2025
Double-diffusive layering during the evolution of planetary mantles
S. Dude, U. Hansen
GJI 240, 696–707
DOI:10.1093/gji/ggae4012024
Onset of plate motion in the presence of chemical heterogeneities in the mantle and the effect of mantle temperature
C. Stein, U. Hansen
JGR Solid Earth , e2023JB026864 (2024)
DOI:10.1029/2023JB0268642023
Formation of Thermochemical Heterogeneities by Core-Mantle Interaction
C. Stein, U. Hansen
JGR Solid Earth 128, e2022JB025689 (2023)
DOI:10.1029/2022JB0256892022
Numerical study on the style of delamination
C. Stein, M. J. Comeau, M. Becken, U. Hansen
Tectonophysics 827 (2022)
DOI:10.1016/j.tecto.2022.229276LLSVPs of primordial origin: Implications for the evolution of plate tectonics
P. Kreielkamp, C. Stein, U. Hansen
Earth Planet. Sci. Lett. 579 (2022)
DOI:10.1016/j.epsl.2021.117357Layering by double-diffusive convection in the subsurface oceans of Europa and Enceladus
T. Wong, U. Hansen, T. Wiesehöfer, W.B. McKinnon
JGR Planets 127 (2022)
DOI:10.1029/2022JE0073162021
Geodynamic modeling of lithospheric removal and surface deformation: application to intraplate uplift in Central Mongolia
M. J. Comeau, C. Stein, M. Becken, U. Hansen
JGR Solid Earth 126 (2021)
DOI:10.1029/2020JB021304On the fate of impact-delivered metal in a terrestrial magma ocean
C. Maas, L. Manske, K. Wünnemann, U. Hansen
Earth Planet Sci. Lett. 554 (2021)
DOI:10.1016/j.epsl.2020.1166802020
A numerical study of thermal and chemical structures at the core-mantle boundary
C. Stein, M. Mertens, U. Hansen
Earth Planet. Sci. Lett. 548 (2020)
DOI:10.1016/j.epsl.2020.116498Characteristics of a precessing flow under the influence of a convecting temperature field in a spheroidal shell
J. Vormann, U. Hansen
J. Fluid Mech. 891 (2020)
DOI:10.1017/jfm.2020.1502019
Dynamics of a terrestrial magma ocean under planetary rotation: a study in spherical geometry
C. Maas, U. Hansen
Earth Planet. Sci. Lett. 513, 81-94 (2019)
DOI:10.1016/j.epsl.2019.02.016.2018
Modeling the interior dynamics of gas planets
J. Wicht, M. French, S. Stellmach u.a.
In: Magnetic fields in the solar system, Lühr, H., J. Wicht, S.A. Gilder, M. Holschneider (Eds.)
Astrophys. Space Sci. Lib. 448 (2018)
DOI: 10.1007/978-3-319-64292-5-2Numerical simulations of bistable flows in precessing spheroidal shells
J. Vormann, U. Hansen
Geophys. J. Int. 213, 786-797 (2018)
DOI:10.1093/gji/ggy0242017
Sensitivity of rapidly rotating Raleigh-Bénard convection to Ekman pumping
M. Plumley, K. Julien, P. Marti, S. Stellmach
Phys. Rev. Fluids 2 (2017)
DOI:10.1103/PhysRevFluids.2.0948012016
The effect of Ekman pumping on quasi-geostrophic Rayleigh-Benard convection
M. Plumley, K. Julien, P. Marti, S. Stellmach
J. Fluid. Mech. 803, 51-71 (2016)
DOI:10.1017/jfm.2016.452A new model for mixing by double-diffusive convection (semi-convection). III. Thermal and compositional transport through non-layered oddc
R. Moll, P. Garaud, S. Stellmach
Astrophys. J. 823 (2016)
DOI:10.3847/0004-637X/823/1/33A nonlinear model for rotationally constrained convection with Ekman pumping
K. Julien, J. Arnou, M. Calkins, E. Knobloch, P. Marti, S. Stellmach, G. Vasil
J. Fluid Mech. 798 (2016)
DOI:10.1017/jfm.2016.2252015
A community benchmark for viscoplastic thermal convection in a 2-D square box
N., Tosi, C. Stein, L. Noack, c. Hütting, P. Maierová u.a.
