Prof. Dr. Michael Becken

Prof. Dr. Michael Becken

Corrensstr. 24
48149 Münster

T: +49 251 83-36137

  • Research Foci

    • Applied Geophysics
    • Electromagnetic Methods
    • Magnetotellurics
  • Academic Education

    Dr. rer. nat. (Geophysics)
    Diplom in Geosciences (Applied Geophysics)
  • Projects

    • Deep electromagnetic exploration ()
      Individual Granted Project: DFG - Heisenberg professorship | Project Number: BE 5149/7-1
    • EXIST-Gründerstipendium "ASDRO Solution" ()
      Individual Granted Project: BMWK - EXIST Business Start-up Grant | Project Number: 03EGSNW634
    • Die Dynamik der Liposphäre unterhalb des Hangai-Gebirges in der westlichen Mongolei: dreidimensionale magnetotellurische Untersuchungen und vierdimensionale thermomechanische Modellierung ()
      Individual Granted Project: DFG - Joint Proposal Submission with Austria and Switzerland (D-A-CH) | Project Number: BE 5149/6-1
    • DESMEX – r4 - wirtschaftsstrategische Rohstoffe, Verbundvorhaben: DESMEX: Elektromagnetische Tiefensondierung für die Lagerstättenerkundung, Teilvorhaben 1: Experimental design eines semi-airborne Explorationssystems, Signalverarbeitung und Datenauswertung ()
      participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 033R130A
    • PipelineEM – Utilizing impressed cathodic corrosion protection currents to determine the electrical conductivity in the upper few kilometers of the earth ()
      Individual Granted Project: DFG - Individual Grants Programme | Project Number: BE 5149/2-1
    • Electromagnetic Imaging using Fields emitted by Railway Lines ()
      Individual Granted Project: Shell Global Solutions International BV | Project Number: PT39618
    • Elektrische und elektromagnetische Verfahren zur geophysikalischen Erkundung des tieferen Untergrundes in der Nordschweiz ()
      Individual Granted Project: Nationale Genossenschaft für die Lagerung radioaktiver Abfälle | Project Number: 12'543
  • Publications

