwein, S. . “A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization.” ESAIM: Mathematical Modelling and Numerical Analysis, № 55: 1239–1269. doi: 10.1051/m2an/2021019.
- Leibner, T, Matis, M, Ohlberger, M, and Rave, S. . “Distributed model order reduction of a model for microtubule-based cell polarization using HAPOD.” arXiv [math.NA], № 2111.00129
- Himpe, C. . “Comparing (Empirical-Gramian-Based) Model Order Reduction Algorithms.” in Model Reduction of Complex Dynamical Systems, Vol. 171 of International Series of Numerical Mathematics, edited by P Benner, T Breiten, H Faßbender, M Hinze, T Stykel and R Zimmermann. doi: 10.1007/978-3-030-72983-7_7.
- Himpe, C, Grundel, S, and Benner, P. . “Model Order Reduction for Gas and Energy Networks.” Journal of Mathematics in Industry, № 11: 13. doi: 10.1186/s13362-021-00109-4.
- Clees, T, Baldin, A, Benner, P, Grundel, S, Himpe, C, Klaassen, B, Küsters, F, Marheineke, N, Nikitina, L, Nikitin, I, Pade, J, Stahl, N, Strohm, C, Tischendorf, C, and Wirsen, A. . “MathEnergy – Mathematical Key Technologies for Evolving Energy Grids.” in Mathematical Modeling, Simulation and Optimization for Power Engineering and Management, Vol. 34 of Mathematics in Industry, edited by S Göttlich, M Herty and A Milde. doi: 10.1007/978-3-030-62732-4_11.
- Brunken, Julia. . “Stable and efficient Petrov-Galerkin methods for certain (kinetic) transport equations.” Dissertation thesis, Universität Münster.
- Hellman, Fredrik, Keil, Tim, and Målqvist, Axel. . “Numerical Upscaling of Perturbed Diffusion Problems.” SIAM Journal on Scientific Computing, № 2020 (Volume 42, Issue 4): A2014–A2036. doi: 10.1137/19M1278211.
- Bastian, P, Altenbernd, M, Dreier, N, Engwer, C, Fahlke, J, Fritze, R, Geveler, M, Göddeke, D, Iliev, O, Ippisch, O, Mohring, J, Müthing, S, Ohlberger, M, Ribbrock, D, Shegunov, N, and Turek, S. . “Exa-Dune -- Flexible PDE Solvers, Numerical Methods and Applications.” in Software for Exascale Computing - SPPEXA 2016-2019, Vol. 136 of LNCSE, edited by Hans-Joachim Bungartz, Severin. Uekermann Benjamin Reiz, Philipp Neumann and Wolfgang E Nagel. Basel: Springer International Publishing. doi: 10.1007/978-3-030-47956-5_9.
- Ohlberger, Mario, Schweizer, Ben, Urban, Maik, and Verfürth, Barbara. . “Mathematical analysis of transmission properties of electromagnetic meta-materials.” Networks and Heterogeneous Media, № 15 (1): 29–56. doi: 10.3934/nhm.2020002.
- Kathrin, Brunken Julia Smetana. . “Stable and efficient Petrov-Galerkin methods for a kinetic Fokker-Planck equation.” arXiv, № 2020
- Buchfink, P, Haasdonk, B, and Rave, S. . “PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems.” contribution to the ALGORITMY 2020, Vysoké Tatry
- Anzt, H, Bach, F, Druskat, S, Löffler, F, Loewe, A, Renard, B, Seemann, G, Struck, A, Achhammer, E, Aggarwal, P, Appel, F, Bader, M, Brusch, L, Busse, C, Chourdakis, G, Dabrowski, P, Ebert, P, Flemisch, B, Friedl, S, Fritzsch, B, Funk, M, Gast, V, Goth, F, Grad, J, Hermann, S, Hohmann, F, Janosch, S, Kutra, D, Linxweiler, J, Muth, T, Peters-Kottig, W, Rack, F, Raters, F, Rave, S, Reina, G, Reißig, M, Ropinski, T, Schaarschmidt, J, Seibold, H, Thiele, J, Uekermann, B, Unger, S, and Weeber, R. . “An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action.” F1000Research, № 9 (295) doi: 10.12688/f1000research.23224.1.
- Bansal, H, Rave, S, Iapichino, L, Schilders, WHA, and van de, Wouw N. . “Model order reduction framework for problems with moving discontinuities.” contribution to the Proceedings of ENUMATH 2019, Egmond aan Zee
- Rave, S, and Saak, J. Forthcoming. “A Non-stationary Thermal-Block Benchmark Model for Parametric Model Order Reduction.” contribution to the ENUMATH 2019, Graz Heidelberg: Springer.
- Mlinarić, P, Rave, S, and Saak, J. Forthcoming. “Parametric model order reduction using pyMOR.” contribution to the MODRED 2019, Graz Heidelberg: Springer.
- Schneider, Florian, and Leibner, Tobias. . “First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: Model derivation and realizability theory.” Journal of Computational Physics, № 416: 109547. doi: 10.1016/j.jcp.2020.109547.
- Feinauer, J, Hein, S, Rave, S, Schmidt, S, Westhoff, D, Zausch, J, Iliev, O, Latz, A, Ohlberger, M, and Schmidt, V. . “MULTIBAT: Unified workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction.” Journal of Computational Science, № 31: 172–184. doi: 10.1016/j.jocs.2018.03.006.
- Lehrenfeld, Christoph, and Rave, Stephan. . “Mass Conservative Reduced Order Modeling of a Free Boundary Osmotic Cell Swelling Problem.” Advances in Computational Mathematics, № 45 (5): 2215–2239. doi: 10.1007/s10444-019-09691-z.
- Brunken, Julia, Smetana, Kathrin, and Urban, Karsten. . “(Parametrized) First Order Transport Equations: Realization of Optimally Stable Petrov-Galerkin Methods.” SIAM Journal on Scientific Computing, № 41 (1) doi: 10.1137/18M1176269.
- Hain, S, Ohlberger, M, Radic, M, and Urban, K. . “A Hierarchical A-Posteriori Error Estimatorfor the Reduced Basis Method.” Advances in Computational Mathematics, № 45: 2191–2214. doi: 10.1007/s10444-019-09675-z.
- Balicki, L, Mlinarić, P, Rave, S, and Saak, J. . “System-theoretic model order reduction with pyMOR.” PAMM, № 19 doi: 10.1002/pamm.201900459.
