• Publications

    Selection

    • , , , and . . “When does the chaos in the Curie-Weiss model stop to propagate?Electronic Journal of Probability, 28: 117. doi: 10.1214/23-ejp1039.
    • , , and . . “Fluctuations of the magnetization for Ising models on Erdos-Rényi random graphs — the regimes of low temperature and external magnetic field.Latin American Journal of Probability and Mathematical Statistics, 19: 537563. doi: 10.30757/alea.v19-21.
    • , , and . . “Fluctuations for the partition function of Ising models on Erdos-Rényi random graphs.Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 57 (4): 20172042. doi: 10.1214/20-aihp1137.
    • , , and . . “Fluctuations of the magnetization for Ising models on Erdos-Rényi random graphs — the regimes of small p and the critical temperature.Journal of Physics A: Mathematical and Theoretical, 53: 355004, 37. doi: 10.1088/1751-8121/aba05f.
    • , and . . “Exact recovery in block spin Ising models at the critical line.Electronic Journal of Statistics, 14 (1): 17961815. doi: 10.1214/20-EJS1703.
    • , and . . “A phase transition for the limiting spectral density of random matrices.Electronic Journal of Probability, 18: 117. doi: 10.1214/EJP.v18-2118.
    • , , and . “The voter model with anti-voter bonds.Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 41 (4): 767780. doi: 10.1016/j.anihpb.2004.03.007.
    • , and . . “Scenery reconstruction in two dimensions with many colors.Annals of Applied Probability, 12 (4): 13221347. doi: 10.1214/aoap/1037125865.
    • , , and . . “Fluctuations of the free energy in the REM and the p-spin SK models.Annals of Probability, 30 (2): 605651. doi: 10.1214/aop/1023481004.
    • , and . . “Moderate deviations for longest increasing subsequences: the upper tail.Communications on Pure and Applied Mathematics, 54 (12): 14881520. doi: 10.1002/cpa.10010.