Geochem. Geophys. Geosyst. 16, 2175-2196 (2015)
DOI:10.1002/2015GCOO5807Anelastic versus fully compressible turbulent Rayleigh-Bénard convection
Verhoeven, J., T. Wiesehöfer, S. Stellmach
Astrophys. J. 805 (2015)
DOI:10.1088/0004-637X/805/1/62Effects of the Earth's rotation on the early differentiation of a terrestrial Magma Ocean
C. Maas, U. Hansen
JGR Solid Earth 120 (2015)
DOI:10.1002/2015JB012053Influences on the positioning of mantle plumes following supercontinent formation
P.J. Heron, J.P. Lowman, C. Stein
JGR Solid Earth 120 (2015)
DOI:10.1002/2014JBO11727Kinetic energy transport in Rayleigh-Bénard convection
K. Petschel, S. Stellmach, M. Wilzcek, J. Lülff, U. Hansen
J. Fluid Mech. 773, 395-417 (2015)
DOI:10.1017/jfm.2015.216Laboratory-numerical models of rapidly rotating convection in planetary cores
J. S. Cheng, S. Stellmach, A. Ribeiro, A. Grannan, E. M. King, J. M. Aurnou
Geophys. J. Int. 201, 1-17 (2015)
DOI:10.1093/gji/ggu480Numerical dynamol simulations: from basic concepts to realistic models
J. Wicht, S. Stellmach, H. Harder
in: Handbook of geomathematics. Eds.: Freeden, W., M.Z. Nashed, T. Sonar, 1-49 (2015)
DOI:10.1007/978-3-642-27793-1_16-2Rotating convective turbulence in Earth and planetary cores
J. Arnou, M. Calkins, J. Cheng, K. Julien, E. King, S. Stellmach
Phys. Earth Planet. Int. 246, 52-71 (2015)
DOI:10.1016/j.pepi.2015.07.0012014
Double-diffusive mixing in stellar interiors in the presence of horizontal gradients
M. Medrano, P. Garaud, S. Stellmach
Astrophys. J. Lett. 792 (2014)
DOI:10.1088/2041-8205/792/2/L30Double-diffusive recipes. Part II: Layer-merging events
T. Radko, J. D. Flanagan, S. Stellmach, M.-L. Timmermans
J. Phys. Ocean. 44, 1285-1305 (2014)
DOI:10.1175/JPO-D-13-0156.1Numerical investigation of a layered temperature-dependent viscosity convection in comparison to convection with a full temperature dependence
C. Stein, U. Hansen
Phys. Earth Planet. Int. 226 (2014)
DOI:10.1016/j.pepi.2013.11.004Approaching the asymptotic regime of rapidly rotating convection: Boundary layers versus interior dynamics
S. Stellmach, M. Lischper, K. Julien, G. Vasil, J.S. Cheng, A. Ribeiro, E. M. King, J. M. Aurnou
Phys. Rev. Lett. 113 (2014)
DOI:10.1103/PhysRevLett.113.254501The feedback between surface mobility and mantle compositional heterogeneity: Implications for the Earth and other terrestrial planets
S. J. Trim, P. J. Heron, C. Stein, J. P. Lowman
Earth Planet. Sci. Lett. 405, 1-14 (2014)
DOI:10.1016/j.epsl.2014.08.019A comparison of mantle convection models featuring plates
C. Stein, J. Lowman, U. Hansen
Geochem. Geophys. Geosyst. 15, S. 2689-2698 (2014)
DOI:10.1002/2013GC005211The compressional beta effect: A source of zonal winds in planets?