- Ohlberger, M, Buhr, A, Eikhorn, D, Engwer, C, and Rave, S. . “Advances in Model Order Reduction for Large Scale or Multi-Scale Problems.” Oberwolfach Reports, № 16 (3): 2510–2512. doi: 10.4171/OWR/2019/40.
- Hellman, Fredrik, Keil, Tim, and Målqvist, Axel. . “Multiscale methods for perturbed diffusion problems.” Oberwolfach Reports, № 16: 2099–2181. doi: 10.4171/OWR/2019/35.
- Schleuß, Julia. . Master's thesis, Optimal local approximation spaces for parabolic problems (Master's thesis),
- Rave, Stephan, and Schindler, Felix. . “A locally conservative reduced flux reconstruction for elliptic problems.” in Special Issue: 90th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Vol. 19 , edited by J Eberhardsteiner and M Schöberl. New York City: John Wiley & Sons. doi: 10.1002/pamm.201900026.
- Schneider, Florian, and Leibner, Tobias. . “First-order continuous- and discontinuous-Galerkin moment models for a linear kinetic equation: realizability-preserving splitting scheme and numerical analysis.” arXiv, № 2019
- Benner, P, and Himpe, C. . “Cross-Gramian-Based Dominant Subspaces.” Advances in Computational Mathematics, № 45 (5): 2533–2553. doi: 10.1007/s10444-019-09724-7.
- Grundel, S, Himpe, C, and Saak, J. . “On Empirical System Gramians.” in Vol. 19 of Proceedings in Applied Mathematics and Mechanics (PAMM) doi: 10.1002/pamm.201900006.
- Gallistl, D, Henning, P, and Verfürth, B. . “Numerical homogenization of H(curl)-problems.” SIAM J. Numer. Anal., № 56 (3): 1570–1596. doi: 10.1137/17M1133932.
- Ohlberger, M, and Verfürth, B. . “A new Heterogeneous Multiscale Method for the Helmholtz equation with high contrast.” Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, № 16 (1): 385–411. doi: 10.1137/16M1108820.
- Verfürth, B. . “Numerical multiscale methods for Maxwell's equations in heterogeneous media.” Dissertation thesis, Universität Münster.
- Eickhorn, Dennis. . Randomisierte lokalisierte Modellreduktion mit Robin-Transferoperator (Masterarbeit),
- Ohlberger, Mario, Rave, Stephan, Schindler, Felix, and Wedemeier, Tobias. . “Model reduction for parameterized systems and inverse problems.” Oberwolfach Reports, № 2018 (39): 2454–2457. doi: 10.4171/OWR/2018/39.
- Benner, P, Himpe, C, and Mitchell, T. . “On Reduced Input-Output Dynamic Mode Decomposition.” Advances in Computational Mathematics, № 44 (6): 1751–1768. doi: 10.1007/s10444-018-9592-x.
- Benner, P, Grundel, S, Himpe, C, Huck, C, Streubel, T, and Tischendorf, C. . “Gas Network Benchmark Models.” in Applications of Differential-Algebraic Equations: Examples and Benchmarks, Differential-Algebraic Equations Forum, edited by S Campbell, A Ilchmann, V Mehrmann and T Reis. doi: 10.1007/11221_2018_5.
- Himpe, C. . “emgr - The Empirical Gramian Framework.” Algorithms, № 11 (7): 91. doi: 10.3390/a11070091.
- Benner, P, Grundel, S, and Himpe, C. . “Parametric Model Order Reduction for Gas Flow Models.” in Vol. MoRePaS 4 of ScienceOpen Posters ScienceOpen. doi: 10.14293/P2199-8442.1.SOP-MATH.EJOCET.v1.
- Himpe, C, Leibner, T, and Rave, S. . “HAPOD - Fast, Simple and Reliable Distributed POD Computation.” in Vol. 55 of ARGESIM Report doi: 10.11128/arep.55.a55283.
- Kottke, Kathrin, Deninger, Christopher, and Ohlberger, Mario. . “Mathematik Münster: Dynamik – Geometrie – Struktur.” Mitteilungen der Deutschen Mathematiker-Vereinigung, № 26 (4): 189–193. doi: 10.1515/dmvm-2018-0058.
- Himpe, C, Leibner, T, and Rave, S. . “Hierarchical Approximate Proper Orthogonal Decomposition.” SIAM Journal on Scientific Computing, № 40 (5): A3267–A3292.
- Ohlberger, Mario, Schaefer, Michael, and Schindler, Felix. . “Localized Model Reduction in PDE Constrained Optimization.” in Shape Optimization, Homogenization and Optimal Control – DFG-AIMS workshop held at the AIMS Center Senegal, March 13-16, 2017 , Vol. 169 of International Series of Numerical Mathematics, edited by V Schulz and D Seck. Basel: Birkhäuser Verlag. doi: 10.1007/978-3-319-90469-6_8.
- Verfürth, B. Forthcoming. “Heterogeneous Multiscale Method for the Maxwell equations with high contrast.” ESAIM Math. Model. Numer. Anal., № xx
- Ohlberger, M, and Verfürth, B. . “Localized Orthogonal Decomposition for two-scale Helmholtz-type problems.” AIMS Mathematics, № 2 (3): 458–478. doi: 10.3934/Math.2017.2.458.
- Smetana, K, and Ohlberger, M. . “Hierarchical model reduction of nonlinear partial differential equations based on the adaptive empirical projection method and reduced basis techniques.” M2AN Math. Model. Numer. Anal., № 51 (2): 641–677. doi: 10.1051/m2an/2016031.
- Baur, U, Benner, P, Haasdonk, B, Himpe, C, Martini, I, and Ohlberger, M. . “Comparison of methods for parametric model order reduction of instationary problems.” in Model Reduction and Approximation: Theory and Algorithms., Vol. 15 of CS, edited by P Benner, A Cohen, M Ohlberger and K Willcox. Philadelphia: SIAM Publications. doi: 10.1137/1.9781611974829.ch9.
- Ohlberger, Mario. . “Book review of: A. Quarteroni et al., Reduced basis methods for partial differential equations. An introduction.” SIAM Rev., № 59 (3): 690–692.
- Buhr, Andreas, and Smetana, Kathrin. . “Randomized Local Model Order Reduction.” arXiv:1706.09179.
- Benner, P, Ohlberger, M, Patera, A, Rozza, G, and Urban, K, eds. . MS&A, Vol. 17, Model Reduction of Parametrized Systems. Basel: Springer International Publishing. doi: 10.1007/978-3-319-58786-8.
- Barth, T, Herbin, R, and Ohlberger, M. . “Finite Volume Methods: Foundation and Analysis.” in Encyclopedia of Computational Mechanics, edited by E Stein, R de Borst and T Hughes. New York City: John Wiley & Sons. doi: 10.1002/9781119176817.ecm2010.