    • , , , , , , , , and . “Evidence for partial melting and alkaline-rich fluids in the crust from a 3-D electrical resistivity model in the vicinity of the Coqen region, western Lhasa terrane.Earth and Planetary Science Letters, 619 doi: 10.1016/j.epsl.2023.118316.
    • , , , , and . . “Images of a continental intraplate volcanic system: from surface to mantle source.Earth and Planetary Science Letters, 578 117307. doi: 10.1016/j.epsl.2021.117307.
    • , , , , , , , and . “Relationship of the crustal structure, rheology, and tectonic dynamics beneath the Lhasa-Gangdese terrane (southern Tibet) based on a 3-D electrical model.Journal of Geophysical Research, 127 (11) doi: 10.1029/2022JB024318.
    • , , and . . “Imaging the whole-lithosphere structure of a mineral system — Geophysical signatures of the sources and pathways of ore-forming fluids.Geochemistry, Geophysics, Geosystems, 23 (8) e2022GC010379. doi: 10.1029/2022GC010379.
    • , , , and . . “Joint inversion of gravity and electromagnetic data — New constraints on the 3-D structure of the lithosphere beneath Central Mongolia.” contribution to the EGU General Assembly 2022, Vienna doi: 10.5194/egusphere-egu22-12704.
    • , , , , , , , , and . “Controls on the metallogenesis of the Lhasa–Mozugongka district, Gangdese Belt, Tibetan Plateau: Constraints on melt distribution and viscosity from the 3-D electrical structure of the lithosphere.Ore Geology Reviews, 145 104881. doi: 10.1016/j.oregeorev.2022.104881.
    • , , , , , , , and . “Evidence for the superposition of tectonic systems in the northern Songliao Block, NE China, revealed by a 3-D electrical resistivity model.Journal of Geophysical Research, 127 (4) doi: 10.1029/2021JB022827.
    • , , , and . . “Numerical study on the style of lithospheric delamination.Tectonophysics, 827 229276. doi: 10.1016/j.tecto.2022.229276.
    • , , , , , , , and . “An Asthenospheric Upwelling Beneath Central Mongolia — Implications for Intraplate Surface Uplift and Volcanism.Acta Geologica Sinica (English Edition), 95: 7072. doi: 10.1111/1755-6724.14836.
    • , , , , and . “Electrical properties of the lithosphere in the western desert, Egypt, using magnetotelluric sounding.” contribution to the EGU General Assembly 2021, Vienna doi: 10.5194/egusphere-egu21-13382.
    • , , , and . . “Geodynamic Modeling of Lithospheric Removal and Surface Deformation: Application to Intraplate Uplift in Central Mongolia.Journal of Geophysical Research, 126 (5) doi: 10.1029/2020JB021304.
    • , , , and . “Crustal architecture of a metallogenic belt and ophiolite belt: Implications for mineral genesis and emplacement from 3-D electrical resistivity models (Bayankhongor area, Mongolia).Earth Planets and Space, 73 82. doi: 10.1186/s40623-021-01400-9.
    • , , , , and . . “Compaction-driven fluid localization as an explanation for lower crustal electrical conductors in an intracontinental setting.Geophysical Research Letters, 47 (19) e2020GL088455. doi: 10.1029/2020GL088455.
    • , , , , , , and . “Magnetotelluric multiscale 3-D inversion reveals crustal and upper mantle structure beneath the Hangai and Gobi-Altai region in Mongolia.Geophysical Journal International, 221 (2) doi: 10.1093/gji/ggaa039.
    • , , , , , , , and . “Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect.Earth Planets and Space, 72 5. doi: 10.1186/s40623-020-1131-6.
    • , , , , , , , , , , and . . “Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia.Earth and Planetary Science Letters, 487: 201209. doi: 10.1016/j.epsl.2018.02.007.
    • , , , , , , , , and . . “Evidence for fluid and melt generation in response to an asthenospheric upwelling beneath the Hangai Dome, Mongolia.Earth and Planetary Science Letters, 487: 201209. doi: 10.1016/j.epsl.2018.02.007.
    • , , , and . . “Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler, Germany.Archaeological Prospection, 2018 doi: 10.1002/arp.1703.
    • , and . . “Compressive sensing approach for two-dimensional magnetotelluric inversion using wavelet dictionaries.Geophysical Prospecting, 66 (4): 664672. doi: 10.1111/1365-2478.12605.
    • , and . . “Using impressed current cathodic protection systems of pipelines for electromagnetic exploration.Geophysics, 83 (4): B155–B165. doi: 10.1190/geo2017-0651.1.
    • , , , and . . “3D Inversion of the Semi-airborne Electromagnetic Data from Schleiz, Germany.” contribution to the Second European Airborne Electromagnetics Conference, Malmö doi: 10.3997/2214-4609.201702151.
