PD Dr. Dieter Friedhelm Kutz

PD Dr. Dieter Friedhelm Kutz

Wilhelm-Schickard-Str. 8, room Wilhelm-Schickard-Str. 8, C1.0.08
48149 Münster

T: +49 251 83-34865

Consultation Hours

Lecture period: Tuesdays 16-17 h
otherwise by appointment

Academic Profile

  • CV

    Academic Education

    Fachphysiologe
    Erteilung der Lehrbefugnis für das Fachgebiet „Physiologie“, Recht zur Führung der Bezeichnung Privatdozent
    Feststellung der Lehrbefähigung für das Fach Physiologie durch die Medizinische Fakultät der Ludwig-Maximilians Universität München
    Promotion in Biologie, Ruhr-Universität Bochum, Abschluss: Dr.rer.nat.
    Diplomstudium Biologie, Ruhr-Universität Bochum, Abschluss: Diplom

    Positions

    wissenschaftlicher Mitarbeiter an der Professur für Neuomotorik und Training
    Wissenschaftlicher Mitarbeiter, Technische Universität Chemnitz
    Akademischer Oberrat a.Z., Ludwig-Maximilians Universität München
    Vertretungsprofessor für Neurophysik, Philipps-Universität Marburg
    Akademischer Rat a.Z. / C1-Assistent, Ludwig-Maximilians-Universität München
    Assistenz-Professor (Ricercatore), Universita degli Studi di Bologna (Italien)
  • Publications

    • , , , & (). Cardiorespiratory fitness is associated with cognitive performance in 80+-year-olds: Detangling processing levels. GeroScience, 2024. doi: 10.1007/s11357-024-01065-8.
    • , , , & (). Force-fluctuations during role-differentiated bimanual movements reflect cognitive impairments in older adults. A cohort sequential study. Journals of Gerontology, Series A, glae137. doi: 10.1093/gerona/glae137.
    • , , , & (). Impact of Object Weight and Participant Age on the Dynamics of Human-to-Human Object Handovers. REPAIRS Closing Conference, Groningen.
    • , , , , & (). Synchronization of Neurophysiological and Biomechanical Data in a Real-Time Virtual Gait Analysis System (GRAIL): A Proof-of-Principle Study. Sensors, 24 (12), Article 3779. doi: 10.3390/s24123779.
    • (). Unveiling the invisible: receivers use object weight cues for grip force planning in handover actions. Experimental Brain Research, 242 (5), 11911202. doi: 10.1007/s00221-024-06813-y.

    • , , & (). Neurocognition and Movement. in Schüler, J., Wegner, M., Plessner, H., & Eklund, R. C. (ed.), Sport and Exercise Psychology: Theory and Application (pp.7192). Springer International Publishing. doi: 10.1007/978-3-031-03921-8_4.
    • , , , , & (). Bimanual coupling is associated with left frontocentral network activity in a task-specific way. European Journal of Neuroscience, 58 (1), 23152338. doi: 10.1111/ejn.16042.
    • , , , , & (). Measuring System for Synchronous Recording of Kinematic and Force Data during Handover Action of Human Dyads. Sensors, 23, Article 9694. doi: 10.3390/s23249694.
    • , , , , & (). Sex‑dependent performance differences in curvilinear aiming arm movements in octogenarians. Scientific Reports, 13, Article 9777. doi: 10.1038/s41598-023-36889-5.

    • , , , , , & (). Bimanual coupling is related to functional intra- and interhemispheric connectivity. in Wegner, M., & Jürgensen, J. (ed.), Schriften der Deutschen Vereinigung für Sportwissenschaft: Vol.298. Sport, Mehr & Meer – Sportwissenschaft in gesellschaftlicher Verantwortung Feldhasu Verlag.
    • , , , , & (). Is finger tapping a biomarker to classify cognitive status in octogenarian. Proceedings of the 39th congress of the IUPS 2022, Bejing.
    • , , , , , & (). Stimulus-dependent deliberation process in left- and right-handers obtained via current source density analysis. Physiological Reports, 10, 121. doi: 10.14814/phy2.15522.
    • , , , , & (). Finger Tapping as a Biomarker to Classify Cognitive Status in 80+-Year-Olds. Journal of personalized medicine, 12. doi: 10.3390/jpm12020286..