- Ohlberger, M, and Schindler, F. . “Non-Conforming Localized Model Reduction with Online Enrichment: Towards Optimal Complexity in PDE constrained Optimization.” in Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017, edited by C Cancès and P Omnes. Basel: Springer International Publishing. doi: 10.1007/978-3-319-57394-6_38.
- Benner, P, Cohen, A, Ohlberger, M, and Willcox, K. . Computational Science and Engineering, Vol. 15, Model Reduction and Approximation: Theory and Algorithms, Philadelphia: SIAM Publications. doi: 10.1137/1.9781611974829.
- Dedner, Andreas, Girke, Stefan, Klöfkorn, Robert, and Malkmus, Tobias. . “The DUNE-FEM-DG module.” Archive of Numerical Software, № 5 (1): 21–61. doi: 10.11588/ans.2017.1.28602.
- Leibner, T, Milk, R, and Schindler, F. . “Extending DUNE: The dune-xt modules.” Archive of Numerical Software, № 5 (1): 193–216. doi: 10.11588/ans.2017.1.27720.
- Verfürth, B. . “Heterogeneous Multiscale Method for a Helmholtz problem with high contrast.” contribution to the Winter school on Numerical Analysis of Multiscale Problems, HIM Bonn, Germany
- Ohlberger, M, Rave, S, and Schindler, F. . “True Error Control for the Localized Reduced Basis Method for Parabolic Problems.” in Model Reduction of Parametrized Systems, Vol. 17 of MS&A (Modeling, Simulation and Applications), edited by P. Benner, M. Ohlberger, A. Patera, G. Rozza and K. Urban. Basel: Springer International Publishing. doi: 10.1007/978-3-319-58786-8_11.
- Ohlberger, M, and Rave, S. . “Localized Reduced Basis Approximation of a Nonlinear Finite Volume Battery Model with Resolved Electrode Geometry.” in Model Reduction of Parametrized Systems, Vol. 17 of MS&A (Modeling, Simulation and Applications), edited by P. Benner, M. Ohlberger, A. Patera, G. Rozza and K. Urban. Basel: Springer International Publishing. doi: 10.1007/978-3-319-58786-8_13.
- Himpe, C, and Ohlberger, M. . “Cross-Gramian-Based Model Reduction: A Comparison.” in Model Reduction of Parametrized Systems, Vol. 17 of MS&A (Modeling, Simulation and Applications), edited by P Benner, M Ohlberger, A Patera, G Rozza and K Urban. Basel: Springer International Publishing. doi: 10.1007/978-3-319-58786-8_17.
- Buhr, A, Engwer, C, Ohlberger, M, and Rave, S. . “ArbiLoMod: Local Solution Spaces by Random Training in Electrodynamics.” in Model Reduction of Parametrized Systems, Vol. 17 of MS&A (Modeling, Simulation and Applications), edited by P. Benner, M. Ohlberger, A. Patera, G. Rozza and K. Urban. Basel: Springer International Publishing. doi: 10.1007/978-3-319-58786-8_9.
- Buhr, A, Engwer, C, Ohlberger, M, and Rave, S. . “ArbiLoMod, a Simulation Technique Designed for Arbitrary Local Modifications.” SIAM Journal on Scientific Computing, № 39 (4): A1435–A1465. doi: 10.1137/15M1054213.
- Himpe, C, Leibner, T, Rave, S, and Saak, J. . “Fast Low-Rank Empirical Cross Gramians.” PAMM, № 17 (1): 841–842. doi: 10.1002/pamm.201710388.
- Keil, Tim. . Variational crimes in the Localized orthogonal decomposition method (master's thesis),
- Verfürth, B. . “Numerical homogenization for indefinite H(curl)-problems.” in Proceedings of Equadiff 2017 Conference, edited by K Mikula, D Sevcovic and J Urban.
- Henning, P, Ohlberger, M, and Verfürth, B. . “Analysis of multiscale methods for time-harmonic Maxwell's equations.” Proc. Appl. Math. Mech., № 16 (1): 559–560. doi: 10.1002/pamm.201610268.
- Smetana, Kathrin, and Patera, Anthony T. . “Optimal local approximation spaces for component-based static condensation procedures.” SIAM J. Sci. Comput., № 38 (5): A3318––A3356. doi: 10.1137/15M1009603.
- Himpe, C, and Ohlberger, M. . “A note on the cross Gramian for non-symmetric systems.” System Science and Control Engineering, № 4 (1): 199–208. doi: 10.1080/21642583.2016.1215273.
- Lehrenfeld, C, and Reusken, A. . “L2-estimates for a high order unfitted finite element method for elliptic interface problems.” arXiv eprints.
- Lehrenfeld, Christoph. . “High order unfitted finite element methods on level set domains using isoparametric mappings.” Comp. Meth. Appl. Mech. Eng., № 300 (1): 716–733. doi: 10.1016/j.cma.2015.12.005.
- Lehrenfeld, C, and Reusken, A. . “Analysis of a high order unfitted finite element method for elliptic interface problems.” arXiv preprint arXiv:1602.02970, № 1602.02970
- Ohlberger, M, Rave, S, and Schindler, F. . “Model Reduction for Multiscale Lithium-Ion Battery Simulation.” in Numerical Mathematics and Advanced Applications ENUMATH 2015, Vol. 112 of Lecture Notes in Computational Science and Engineering, edited by B Karasözen, M Manguoğlu, M Teuer-Sezgin, S Göktepe and Ö Uğur. Heidelberg: Springer. doi: 10.1007/978-3-319-39929-4_31.
- Henning, P, Ohlberger, M, and Verfürth, B. . “A new Heterogeneous Multiscale Method for time-harmonic Maxwell's equations.” SIAM J. Numer. Anal., № 54 (6): 3493–3522. doi: 10.1137/15M1039225.
- Lehrenfeld, C, and Reusken, A. . “Optimal Preconditioners for Nitsche-XFEM Discretizations of Interface Problems.” Numerische Mathematik, № 2016 doi: 10.1007/s00211-016-0801-6.
- Falconi, Delgado C, Lehrenfeld, C, Marschall, H, Meyer, C, Abiev, R, Bothe, D, Reusken, A, Schlüter, M, and Wörner, M. . “Numerical and Experimental Analysis of Local Flow Phenomena in Laminar Taylor Flow in a Square Mini-Channel.” Physics of Fluids, № 28 (1): 012109.