    • , , , , , , , , , , , , , , and . . “A Novel Semi-airborne EM System for Mineral Exploration - First Results from Combined Fluxgate and Induction Coil Data.” contribution to the Second European Airborne Electromagnetics Conference, Malmö doi: 10.3997/2214-4609.201702154.
    • , , , , , , , , , , , and . . “New Airborne Methods and Procedures for the Exploration of Mineral Resources - An Overview of BGR Activities.” contribution to the Near Surface Geoscience 2016 - 22nd European Meeting of Environmental and Engineering Geophysics, Barcelona doi: 10.3997/2214-4609.201601939.
    • , and . . “Inversion of magnetotelluric data in a sparse model domain.Geophysical Journal International, 206 (2): 13981409.
    • , , , , , , and . “Electrical conductivity structure of north-west Fennoscandia from three-dimensional inversion of magnetotelluric data.Tectonophysics, 653 (null): 2032. doi: 10.1016/j.tecto.2015.01.008.
    • , and . “Utilizing impressed current cathodic protection as the source for electromagnetic exploration.” in Vol.null N/A: Selbstverlag / Eigenverlag.
    • , , and . “Robust processing of noisy land-based controlled-source electromagnetic data.Geophysics, 78 (5) doi: 10.1190/GEO2013-0026.1.
    • , , and . “Inversion of slingram electromagnetic induction data using a born approximation.Geophysics, 78 (4) doi: 10.1190/GEO2012-0484.1.
    • , and . . “Magnetotelluric Studies at the San Andreas Fault Zone: Implications for the Role of Fluids.Surveys in Geophysics, 33 (1): 65105. doi: 10.1007/s10712-011-9144-0.
    • , , and . . “2.5D controlled-source EM modeling with general 3D source geometries.Geophysics, 76 (6): F387–F393. doi: 10.1190/geo2011-0111.1.
    • , , , and . . “Strategies for land-based controlled-source electromagnetic surveying in high-noise regions.Leading Edge, 30 (10): 11741181. doi: 10.1190/1.3657078.
    • , and . . “Sensitivity of controlled-source electromagnetic fields in planarly layered media.Geophysical Journal International, 187 (2): 705728. doi: 10.1111/j.1365-246X.2011.05203.x.
    • , and . . “Electromagnetic fields generated by finite-length wire sources: Comparison with point dipole solutions.Geophysical Prospecting, 59 (2): 361374. doi: 10.1111/j.1365-2478.2010.00926.x.
    • , , and . . “Electromagnetic characterization of CO2 sequestration sites - Feasibility studies and first field results from Ketzin.Society of Petroleum Engineers - 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011 - Incorporating SPE EUROPEC 2011, 1: 247251.
    • , and . . “Correlation between deep fluids, tremor and creep along the central San Andreas fault.Nature, 480 (7375): 8790. doi: 10.1038/nature10609.
    • , , , and . . “Controlled-source electromagnetic modelling studies - Utility of auxiliary potentials for low-frequency stabilization.Society of Petroleum Engineers - 72nd European Association of Geoscientists and Engineers Conference and Exhibition 2010 - Incorporating SPE EUROPEC 2010, 1: 322326.
    • , and . . “1D sensitivity of land-based CSEM to thin resistive layers.SEG Technical Program Expanded Abstracts, 29 (1): 884888. doi: 10.1190/1.3513920.
    • , , and . . “Imaging of CO2 storage sites, geothermal reservoirs, and gas shales using controlled-source magnetotellurics: Modeling studies.Chemie der Erde / Geochemistry, 70 (SUPPL. 3): 6375. doi: 10.1016/j.chemer.2010.05.004.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “Anatomy of the dead sea transform from lithospheric to microscopic scale.Reviews of Geophysics, 47 (2) doi: 10.1029/2008RG000264.
    • , , and . . “Mode separation of magnetotelluric responses in three-dimensional environments.Geophysical Journal International, 172 (1): 6786. doi: 10.1111/j.1365-246X.2007.03612.x.
    • , , and . . “A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California.Geophysical Journal International, 173 (2): 718732. doi: 10.1111/j.1365-246X.2008.03754.x.
    • , , , , , , and . . “Electromagnetic and geoelectric investigation of the Gurinai Structure, Inner Mongolia, NW China.Tectonophysics, 445 (1-2): 2648. doi: 10.1016/j.tecto.2007.06.008.
    • , , and . . “Electrical resistivity image of the Jingsutu Graben at the NE margin of the Ejina Basin (NW China) and implications for the basin development.Geophysical Research Letters, 34 (9) doi: 10.1029/2007GL029412.
    • , and . . “Equivalent images derived from very-low frequency (VLF) profile data.Geophysics, 70 (3): G43–G50. doi: 10.1190/1.1925742.
    • , and . . “An ellipticity criterion in magnetotelluric tensor analysis.Geophysical Journal International, 159 (1): 6982. doi: 10.1111/j.1365-246X.2004.02376.x.
    • , and . . “Transformation of VLF anomaly maps into apparent resistivity and phase.Geophysics, 68 (2): 497505. doi: 10.1190/1.1567218.