    Complete List

    • , , , and . . “When does the chaos in the Curie-Weiss model stop to propagate?Electronic Journal of Probability, 28: 117. doi: 10.1214/23-ejp1039.
    • , , and . . “Fluctuations of the magnetization for Ising models on Erdos-Rényi random graphs — the regimes of low temperature and external magnetic field.Latin American Journal of Probability and Mathematical Statistics, 19: 537563. doi: 10.30757/alea.v19-21.
    • , and . . “A Central Limit Theorem for incomplete U-statistics over triangular arrays.Brazilian Journal of Probability and Statistics, 35 (3): 499522. doi: 10.1214/20-BJPS492.
    • , , and . . “Fluctuations for the partition function of Ising models on Erdos-Rényi random graphs.Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 57 (4): 20172042. doi: 10.1214/20-aihp1137.
    • , , and . . “Fluctuations of the magnetization for Ising models on Erdos-Rényi random graphs — the regimes of small p and the critical temperature.Journal of Physics A: Mathematical and Theoretical, 53: 355004, 37. doi: 10.1088/1751-8121/aba05f.
    • , and . . “Exact recovery in block spin Ising models at the critical line.Electronic Journal of Statistics, 14 (1): 17961815. doi: 10.1214/20-EJS1703.
    • , , , and . “A Comparative Study of Sparse Associative Memories.Journal of Statistical Physics, 164 (1): 105129. doi: 10.1007/s10955-016-1530-z.
    • , , and . “On the capacity of an associative memory model based on neural cliques.Statistics and Probability Letters, 106 (null): 256261. doi: 10.1016/j.spl.2015.07.026.
    • , and . “Capacity of an associative memory model on random graph architectures.Bernoulli, 21 (3): 18841910. doi: 10.3150/14-BEJ630.
    • , and . “On hitting times for a simple random walk on dense Erdös-Rényi random graphs.Statistics and Probability Letters, 89 (1): 8188. doi: 10.1016/j.spl.2014.02.017.
    • , and . “90 Jahre Lindeberg-Methode.Mathematische Semesterberichte, 61 (1): 734. doi: 10.1007/s00591-013-0118-9.
    • , and . . “On the spectral density of large sample covariance matrices with Markov dependent columns.Markov processes and related fields, 20 (2): 349374.
    • , and . “The semicircle law for matrices with dependent entries.” in Vol.42 New York City: Springer Publishing. doi: 10.1007/978-3-642-36068-8_13.
    • , and . “Random Matrices and Iterated Random Functions.” in Vol.53 doi: 10.1007/978-3-642-38806-4.
    • , , and . “Large deviations principle for Curie-Weiss models with random fields.Journal of Physics A: Mathematical and Theoretical, 46 (12) doi: 10.1088/1751-8113/46/12/125004.
    • . “How to read a randomly mixed up message.” in Vol.7777 of Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) doi: 10.1007/978-3-642-36899-8-13.
    • , and . . “A phase transition for the limiting spectral density of random matrices.Electronic Journal of Probability, 18: 117. doi: 10.1214/EJP.v18-2118.
    • , , and . . “Gaussian fluctuations for sample covariance matrices with dependent data.Journal of Multivariate Analysis, 114: 270287. doi: 10.1016/j.jmva.2012.08.004.
    • , and . “The Semicircle Law for Matrices with Independent Diagonals.Journal of Theoretical Probability, 26 (4): 10841096. doi: 10.1007/s10959-011-0383-2.
    • , and . “Moderate Deviations for Random Field Curie-Weiss Models.Journal of Statistical Physics, 149 (4): 701721. doi: 10.1007/s10955-012-0611-x.
    • , , , and . “Mixing times for the swapping algorithm on the Blume-Emery-Griffiths model.Random Structures and Algorithms, null (null) doi: 10.1002/rsa.20461.
    • , and . . “The Hopfield model on a sparse Erd{\H o}s-Renyi graph.Journal of Statistical Physics, 143 (1): 205214. doi: 10.1007/s10955-011-0167-1.
    • , and . . “Moderate deviations for the size of the largest component in a super-critical Erdös-Rényi graph.Markov processes and related fields, 17 (3): 369390.
    • , and . . “Social distance, heterogeneity and social interactions.Journal of Mathematical Economics, 46 (4): 572590. doi: 10.1016/j.jmateco.2010.03.009.
    • , and . . “Stein's method for dependent random variables occurring in statistical mechanics.Electronic Journal of Probability, 15: no. 30, 962––988.
    • , and . . “Torpid mixing of the swapping chain on some simple spin glass models.Markov processes and related fields, 15 (1): 5980.
    • , and . . “The swapping algorithm for the Hopfield model with two patterns.Stochastic Processes and their Applications, 119 (10): 34713493. doi: 10.1016/j.spa.2009.06.007.
    • , and . . “Capacity bounds for the {CDMA} system and a neural network: a moderate deviations approach.ESAIM: Probability and Statistics, 13: 343362. doi: 10.1051/ps:2008016.
    • , and . . “Zur Meinungsbildung in einer heterogenen Bevölkerung---ein neuer Zugang zum Hopfield Modell.Mathematische Semesterberichte, 56 (1): 1538. doi: 10.1007/s00591-008-0049-z.
    • , and . . “The capacity of {$q$}-state Potts neural networks with parallel retrieval dynamics.Statistics and Probability Letters, 77 (14): 15051514. doi: 10.1016/j.spl.2007.03.030.
    • , , and . . “Diversification for general copula dependence.Statistica Neerlandica, 61 (4): 446465. doi: 10.1111/j.1467-9574.2007.00370.x.
    • , and . . “A note on the annealed free energy of the {$p$}-spin Hopfield model.Markov processes and related fields, 13 (3): 565574.
    • , , and . . “The effect of system load on the existence of bit errors in {CDMA} with and without parallel interference cancelation.IEEE Transactions on Information Theory, 52 (10): 47334741. doi: 10.1109/TIT.2006.881697.
    • , and . . “Fluctuations in p-spin interaction models.Ann. Inst. H. Poincaré, 41 (4): 807815. doi: 10.1016/j.anihpb.2004.05.006.
    • , and . . “The storage capacity of the Hopfield model and moderate deviations.Statistics and Probability Letters, 75 (4): 237248. doi: 10.1016/j.spl.2005.06.001.