- Lehrenfeld, C, and Schöberl, J. . “High order exactly divergence-free Hybrid Discontinuous Galerkin Methods for unsteady incompressible flows.” Comp. Meth. Appl. Mech. Eng., № 2016 doi: 10.1016/j.cma.2016.04.025.
- Ohlberger, M, and Smetana, K. . “Approximation of skewed interfaces with tensor-based model reduction procedures: application to the reduced basis hierarchical model reduction approach.” J. Comp. Phys., № 321: 1185–1205. doi: 10.1016/j.jcp.2016.06.021.
- Schindler, F. . “Model reduction for parametric multi-scale problems.” Dissertation thesis, Westfälische Wilhelms-Universität Münster.
- Milk, R, Rave, S, and Schindler, F. . “pyMOR - Generic algorithms and interfaces for model order reduction.” SIAM Journal on Scientific Computing, № 38 (5): S194–S216. doi: 10.1137/15M1026614.
- Ohlberger, M, Rave, S, and Schindler, F. . “Adaptive Localized Model Reduction.” Oberwolfach Reports, № 13 (3): 2406–2409. doi: 10.4171/OWR/2016/42.
- Henning, P, and Ohlberger, M. . “A-posteriori error estimate for a heterogeneous multiscale approximation of advection-diffusion problems with large expected drift.” Discrete and Continuous Dynamical Systems - Series S, № 9 (5): 1393–1420. doi: 10.3934/dcdss.2016056.
- Brunken, Julia, Leibner, Tobias, Ohlberger, Mario, and Smetana, Kathrin. . “Problem adapted hierachical model reduction for the Fokker-Planck equation.” in ALGORITMY 2016 Proceedings of contributed papers and posters, edited by Angela Handlovicova and Daniel Sevcovic. Bratislava: Publishing House of Slovak University of Technology.
- Engwer, C, Henning, P, M\ralqvist, A, and Peterseim, D. . “Efficient implementation of the Localized Orthogonal Decomposition method.” arXiv.
- Bastian, P, Engwer, C, Fahlke, J, Geveler, M, Göddeke, D, Iliev, O, Ippisch, O, Milk, R, J, M, Müthing, S, Ohlberger, M, Ribbrock, D, and Turek, S. . “Advances concerning multiscale methods and uncertainty quantification in EXA-DUNE.” in Software for Exascale Computing - SPPEXA 2013-2015, Vol. 113 of Lecture Notes in Computational Science and Engineering, edited by Bungartz Hans-Joachim, Neumann Philipp and E.Nagel Wolfgang. doi: 10.1007/978-3-319-40528-5_2.
- Bastian, P, Engwer, C, Fahlke, J, Geveler, M, Göddeke, D, Iliev, O, Ippisch, O, Milk, R, J, M, Müthing, S, Ohlberger, M, Ribbrock, D, and Turek, S. . “Hardware-based Efficiency Advances in the EXA-DUNE Project.” in Software for Exascale Computing - SPPEXA 2013-2015, Vol. 113 of Lecture Notes in Computational Science and Engineering, edited by Bungartz Hans-Joachim, Neumann Philipp and E.Nagel Wolfgang. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-319-40528-5_1.
- Ohlberger, M, and Rave, S. . “Reduced Basis Methods: Success, Limitations and Future Challenges.” in roceedings of ALGORITMY 2016, 20th Conference on Scientific Computing, Vysoke Tatry, Podbanske, Slovakia, March 13-18, 2016, edited by A.Handlovičova and D. Sevčovič. Bratislava: Publishing House of Slovak University of Technology.
- Fehr, J, Heiland, J, Himpe, C, and Saak, J. . “Best Practices for Replicability, Reproducibility and Reusability of Computer-Based Experiments Exemplified by Model Reduction.” AIMS Mathematics, № 1 (3): 261--281. doi: 10.3934/Math.2016.3.261.
- Leibner, Tobias. . Numerical methods for kinetic equations (Master's thesis),
- Henning, P, and Ohlberger, M. . “Error control and adaptivity for heterogeneous multiscale approximations of nonlinear monotone problems.” Discrete and Continuous Dynamical Systems - Series S, № 8 (1): 119–150. doi: 10.3934/dcdss.2015.8.119.
- Ohlberger, Mario, and Smetana, Kathrin. . “A Dimensional Reduction Approach Based on the Application of Reduced Basis Methods in the Framework of Hierarchical Model Reduction.” Oberwolfach Reports, № 2/2015: 141–144. doi: 10.4171/OWR/2015/2.
- Himpe, C, and Ohlberger, M. . “The Versatile Cross Gramian.” in Vol. Morepas 3 of ScienceOpen Posters scienceopen. doi: 10.14293/P2199-8442.1.SOP-MATH.PSAHPZ.v1.
- Benner, P, Ohlberger, M, Patera, A, Rozza, G, Sorensen, D, and Urban, K. . “Model order reduction of parameterized systems (MoRePaS).” Advances in Computational Mathematics, № 41 (5): 955–960. doi: 10.1007/s10444-015-9443-y.
- Buhr, A, and Ohlberger, M. . “Interactive Simulations Using Localized Reduced Basis Methods.” in IFAC-PapersOnLine, Vol. 48(1) doi: 10.1016/j.ifacol.2015.05.134.
- Mohring, Jan, Milk, Rene, Ngo, Adrian, Klein, Ole, Iliev, Oleg, Ohlberger, Mario, and Bastian, Peter. . “Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo.” in Proceedings of 10th International Conference on Large-Scale Scientific Computations, Sozopol 2015, Vol. 9374 of Lecture Notes in Computational Science, edited by I. Lirkov, S.D. Margenov and J. Wasniewski. Basel: Springer International Publishing. doi: 10.1007/978-3-319-26520-9_15.
- Himpe, C, and Ohlberger, M. . “The Empirical Cross Gramian for Parametrized Nonlinear Systems.” in Vol. 48(1) of IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.05.163.
- Ohlberger, M, and Schindler, F. . “Error control for the localized reduced basis multi-scale method with adaptive on-line enrichment.” SIAM J. Sci. Comput., № 37 (6): A2865–A2895. doi: 10.1137/151003660.
- Himpe, C, and Ohlberger, M. . “Accelerating the Computation of Empirical Gramians and Related Methods.” contribution to the 5th International Workshop on Model Reduction in Reacting Flows, Spreewald doi: 10.5281/zenodo.46643.
- Lehrenfeld, C, and Reusken, A. . “Finite Element Techniques for the Numerical Simulation of Two-Phase Flows with Mass Transport.” in Computational Methods for Complex Liquid-Fluid Interfaces, edited by CRC Press.
