next up previous
Next: The inverse evolution problem Up: A discrete Gelfand - Previous: Transmutation matrices

The inverse eigenvalue problem

Now assume tex2html_wrap_inline643 to be symmetric with non-zero off-diagonal elements, i.e. tex2html_wrap_inline645 , tex2html_wrap_inline647 . Let tex2html_wrap_inline649 be the eigenvalues and tex2html_wrap_inline651 the normalized eigenvectors of T, i.e.

displaymath655

We consider the inverse problem: Determine tex2html_wrap_inline643 from tex2html_wrap_inline661 and tex2html_wrap_inline663 . It is well known that this problem can easily be solved by the Lanczos method.

The Lanczos algorithm computes for a symmetric matrix A a symmetric tridiagonal matrix T and a unitary matrix U such that

  equation97

in the following way. With tex2html_wrap_inline671 the rows of U, (3.1) reads

displaymath675

Now let tex2html_wrap_inline677 be arbitrary. Then, from equation 1,

eqnarray106

Thus tex2html_wrap_inline679 , tex2html_wrap_inline681 , tex2html_wrap_inline677 , tex2html_wrap_inline685 are determined. Likewise, from equation 2,

eqnarray112

yielding tex2html_wrap_inline687 , tex2html_wrap_inline689 . Proceeding in this fashion in equations up to and including n-1 we obtain tex2html_wrap_inline693 , tex2html_wrap_inline695 and tex2html_wrap_inline697 . tex2html_wrap_inline699 is obtained from equation n.

In order to solve our inverse problem we simply apply the Lanczos method to the matrix tex2html_wrap_inline703 . The same problem can be solved by the Gelfand-Levitan method in the following way.

Let tex2html_wrap_inline577 be an arbitrary known symmetric tridiagonal matrix, subject only to the condition tex2html_wrap_inline707 , tex2html_wrap_inline709 . We introduce solutions tex2html_wrap_inline711 , tex2html_wrap_inline713 of

displaymath715

and correspondingly for tex2html_wrap_inline717 using tex2html_wrap_inline577 instead of T. In other words, tex2html_wrap_inline711 , tex2html_wrap_inline725 satisfy

  equation127

  equation130

Note that for tex2html_wrap_inline727 , tex2html_wrap_inline729 is an eigenvector of T, hence

  equation133

i.e. the projection operator E can be dropped in that case.

theorem137

Proof: Let tex2html_wrap_inline745 . Then, because of (2.1), (3.4),

displaymath747

Since tex2html_wrap_inline749 , tex2html_wrap_inline751 . Thus tex2html_wrap_inline753 and tex2html_wrap_inline755 both satisfy (3.3) with tex2html_wrap_inline727 . Because of tex2html_wrap_inline619 , (3.3) is uniquely solvable. Hence tex2html_wrap_inline761 .

tex2html_wrap_inline633

Now we come to the core of the Gelfand-Levitan method. We introduce the matrices

displaymath765

displaymath767

Assume that tex2html_wrap_inline769 , tex2html_wrap_inline771 . Then, tex2html_wrap_inline773 , hence tex2html_wrap_inline775 and

displaymath777

Since tex2html_wrap_inline779 ,

  equation158

Theorem 3.1 means that

  equation162

Inserting this into (3.5) yields

displaymath781

Since tex2html_wrap_inline783 , P are known from the data, L can be computed by a Cholesky decomposition of tex2html_wrap_inline789 . Once L is determined, T can be computed from

displaymath795

This solves the inverse eigenvalue problem.


next up previous
Next: The inverse evolution problem Up: A discrete Gelfand - Previous: Transmutation matrices

Frank Wuebbeling
Fri Oct 9 14:01:16 MET DST 1998