J. Verhoeven, S. Stellmach
Icarus 237, 143-158 (2014)
DOI:10.1016/j.icarus.2014.04.0192013
Scaling behaviour in Rayleigh-Bénard convection with and without rotation
E. King, S. Stellmach, B. Buffett
J. Fluid Mech. 717, 449-471 (2013)
DOI:10.1017/jfm.2012.596Influence of rotation on the metal rain in a Hadean magma ocean
A. Möller, U. Hansen
Geochem. Geophys. Geosyst. 14, 1226-1244 (2013)
DOI:10.1002/ggge.20087Finite volume simulations of dynamos in ellipsoidal planets
J. Ernst-Hullermann, H. Harder, U. Hansen
Geophys. J. Int. 195, 1395-1405 (2013)
DOI:10.1093/gji/ggt303Chemical transport and spontaneous layer formation in fingering convection in astrophysics
J. Brown, P. Garaud, S. Stellmach
Astrophys. J. 768 (2013)
DOI:10.1088/0004-637X768/1/34A new model for mixing by double-diffusive convection (semi-convection).II. The transport of heat and composition through layers
T. Wood, P. Garaud, S. Stellmach
Astrophys. J. 768 (2013)
DOI:10.1088/0004-637X/768/2/157Arrhenius rheology vs. Frank-Kamenetskii rheology - implications for mantle dynamics
C. Stein, U. Hansen
Geochem. Geophys. Geosyst. 14 (2013)
DOI:10.1002/ggge.20158Dissipation layers in Rayleigh-Bénard Convection: a unifying view
K. Petschel, S. Stellmach, M. Wilczek, J. Lülff, U. Hansen
Phys. Rev. Lett. E110 (2013)
DOI:10.1103/RhysRevLett.110.114502The influence of mantle internal heating on lithospheric mobility: implications for super-Earths
C. Stein, J. Lowman, U. Hansen
Earth Planet. Sci. Lett. 361, 448-459 (2013)
DOI:10.1016/j.epsl.2012.11.0112012
Heat transfer by rapidly rotating Rayleigh-Bénard Convection
E. King, S. Stellmach, J. Aurnou
J. Fluid Mech. 691, 568 - 582 (2012)
DOI: 10.1017/jfm.2011.493Numerical study on double-diffusive convection in the Earth's core
T. Trümper, M. Breuer, U. Hansen
Phys. Earth Planet. Int. 194-195, 55-63 (2012)
DOI:10.1016/j.pepi.2012.01.004A new model for mixing by double-diffusive convection (semi-convection). I. The conditions for layer formation
Mirouh, G., P. Garaud, S. Stellmach, A. Traxler, T. Woods
Astrophys. J. 750 (2012)
DOI:10.1088/0004-637X/750/1/612011
The pressure-weakening effect in super-Earths: Consequences of a decrease in lower mantle viscosity on surface dynamics
C. Stein, A. Finnenkötter, J. P. Lowman, U. Hansen
Geophys. Res. Lett. 38, L21201 (2011)
DOI:10.1029/2011GL049341Statistical analysis of global wind dynamics in vigorous Rayleigh-Bénard convection
K. Petschel, M. Wilczek, M. Breuer, R. Friedrich, U. Hansen
Phys. Rev. E 84 (2011)
DOI:10.1103/PhysRevE.84.026309Dynamics of fingering convection. Part 1. Small-scale fluxes and large-scale instabilities
A. Traxler, S. Stellmach, P. Geraud, T. Radko, N. Brummell
J. Fluid Mech. 677, 530-553 (2011)
DOI:10.1017S0022112011009XDynamics of fingering convection. Part 2. The formation of thermohaline staircases
S. Stellmach, A. Traxler, P. Geraud, N. Brummell, T. Radko
J. Fluid Mech. 677, 554-571 (2011)
DOI:10.1017/jfm.2011.99Numerically determined transport laws for fingering (thermohaline) convection in astrophysics
A. Traxler, P. Geraud, S. Stellmach
Astrophy. J. 728, L29 (2011)
DOI:10.1088/2041-8205/728/2/L29Turbulent mixing and layer formation in double-diffusive convection: 3D numerical simulations and theory
E. Rosenblum, P. Geraud, A. Traxler, S. Stellmach
Astrophys. J. 731, 66 (2011)
DOI:10.1088/0004-637X/731/1/662010
A model of the entropy flux and Reynolds stress in turbulent convection
P. Garaud, G. I. Ogilvie, N. Miller, S. Stellmach
Monthly Notices of Royal Astronom. Soc. 407, 2451-2467 (2010)
DOI:10.1111/j.1365-2966.2010.17066.xResurfacing events on Venus: Implications on plume dynamics and surface topography
C. Stein, A. Fahl, U. Hansen
Geophys. Res. Lett. 37, L01201 (2011)
DOI:10.1029/2009GL041073Response of mantle heat flux to plate evolution
C. Stein, J.P. Lowman
Geophys. Res. Lett. 37, L24201 (2010)
DOI:10.1029/2010GL045283Thermochemically driven convection in a rotating spherical shell
M. Breuer, A. Manglik, J. Wicht, T. Trümper, H. Harder, U. Hansen