- Lehrenfeld, C. . “The Nitsche XFEM-DG Space-Time Method and its Implementation in Three Space Dimensions.” SIAM J. Sci. Comput., № 37: A245–A270. doi: 10.1137/130943534.
- Lehrenfeld, C. . “On a Space-Time Extended Finite Element Method for the Solution of a Class of Two-Phase Mass Transport Problems.” Dissertation thesis, RWTH Aachen.
- Kaulmann, S, Flemisch, B, Haasdonk, B, Lie, K, and Ohlberger, M. . “The Localized Reduced Basis Multiscale method for two-phase flows in porous media.” International Journal for Numerical Methods in Engineering, № 5 (102): 1018–1040. doi: 10.1002/nme.4773.
- Himpe, C, and Ohlberger, M. . “Data-driven combined state and parameter reduction for inverse problems.” Advances in Computational Mathematics, № 41 (5): 1343–1364. doi: 10.1007/s10444-015-9420-5.
- Henning, P, Ohlberger, M, and Schweizer, B. . “Adaptive Heterogeneous Multiscale Methods for immiscible two-phase flow in porous media.” Computational Geosciences, № 1 (19): 99–114. doi: 10.1007/s10596-014-9455-6.
- Smetana, Kathrin. . “A new certification framework for the port reduced static condensation reduced basis element method.” Computer Methods in Applied Mechanics and Engineering, № 283: 352–383. doi: 10.1016/j.cma.2014.09.020.
- Marschall, H, Boden, S, Lehrenfeld, C, Falconi, Delgado C, Hampel, U, Reusken, A, Wörner, M, and Bothe, D. . “Validation of Interface Capturing and Tracking Techniques with different Surface Tension Treatments against a Taylor Bubble Benchmark Problem.” Comput. & Fluids, № 102: 336–352. doi: 10.1016/j.compfluid.2014.06.030.
- Haasdonk, B, and Ohlberger, M. . “Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden f\ür effiziente und gesicherte numerische Simulation.” GAMM Rundbrief, № 2014/1: 6–13.
- Fuhrmann, J, Ohlberger, M, and Rohde, C. . Springer Proceedings in Mathematics & Statistics, Vol. 77, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects - FVCA 7, Berlin, June 2014, Basel: Springer International Publishing. doi: 10.1007/978-3-319-05684-5.
- Fuhrmann, J, Ohlberger, M, and Rohde, C. . Springer Proceedings in Mathematics & Statistics, Vol. 78, Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems - FVCA 7, Berlin, June 2014, Basel: Springer International Publishing. doi: 10.1007/978-3-319-05591-6.
- Girke, S, Klöfkorn, R, and Ohlberger, M. . “Efficient Parallel Simulation of Atherosclerotic Plaque Formation Using Higher Order Discontinuous Galerkin Schemes.” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Vol. 78 of Springer Proceedings in Mathematics & Statistics, edited by J Fuhrmann, M Ohlberger and C Rohde. Basel: Springer International Publishing. doi: 10.1007/978-3-319-05591-6_61.
- Ohlberger, M, and Schindler, F. . “A-Posteriori Error Estimates for the Localized Reduced Basis Multi-Scale Method.” in Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, Vol. 77 of Springer Proceedings in Mathematics & Statistics, edited by Rohde C and ,. Basel: Springer International Publishing. doi: 10.1007/978-3-319-05684-5_41.
- Ohlberger, M, Rave, S, Schmidt, S, and Zhang, S. . “A Model Reduction Framework for Efficient Simulation of Li-Ion Batteries.” in Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Vol. 78 of Springer Proceedings in Mathematics & Statistics, edited by J Fuhrmann, M Ohlberger and C Rohde. Heidelberg: Springer. doi: 10.1007/978-3-319-05591-6_69.
- Ohlberger, M, and Smetana, K. . “A Dimensional Reduction Approach Based on the Application of Reduced Basis Methods in the Framework of Hierarchical Model Reduction.” SIAM Journal on Scientific Computing, № 36 (2): A714–A736. doi: 10.1137/130939122.
- Berninger, H, Ohlberger, M, Sander, O, and Smetana, K. . “Unsaturated subsurface flow with surface water and nonlinear in- and outflow conditions.” Math. Models and Methods in Appl. Sciences, № 24 (5): 901–936. doi: 10.1142/S0218202513500711.
- Himpe, C, and Ohlberger, M. . “Model Reduction for Complex Hyperbolic Networks.” contribution to the 13th European Control Conference (ECC), June 24-27, 2014, Strasbourg, France New York City: Wiley-IEEE Press. doi: 10.1109/ECC.2014.6862188.
- Himpe, C, and Ohlberger, M. . “Cross-Gramian Based Combined State and Parameter Reduction for Large-Scale Control Systems.” Mathematical Problems in Engineering, № 2014: 1–13. doi: 10.1155/2014/843869.
- Henning, Patrick, Ohlberger, Mario, and Schweizer, Benn. . “An adaptive Multiscale Finite Element Method.” Multiscale Mod. Simul., № 12 (3): 1078–1107. doi: 10.1137/120886856.
- Mikula, K, Ohlberger, M, and Urban, J. . “Inflow-Implicit/Outflow-Explicit Finite Volume Methods for Solving Advection Equations.” Applied Numerical Mathematics, № 85: 16–37. doi: 10.1016/j.apnum.2014.06.002.
- Buhr, A, Engwer, C, Ohlberger, M, and Rave, S. . “A Numerically Stable A Posteriori Error Estimator for Reduced Basis Approximations of Elliptic Equations.” in 11th World Congress on Computational Mechanics, WCCM 2014, 5th European Conference on Computational Mechanics, ECCM 2014 and 6th European Conference on Computational Fluid Dynamics, ECFD 2014, edited by Onate XO E. and A Huerta. Barcelona: CIMNE.
- Bastian, P, Engwer, C, Göddeke, D, Iliev, O, Ippisch, O, Ohlberger, M, Turek, S, Fahlke, J, Kaulmann, S, Müthing, S, and Ribbrock, D. . “EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications.” in Euro-Par 2014: Parallel Processing Workshops, Vol. 8806 of Lecture Notes in Computer Science, edited by L. Lopes, J. Žilinskas, A. Costan, R.G. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, S.L. Scott, S. Lankes, C. Lengaue, J. Carretero, J. Breitbart and M. Alexander. Basel: Springer International Publishing. doi: 10.1007/978-3-319-14313-2_45.
