A nonequidistant mesh

Let us suppose, that the spatial steps fulfill the following rule:

$\displaystyle \triangle x_i=\alpha\triangle x_{i-1}.
$

If $ \alpha=1$ the mesh is said to be equidistant. Let us now calculate the first derivative of the function $ u(x)$ of the second-order accurance.

$\displaystyle u(x+\alpha\triangle x)=u(x)+\alpha\triangle x\frac{\partial u}{\p...
... x^2}+\frac{(\alpha\triangle x)^3}{3!} \frac{\partial^3 u}{\partial x^3}+\ldots$ (1.13)

Adding the last equation with Eq. (1.4) multiplied by $ \alpha$ one obtains the expression for the second derivative

$\displaystyle \frac{\partial^2 u}{\partial x^2}=\frac{u(x+\alpha\triangle x)-(1...
...triangle x)}{\frac{1}{2}\alpha(\alpha+1)\triangle x^2}+\mathcal{O}(\triangle x)$ (1.14)

After substitution of the last equation to Eq. (1.4) one obtains

$\displaystyle \boxed{\frac{\partial u}{\partial x}=\frac{u(x+\alpha\triangle x)...
...ha^2 u(x-\triangle x)}{\alpha(\alpha+1)\triangle x}+\mathcal{O}(\triangle x^2)}$ (1.15)



Gurevich_Svetlana 2008-11-12