    • , , , & (). Characteristics of Resting State EEG Power in 80+-Year-Olds of Different Cognitive Status. Frontiers in Aging Neuroscience, 13. doi: 10.3389/fnagi.2021.675689.
    • , , , & (). A Single Bout of High-Intensity Cardiovascular Exercise Does Not Enhance Motor Performance and Learning of a Visuomotor Force Modulation Task, but Triggers Ipsilateral Task-Related EEG Activity. International journal of environmental research and public health, 18 (23). doi: 10.3390/ijerph182312512.
    • , , , & (). Sex Differences in the Consumption of Over-the-Counter Analgesics Among Amateur Volleyball Players. BMC Sports Science, Medicine and Rehabilitation, 13 (1). doi: 10.1186/s13102-021-00273-5.

    • , , , , , & (). How Age, Cognitive Function and Gender Affect Bimanual Force Control. Frontiers in Physiology, 11. doi: 10.3389/fphys.2020.00245.
    • , & (). Neurokognition und Bewegung. in Schüler, J., Wegner, M., & Plessner, H. (ed.), Sportpsychologie (pp.6988). Springer VDI Verlag. doi: 10.1007/978-3-662-56802-6_4.
    • , , , & (). Somatosensory Influence on Platform-Induced Translational Vestibulo-Ocular Reflex in Vertical Direction in Humans. Frontiers in Neurology, 11 (332), 110. doi: 10.3389/fneur.2020.00332.

    • (). Altersspezifische Veränderungen des motorischen Lernens. in Granacher, U., Mechling, H., & Voelcker-Rehage, C. (ed.), Handbuch Sport und Bewegungsgerontologie (pp.406409).

    • , , , & (). Sex differences in thermal detection and thermal pain threshold and the thermal grill illusion: a psychophysical study in young volunteers. Biology of Sex Differences, 8. doi: 10.1186/s13293-017-0147-5.

    • , , & (). Exercise-induced changes in basal ganglia volume and their relation to cognitive performance. Journal of Neurology & Neuromedicine, 1 (5), 1924. doi: 10.29245/2572.942X/2016/5.1044.
    • , , , , & (). Contribution of the Cerebellumin Cue-Dependent Force Changes During an Isometric Precision Grip Task. Cerebellum, 15 (4), 439450. doi: 10.1007/s12311-015-0707-3.

    • , , , , , & (). Stimulus-dependent deliberation process leading to a specific motor action demonstrated via a multi-channel EEG analysis. Frontiers in Human Neuroscience, 9. doi: 10.3389/fnhum.2015.00355.
    • , , , , & (). Motor learning of cue-dependent pull-force changes during an isometric precision grip task. Human Movement Science, 39, 138153. doi: 10.1016/j.humov.2014.11.006.

    • , , , , , & (). Comparison of the classically conditioned withdrawal reflex in cerebellar patients and healthy control subjects during stance: 2. Biomechanical characteristics. Neurobiology of Learning and Memory, 109, 178192. doi: 10.1016/j.nlm.2013.12.016.

    • , , , , , & (). Comparison of the Classically Conditioned Withdrawal Reflex in Cerebellar Patients and Healthy Control Subjects During Stance: I. Electrophysiological Characteristics. Cerebellum, 12 (1), 108126. doi: 10.1007/s12311-012-0400-8.

    • , , , , , , , , , , & (). Impact of surgical intervention and postoperative pain on electrical skin resistance at acupuncture points: an exploratory study. Acupuncture in Medicine, 30 (2), 120126. doi: 10.1136/acupmed-2011-010118.
    • , , , , & (). Contribution of the Cerebellum to the Coupling of Grip Force and Pull Force During an Isometric Precision Grip Task. Cerebellum, 11 (1), 167180. doi: 10.1007/s12311-011-0293-y.