- Himpe, C, and Ohlberger, M. . “Combined State and Parameter Reduction.” in Vol. 14 of Proceedings in Applied Mathematics and Mechanics (PAMM) doi: 10.1002/pamm.201410393.
- Himpe, C, and Ohlberger, M. . “A Unified Software Framework for Empirical Gramians.” Journal of Mathematics, № 2013 (2013): 1–6. doi: 10.1155/2013/365909.
- Schöberl, J, and Lehrenfeld, C. . “Domain Decomposition Preconditioning for High Order Hybrid Discontinuous Galerkin Methods on Tetrahedral Meshes.” in Advanced Finite Element Methods and Applications, Vol. 66 of Lecture Notes in Applied and Computational Mechanics, edited by Thomas Apel and Olaf Steinbach. Düsseldorf: Springer VDI Verlag.
- Lehrenfeld, C, and Reusken, A. . “Analysis of a DG-XFEM Discretization for a Class of Two-Phase Mass Transport Problems.” SIAM J. Numer. Anal., № 51: 958–983. doi: 10.1137/120875260.
- Aland, S, Lehrenfeld, C, Marschall, H, Meyer, C, and Weller, S. . “Accuracy of Two-Phase Flow Simulations.” in Proc. Appl. Math. Mech., Vol. 13 of Proc. Appl. Math. Mech. Heidelberg: Springer. doi: 10.1002/pamm.201310278.
- Albrecht, F, and Ohlberger, M. . “The localized reduced basis multi-scale method with online enrichment.” Oberwolfach Reports, № 7: 406–409. doi: 10.4171/OWR/2013/07.
- Ohlberger, M, and Rave, S. . “Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing.” C. R. Acad. Sci. Paris, Ser. I, № 351: 901–906. doi: 10.1016/j.crma.2013.10.028.
- Ohlberger, M, and Schaefer, M. . “Error Control Based Model Reduction for Parameter Optimization of Elliptic Homogenization Problems.” in Proceedings of the 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations doi: 10.3182/20130925-3-FR-4043.00053.
- Henning, P, Ohlberger, M, and Schweizer, B. . “Homogenization of the degenerate two-phase flow equations.” Math. Models and Methods in Appl. Sciences, № 23 (12): 2323–2352. doi: 10.1142/S0218202513500334.
- Ohlberger, M, Albrecht, F, Drohmann, M, Henning, P, Kaulmann, S, and Schweizer, B. . “Model reduction for multiscale problems.” Oberwolfach Reports, № 39: 2228–2230. doi: 10.4171/OWR/2013/39.
- Lehrenfeld, Christoph, and Reusken, Arnold. . “Nitsche-XFEM with Streamline Diffusion Stabilization for a Two-Phase Mass Transport Problem.” SIAM J. Sci. Comput., № 34: 2740–2759. doi: 10.1137/110855235.
- Koutschan, Christoph, Lehrenfeld, Christoph, and Schöberl, Joachim. . “Computer Algebra meets Finite Elements: an Efficient Implementation for Maxwells Equations.” in Numerical and Symbolic Scientific Computing: Progress and Prospects, edited by Ulrich Langer PP. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-7091-0794-2_6.
- Bernard-Champmartin, A, Deriaz, E, Hoch, P, Samba, G, and Schaefer, M. . “Extension of centered hydrodynamical schemes to unstructured deforming conical meshes: the case of circles.” in CEMRACS'11: Multiscale Coupling of Complex Models in Scientific Computing Les Ulis: EDP Sciences. doi: 10.1051/proc/201238008.
- Drohmann, Martin Haasdonk Bernard, and Ohlberger, Mario. . “Reduced Basis Model Reduction of Parametrized Two-Phase Flow in Porous Media.” in 7th Vienna International Conference on Mathematical Modelling, Vol. 45 of IFAC Proceedings Volumes doi: 10.3182/20120215-3-AT-3016.00128.
- Ohlberger, M. . “Error control based model reduction for multiscale problems.” in Proceedings of Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9-14, 2012, edited by University of Technology in Bratislava Slovak and House of STU Publishing.
- Bastian, P, Berninger, H, Dedner, A, Engwer, C, Henning, P, Kornhuber, R, Kröner, D, Ohlberger, M, Sander, O, Schiffler, G, Shokina, N, and Smetana, K. . “Adaptive Modelling of Coupled Hydrological Processes with Application in Water Management.” in Progress in Industrial Mathematics at ECMI 2010, Vol. 17 of Mathematics in Industry, Heidelberg: Springer. doi: 10.1007/978-3-642-25100-9_65.
- Ohlberger, M, and Schaefer, M. . “A reduced basis method for parameter optimization of multiscale problems.” in Submitted to Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9-14, 2012
- Rave, S. . “On Finitely Summable K-Homology.” Dissertation thesis, Universität Münster.
- Albrecht, F, Haasdonk, B, Kaulmann, S, and Ohlberger, M. . “The Localized Reduced Basis Multiscale Method.” contribution to the Algoritmy 2012, Conference on Scientific Computing, Vysoke Tatry, Podbanske, September 9-14, 2012, Vysoke Tatry, Podbanske Bratislava: Publishing House of Slovak University of Technology.
- Ohlberger, M, and Smetana, K. . “A new Hierarchical Model Reduction-Reduced Basis technique for advection-diffusion-reaction problems.” in Proceedings of the V International Conference on Adaptive Modeling and Simulation (ADMOS 2011) held in Paris, France, 6-8 June 2011, edited by Aubry D. et al.. Barcelona: CIMNE.
- Drohmann, M, Haasdonk, B, and Ohlberger, M. . “Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion Equations.” in Finite Volumes for Complex Applications VI - Problems & Perspectives, Vol. 4 (1) of Springer Proceedings in Mathematics, edited by Fort J. et al.. Heidelberg: Springer. doi: 10.1007/978-3-642-20671-9_39.
- Haasdonk, B, and Ohlberger, M. . “Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition.” Mathematical and Computer Modelling of Dynamical Systems, № 17 (2): 145–161. doi: 10.1080/13873954.2010.514703.
- Mikula, K, and Ohlberger, M. . “Inflow-Implicit/Outflow-Explicit scheme for solving advection equations.” in Finite Volumes for Complex Applications VI - Problems & Perspectives, Vol. 4(1) of Springer Proceedings in Mathematics, edited by Fort J. et al.. Heidelberg: Springer. doi: 10.1007/978-3-642-20671-9_72.
- Lehrenfeld, Christoph. . “Nitsche-XFEM for a Transport Problem in Two- Phase Incompressible Flows.” in Proc. Appl. Math. Mech., Vol. 11 New York City: John Wiley & Sons. doi: 10.1002/pamm.201110296.
