Mixed derivatives

A finite difference approximations for the mixed partial derivatives one get in the same way. For example, let us find the central approximation for the derivative
    $\displaystyle \frac{\partial^2u}{\partial x\partial y}=\frac{\partial}{\partial...
...riangle y)-u(x,y-\triangle y)}{2\triangle y}+\mathcal{O}(\triangle y^2)\biggr)=$  
    $\displaystyle =\frac{u(x+\triangle x,y+\triangle y)-u(x-\triangle x,y+\triangle...
...-\triangle y)}{4\triangle x\triangle y}+\mathcal{O}(\triangle x^2\triangle y^2)$  



Gurevich_Svetlana 2008-11-12