    • , , and . . “Analysis of the expected shortfall of aggregate dependent risks.ASTIN Bulletin, 35 (1): 2543. doi: 10.2143/AST.35.1.583164.
    • , and . . “Fluctuations in a {$p$}-spin interaction model.Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 41 (4): 807815. doi: 10.1016/j.anihpb.2004.05.006.
    • , , and . “The voter model with anti-voter bonds.Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 41 (4): 767780. doi: 10.1016/j.anihpb.2004.03.007.
    • , and . . “The storage capacity of the Blume-Emery-Griffiths neural network.Journal of Physics A: Mathematical and General, 38 (16): 34833503. doi: 10.1088/0305-4470/38/16/002.
    • , and . . “Fluctuations for the overlap parameter in the Hopfield model.Prob. Theory Rel. Fields, 130: 441472.
    • , , and . . “Reconstruction of a one-dimensional Scenery by observing it along a Random Walk Path with Jumps.Electr. Journal Prob., 9: 436507.
    • , and . . “Moderate deviations for the overlap parameter in the Hopfield model.Probability Theory and Related Fields, 130 (4): 441472. doi: 10.1007/s00440-004-0349-8.
    • , and . . “Comment on: ``Curious properties of simple random walks'' [J. Statist. Phys. 3 (1993), no. 1-2, 441--445; MR1247871] by S. I. Ben-Abraham.Journal of Statistical Physics, 116 (5-6): 14491451. doi: 10.1023/B:JOSS.0000041746.43933.73.
    • , and . . “Moderate deviations for a class of mean-field models.Markov processes and related fields, 10 (2): 345366.
    • , , and . . “Reconstructing a multicolor random scenery seen along a random walk path with bounded jumps.Electronic Journal of Probability, 9: no. 15, 436––507 (electronic).
    • , , and . . “Diversification of aggregate dependent risks.Insurance: Mathematics and Economics, 35 (1): 7795. doi: 10.1016/j.insmatheco.2004.05.001.
    • , and . . “Reconstruction of sceneries with correlated colors.Stochastic Processes and their Applications, 105 (2): 175210. doi: 10.1016/S0304-4149(03)00003-6.
    • , and . . “Moderate deviations for i.i.d.\ random variables.ESAIM: Probability and Statistics, 7: 209218. doi: 10.1051/ps:2003005.
    • , , and . . “Moderate deviations for longest increasing subsequences: the lower tail.Journal of Theoretical Probability, 15 (4): 10311047. doi: 10.1023/A:1020649006254.
    • , and . . “Scenery reconstruction in two dimensions with many colors.Annals of Applied Probability, 12 (4): 13221347. doi: 10.1214/aoap/1037125865.
    • , , and . . “Fluctuations of the free energy in the REM and the p-spin SK models.Annals of Probability, 30 (2): 605651. doi: 10.1214/aop/1023481004.
    • , and . . “Right order spectral gap estimates for generating sets of {$\Bbb Z_4$}.Random Structures and Algorithms, 20 (2): 220238. doi: 10.1002/rsa.998.abs.
    • . . “Rekonstruktion zufälliger Landschaften.Mathematische Semesterberichte, 48 (1): 2948. doi: 10.1007/PL00009931.
    • , and . . “Moderate deviations for longest increasing subsequences: the upper tail.Communications on Pure and Applied Mathematics, 54 (12): 14881520. doi: 10.1002/cpa.10010.
    • , and . . “Note on the knapsack Markov chain.Stochastic Processes and their Applications, 94 (1): 155170. doi: 10.1016/S0304-4149(01)00080-1.
    • , and . . “Fluctuations in the Hopfield model at the critical temperature.Markov processes and related fields, 5 (4): 423449. doi: 10.1007/s004400050241.
    • , and . . “The fluctuations of the overlap in the Hopfield model with finitely many patterns at the critical temperature.Probability Theory and Related Fields, 115 (3): 357381. doi: 10.1007/s004400050241.
    • . . “On the storage capacity of the Hopfield model with biased patterns.IEEE Transactions on Information Theory, 45 (1): 314318. doi: 10.1109/18.746829.
    • . . “The storage capacity of generalized Hopfield models with semantically correlated patterns.Markov processes and related fields, 5 (1): 119.
    • , and . . “Large deviations principle for partial sums {$U$}-processes.Teoriya Veroyatnostei i ee Primeneniya, 43 (1): 97115. doi: 10.1137/S0040585X97976647.
    • . . “On the storage capacity of Hopfield models with correlated patterns.Annals of Applied Probability, 8 (4): 12161250. doi: 10.1214/aoap/1028903378.
    • . . “On the storage capacity of the Hopfield model.” in Mathematical aspects of spin glasses and neural networks, Progr. Probab. Basel: Birkhäuser Verlag.
    • . . “On the invariant measure of non-reversible simulated annealing.Statistics and Probability Letters, 36 (2): 189193. doi: 10.1016/S0167-7152(97)00063-1.
    • , and . . “Optimal running times for systems of random walks involving several particles.Communications in Statistics: Stochastic Models, 13 (2): 293313. doi: 10.1080/15326349708807428.
    • , and . . “Edge search in hypergraphs.Discrete Mathematics, 162 (1-3): 267271. doi: 10.1016/0012-365X(95)00291-4.
    • . . “On the convergence of genetic algorithms.Expositiones Mathematicae, 14 (4): 289312.
    • . . “Simulated annealing with time-dependent energy function via Sobolev inequalities.Stochastic Processes and their Applications, 63 (2): 221233. doi: 10.1016/0304-4149(96)00070-1.
    • . . “On a randomized version of exhaustive local search.Communications in Statistics: Stochastic Models, 12 (3): 389403.
    • . . “Iterated large deviations.Statistics and Probability Letters, 26 (3): 219223. doi: 10.1016/0167-7152(95)00013-5.
    • , and . . “A large deviation principle for {$m$}-variate von Mises-statistics and {$U$}-statistics.Journal of Theoretical Probability, 8 (4): 807824. doi: 10.1007/BF02410113.
  • Supervised Doctoral Studies

    Deviation Principles for Disordered Spin Systems
    Swapping, Tempering, and Equi-Energy sampling on a selection of models from statistical mechanics
    Ameskamp, JensEin Prinzip moderater Abweichungen für die Größe der größten Komponente eines Erdös-Rényi-Zufallsgraphen im superkritischen Fall
    Moderate und große Abweichungen zur statistischen Analyse biologischer Sequenzen