- Haasdonk, B, Dihlmann, M, and Ohlberger, M. . “A Training Set and Multiple Bases Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space.” Mathematical and Computer Modelling of Dynamical Systems, № 2011 (17 (4)): 423–442. doi: 10.1080/13873954.2011.547674.
- Henning, P, and Ohlberger, M. . “A Note on Homogenization of Advection-Diffusion Problems with Large Expected Drift.” Zeitschrift für Analysis und ihre Anwendungen, № 2011 (30(3)): 319–339. doi: 10.4171/ZAA/1437.
- Mikula, K, and Ohlberger, M. . “A New Inflow-Implicit/Outflow-Explicit Finite Volume Method for Solving Variable Velocity Advection Equations.”
- Ohlberger, M, and Smetana, K. . “A new problem adapted hierarchical model reduction technique based on reduced basis methods and dimensional splitting.”
- Drohmann, M, Haasdonk, B, and Ohlberger, M. . “Reduced Basis Approximation for Nonlinear Parametrized Evolution Equations based on Empirical Operator Interpolation.”
- Lehrenfeld, Christoph. . Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems,
- Dedner, A, Klöfkorn, R, Nolte, M, and Ohlberger, M. . “A generic interface for parallel and adaptive scientific computing: Abstraction principles and the DUNE-FEM module.” Computing, № 90 (3-4): 165–196. doi: 10.1007/s00607-010-0110-3.
- Mikula, K, and Ohlberger, M. . “A New Level Set Method for Motion in Normal Direction Based on a Semi-Implicit Forward-Backward Diffusion Approach.” SIAM Journal on Scientific Computing, № 32 (3): 1527–1544. doi: 10.1137/09075946X.
- Henning, P, and Ohlberger, M. . “The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift.” Networks and Heterogeneous Media, № 5 (4): 711–744. doi: 10.3934/nhm.2010.5.711.
- Henning, P, and Ohlberger, M. . “The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains.” Numer. Math., № 113: 601–629. doi: 10.1007/s00211-009-0244-4.
- Ohlberger, M. . “A review of a posteriori error control and adaptivity for approximations of nonlinear conservation laws.” International Journal for Numerical Methods in Fluids, № 59 (International Journal for Numerical Methods in Fluids): 333–354. doi: 10.1002/fld.1686.
- Henning, P, and Ohlberger, M. . “A-posteriori error estimate for a heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift.”
- Haasdonk, B, and Ohlberger, M. . “Efficient reduced models for parametrized dynamical systems by offline/online decomposition.”
- Albrecht, F. . Local Discontinuous Galerkin Verfahren für die Stokes Gleichungen und Homogenisierung in porösen Medien (Diplomarbeit),
- Drohmann, M, Haasdonk, B, and Ohlberger, M. . “Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries.” contribution to the Proceedings of ALGORITMY 2009
- Haasdonk, B, and Ohlberger, M. . “Space-adaptive reduced basis simulation for time-dependent problems.”
- Haasdonk, B, and Ohlberger, M. . “Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws.” in Hyperbolic problems: theory, numerics and applications, Vol. 67 of Proc. Sympos. Appl. Math. Providence, RI: American Mathematical Society.
- Haasdonk, B, Ohlberger, M, and Rozza, G. . “A reduced basis method for evolution schemes with parameter-dependent explicit operators.” Electronic transactions on numerical analysis, № 32: 145–161.
- Dedner, A, and Ohlberger, M. . “A new $hp$-adaptive DG scheme for conservation laws based on error control.” in Hyperbolic Problems: Theory, Numerics, Applications, edited by Serre Benzoni-Gavage. Berlin. doi: 10.1007/978-3-540-75712-2_15.
- Haasdonk, B, Ohlberger, M, and Rozza, G. . “A reduced basis method for evolution schemes with parameter-dependent explicit operators.” Electronic transactions on numerical analysis, № 32: 145–161.
- Klöfkorn, R, Kröner, D, and Ohlberger, M. . “Parallel and adaptive simulation of fuel cells in 3d.” in Computational science and high performance computing III, Vol. 101 of Notes Numer. Fluid Mech. Multidiscip. Des. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-540-69010-8_7.
- Goldsmith, F, Ohlberger, M, Schumacher, J, Steinkamp, K, and Ziegler, C. . “A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane.” Journal of Fuel Cell Science and Technology, № 5 (Journal of Fuel Cell Science and Technology): 5. doi: 10.1115/1.2822884.
- Haasdonk, B, and Ohlberger, M. . “Adaptive Basis Enrichment for the Reduced Basis Method Applied to Finite Volume Schemes.” contribution to the Finite Volumes for Complex Applications VI Problems & Perspectives: FVCA 6, Prague
- Klöfkorn, R, Kröner, D, and Ohlberger, M. . “Parallel adaptive simulation of PEM fuel cells.” in Mathematics – Key Technology for the Future, edited by Jäger Krebs.
- Haasdonk, B, and Ohlberger, M. . “Reduced Basis Method for Finite Volume Approximations of Parametrized Linear Evolution Equations.” M2AN Math. Model. Numer. Anal., № 42 (2): 277–302. doi: 10.1051/m2an:2008001.
- Dedner, A, Makridakis, C, and Ohlberger, M. . “Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws.” SIAM J. Numer. Anal., № 45: 514–538.
- Ohlberger, M, and Schweizer, B. . “Modelling of interfaces in unsaturated porous media.” Discrete Contin. Dyn. Syst.(Dynamical Systems and Differential Equations. Proceedings of the 6th AIMSInternational Conference, suppl.): 794–803.
- Rave, S. . Über die Entscheidbarkeit gewisser Prädikate in der Theorie der C*-Algebren, Münster.
- Haasdonk, B, and Ohlberger, M. . “Basis Construction for Reduced Basis Methods by Adaptive Parameter Grids.”
- Henning, P. . Die Heterogene Mehrskalenmethode f\�r elliptische Differentialgleichungen in perforierten Gebieten,
- Fuhrmann, J, Haasdonk, B, Holzbecher, E, and Ohlberger, M. . “Guest Editorial for Special Issue on Modelling and Simulation of PEM-FC.” Journal of Fuel Cell Science and Technology, № 2007 (Journal of Fuel Cell Science and Technology)
- Klöfkorn, R, Kröner, D, and Ohlberger, M. . “Parallel and adaptive simulaiton of fuel cells in 3D.”
- Ohlberger, M, and Vovelle, J. . “Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method.” Math. Comp., № 75: 113–150.