    • , , , & (). Jerk analysis of active body-weight-transfer. Gait and Posture, 32 (4), 667672. doi: 10.1016/j.gaitpost.2010.08.011.
    • , , , , , & (). Differences in unconditioned and conditioned responses of the human withdrawal reflex during stance: Muscle responses and biomechanical data. Brain Research, 1326, 8195. doi: 10.1016/j.brainres.2010.02.051.

    • , , , , , , , , , & (). Characteristics of Electrical Skin Resistance at Acupuncture Points in Healthy Humans. Journal of Alternative and Complementary Medicine, 15 (5), 495500. doi: 10.1089/acm.2008.0331.
    • , , , , & (). Spatio-Temporal Human Grip Force Analysis via Sensor Arrays. Sensors, 9 (8), 63306345. doi: 10.3390/s90806330.
    • , , , & (). Dynamic torque during a precision grip task comparable to picking a raspberry. Journal of Neuroscience Methods, 177 (1), 8086. doi: 10.1016/j.jneumeth.2008.09.031.

    • , , , & (). Detection of changes in grip forces on a sliding object. Journal of Neuroscience Methods, 166 (2), 250258. doi: 10.1016/j.jneumeth.2007.07.014.

    • , , , , & (). Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. European Journal of Neuroscience, 22 (4), 956972. doi: 10.1111/j.1460-9568.2005.04288.x.
    • , , , , & (). The relationship between V6 and PO in macaque extrastriate cortex. European Journal of Neuroscience, 21 (4), 959970. doi: 10.1111/j.1460-9568.2005.03911.x.
    • , , , , & (). Real-time supervisor system based on trinary logic to control experiments with behaving animals and humans. Journal of Neurophysiology, 93 (6), 36743686. doi: 10.1152/jn.01292.2004.

    • , , , , & (). Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Experimental Brain Research, 153 (2), 158170. doi: 10.1007/s00221-003-1589-z.
    • , , , , & (). Early- and late-responding cells to saccadic eye movements in the cortical area V6A of macaque monkey. Experimental Brain Research, 149 (1), 8395. doi: 10.1007/s00221-002-1337-9.

    • , , , , & (). Somatosensory cells in the parieto-occipital area V6A of the macaque. NeuroReport, 13 (16), 21132116. doi: 10.1097/00001756-200211150-00024.

    • , , , & (). 'Arm-reaching' neurons in the parietal area V6A of the macaque monkey. European Journal of Neuroscience, 13 (12), 23092313. doi: 10.1046/j.0953-816x.2001.01618.x.
    • , , , , , & (). The cortical connections of area V6: an occipito-parietal network processing visual information. European Journal of Neuroscience, 13 (8), 15721588. doi: 10.1046/j.0953-816x.2001.01538.x.

    • , , & (). Influence of arm movements on saccades in humans. European Journal of Neuroscience, 12 (11), 41074116. doi: 10.1046/j.1460-9568.2000.00298.x.

    • , , , & (). The cortical visual area V6: brain location and visual topography. European Journal of Neuroscience, 11 (11), 39223936. doi: 10.1046/j.1460-9568.1999.00817.x.
    • , , , & (). Brain location and visual topography of cortical area V6A in the macaque monkey. European Journal of Neuroscience, 11 (2), 575582. doi: 10.1046/j.1460-9568.1999.00467.x.

    • , , , & (). Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule. European Journal of Neuroscience, 9 (2), 410413. doi: 10.1111/j.1460-9568.1997.tb01410.x.
    • , , , & (). Population coding of arm-movement-related neurons in and below the superior colliculus of Macaca mulatta. Biological Cybernetics, 76 (5), 331337. doi: 10.1007/s004220050346.

    • (). Codierung der Trajektorien des Armes durch Populationen von Neuronen im Colliculus superior und Muskeln bei Primaten.