- Burri, A, Dedner, A, Diehl, D, Klöfkorn, R, and Ohlberger, M. . “A general object oriented framework for discretizing nonlinear evolution equations.”
- Burri, A, Dedner, A, Klöfkorn, R, and Ohlberger, M. . “An efficient implementation of an adaptive and parallel grid in DUNE.”
- Haasdonk, B, and Ohlberger, M. . “Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations.”
- Ohlberger, M. . “A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems.” Multiscale Model. Simul., № 4: 88–114.
- Dedner, A, Makridakis, C, and Ohlberger, M. . “A new stable discontinuous Galerkin approximation for non-linear conservation laws on adaptively refined grids.”
- Ohlberger, M. . “A posterior error estimates for the heterogenoeous mulitscale finite element method for elliptic homogenization problems.” SIAM Multiscale Mod. Simul., № 4 (1): 88–114.
- Ohlberger, M. . “Error control for approximations of non-linear conservation laws.”
- Bastian, P, Droske, M, Engwer, C, Klöfkorn, R, Neubauer, T, Ohlberger, M, and Rumpf, M. . “Towards a unified framework for scientific computing.”
- Barth, T, and Ohlberger, M. . “Finite volume methods: foundation and analysis.”
- Ohlberger, M. . “Higher order finite volume methods on selfadaptive grids for convection dominated reactive transport problems in porous media.” Comp. Vis. Sci., № 7 (1): 41–51.
- Kröner, D, Küther, M, Ohlberger, M, and Rohde, C. . “A posteriori error estimates and adaptive methods for hyperbolic and convection dominates parabolic conservation laws.”
- Küther, M, and Ohlberger, M. . “Adaptive second order central schemes on unstructured staggered grids.”
- Haasdonk, B, Ohlberger, M, Rumpf, M, Schmidt, A, and Siebert, K. . “Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations.” Computing, № 70 (Computing): 181–204.
- Karlsen, KH, and Ohlberger, M. . “A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations.” J. Math. Anal. Appl., № 275: 439–458.
- Herbin, R, and Ohlberger, M. . “A posteriori error estimate for finite volume approximations of convection diffusion problems.”
- Ohlberger, M, and Rohde, C. . “Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems.” IMA J. Numer. Anal., № 22 (2): 253–280.
- Bürkle, D, and Ohlberger, M. . “Adaptive finite volume methods for displacement problems in porous media.” Comp. Vis. Sci., № 5 (2): 95–106.
- Klöfkorn, R, Kröner, D, and Ohlberger, M. . “Local adaptive methods for convection dominated problems.” International Journal for Numerical Methods in Fluids, № 40 (1-2): 79–91.
- Ohlberger, M. . “A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations.” Numerische Mathematik, № 87 (4): 737–761.
- Ohlberger, M. . A posteriori error estimates and adaptive methods for convection dominated transport processes,
- Haasdonk, B, Ohlberger, M, Rumpf, M, Schmidt, A, and Siebert, K. . “h-p-Multiresolution Visualization of Adaptive Finite Element Simulations.”
- Ohlberger, M. . “A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations.” M2AN Math. Model. Numer. Anal., № 35: 355–387.
- Kröner, D, and Ohlberger, M. . “A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multidimensions.” Math. Comp., № 69: 25–39.
- Geßner, T, Haasdonk, B, Kende, R, Lenz, M, Metscher, M, Neubauer, R, Ohlberger, M, Rosenbaum, W, Rumpf, M, Schwörer, R, Spielberg, M, and Weikard, U. . “A Procedural Interface for Multiresolutional Visualization of General Numerical Data.”
- Ohlberger, M. . “Adaptive mesh refinement for single and two phase flow problems in porous media.”
- Ohlberger, M, and Rumpf, M. . “Adaptive protection operators in multiresolution scientific visualizations.” IEEE Transactions on Visualization and Computer Graphics, № 5 (1): 74–94.
- Ohlberger, M. . “Mixed finite element-finte volume methods for two-phase flow in porous media.”
- Grüne, L, Metscher, M, and Ohlberger, M. . “On numerical algorithm and interactive visualization for optimal control problems.” Comp. Visual. Sci., № 1 (4): 221–229.
- Ohlberger, M, and Schwörer, R. . Challenges in Fluid Dynamics,
- Ohlberger, M. . “Convergence of a mixed finite element-finite volume method for the two phase flow in porous media.” East-West journal of numerical mathematics, № 5 (3): 183–210.
- Neubauer, R, Ohlberger, M, Rumpf, M, and Schwörer, R. . “Efficient visualization of large-scale data on hierarchical meshes.”
- Ohlberger, M, and Rumpf, M. . “Hierarchical and adaptive visualization on nested grids.” Computing, № 59 (Computing): 365–385.
Supervised Postdoctoral Study
Henning, Patrick Applications of numerical homogenization in geosciences and physics
Supervised Doctoral Studies
Renelt, Lukas Numerical methods for Friedrichs’ systems: Approximation theory, localized training and inherently stable model order reduction Kleikamp, Hendrik Parametrized optimal control and transport-dominated problems: Reduced basis methods, nonlinear reduction strategies and data driven surrogates Schleuß, Julia Randomized Multiscale Methods for Parabolic Problems Tacke, Marie-Christin A Multi-Stage Model Order Reduction Framework for Efficient Simulations of Parametrized Lithium-Ion Battery Cells Keil, Tim Adaptive Reduced Basis Methods for Multiscale Problems and Large-scale PDE-constrained Optimization Leibner, Tobias Model reduction for kinetic equations: moment approximations and hierarchical approximate proper orthogonal decomposition Brunken, Julia Stable and efficient Petrov-Galerkin methods for certain (kinetic) transport equations Buhr, Andreas Towards Automatic and Reliable Localized Model Order Reduction. Local Training, a Posteriori Error Estimation and Online Enrichment. Verfürth, Barbara Numerical multiscale methods for Maxwell's equations in heterogeneous media Himpe, Christian Combined State and Parameter Reduction for Nonlinear Systems with an Application in Neuroscience Schindler, Felix Tobias Model Reduction for Parametric Multi-Scale Problems Kaulmann, Sven Efficient Schemes for Parameterized Multiscale Problems Smetana, Kathrin A dimensional reduction approach based on the application of reduced basis methods in the context of hierarchical model reduction Drohmann, Martin Reduced basis model reduction for non-linear evolution equations Henning, Patrick Heterogeneous multiscale finite element methods for advection-diffusion and nonlinear elliptic multiscale problems Klöfkorn Robert Numerics for Evolution Equations - A General Interface Based Design Concept