Geophys. J. Int. 183, 150-162 (2010)
DOI:10.1111/j.1365-246X.2010.04722.x2009
A numerical method for investigating crystal settling in convecting magma chambers
J. Verhoeven, J. Schmalzl
Geochem. Geophys. Geosys. 10, Q12007 (2009)
DOI:10.1029/2009GC002509Turbulent convection in the zero Reynolds number limit
M. Breuer, U. Hansen
Europhys. Lett. 86, 24004 (2009)
DOI:10.1209/0295-5075/86/24004The Bent Hawaiian-Emperor Hotspot Track: Inheriting the Mantle Wind
J. Tarduno, H.-P. Bunge, N. Sleep, U. Hansen
Science 324, 50-53 (2009)
DOI:10.1126/science.1161256Boundary layer control of rotating convection systems
E. King, S. Stellmach, J. Noir, U. Hansen, J. M. Aurnou
Nature 457, 301-304 (2009)
DOI:10.1038/nature076472008
An efficient spectral method for the simulation of dynamos in Cartesian geometry and its implementation on massively parallel computers
S. Stellmach, U. Hansen
Geochem. Geophys. Geosyst. 9 (2008)
DOI:10.1029/2007GC001778Plate motions and the viscosity structure of the mantle - insights from numerical modelling
C. Stein, U. Hansen
Earth Planet. Sci. Lett. 272, 29 - 40 (2008)
DOI:10.1016./j.epsl.2008.03.050Previous Publications
2006
Temporal variations in the convective style of planetary mantles
A. Loddoch, C. Stein, U. Hansen
Earth Planet. Sci. Lett. 251, 79-89 (2006)
DOI10.1016/j.epsl.2006.08.026Dynamics of metal-silicate separation in a terrestrial magma ocean
T. Höink, J. Schmalzl, U. Hansen
Geochem. Geophys. Geosyst. 7 (2006)
DOI:10.1029/2006GC001268A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle
K. Stemmer, H. Harder, U. Hansen
Phys. Earth Planet. Int. 157, 223-249 (2006)
DOI:10.1016/j.pepi.2006.04.007Variable quality compression of fluid dynamical data sets using a 3-D DCT technique
A. Loddoch, J. Schmalzl
Geochem. Geophys. Geosys. 7 (2006)
DOI:10.1029/2005GC0010172005
A finite- volume solution method for thermal convection and dynamo problems in spherical shells
H. Harder, U. Hansen
Geophys. J. Int. 61, 522-532 (2005)
DOI:10.1111/j.1365-246X.2005.02560.xFormation of compositional structures by sedimentation in vigorous convection
T. Höink, J. Schmalzl, U. Hansen
Phys. Earth. Planet. Int. 153, 11-20 (2005)
DOI:10.1016/j.pepi.2005.03.0142004
Cartesian convection driven dynamos at low Ekman number
S. Stellmach, U. Hansen
Phys. Rev. E70 (2004)
DOI:10.1103/PhysRevE.70.056312On the validity of two-dimensional numerical approaches to time-dependent thermal convection
J. Schmalzl, M. Breuer, U. Hansen
Europhys. Lett. 67, 2004, 390-396 (2004)
DOI:10.1209/epl/i2003-10298-4Effect of intertia in Rayleigh-Bénard convection
M. Breuer, S. Wessling, J. Schmalzl, U. Hansen
Phys. Rev. E69 (2004)
DOI:10.1103/PhysRevE.69.026302The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection
C. Stein, J. Schmalzl, U. Hansen
Phys. Earth Planet. Int. 142, 225-255 (2004)
DOI:10.1016/j.pepi.2004.01.0062003
Using subdivision surfaces and adaptive surface simplification algorithms for modeling chemical heterogeneities in geophysical flows
J. Schmalzl, A. Loddoch
Geochem. Geophys. Geosys. 4 (2003)
DOI10.1029/2003GC00578Using standard image compression algorithms to store data from computational fluid dynamics
J. Schmalzl
Comp. Geosci. 29, 1021-1031 (2003)
DOI:10.1016/S0098-3004(03)00098-02002
The influence of the Prandtl number on the style of vigorous thermal convection
J. Schmalzl, M. Breuer, U. Hansen
Geophys. Astrophys. Fluid Dyn. 96, 381-403 (2002)
DOI:10.1080/03091920210000499292000
A fully implicit model for simulating dynamo action in a Cartesian domain
J. Schmalzl, U. Hansen
Phys. Earth Planet. Int. 120, 339-349 (2000)
DOI:10.1016/S0031-9201(00)157-61998
Mantle convection simulations with rheologies that generate plate-like behaviour
R. Trompert, U. Hansen
Nature 395, 686-689 (1998)On the Rayleigh number dependence of convection with a strongly temperature-dependent viscosity
R. Trompert, U. Hansen
Phys. Fluids 10, 351-360 (1998)
DOI:10.1063/1.8695271996
Mixing in vigorous, time dependent three-dimensional convection and application to Earth's mantle
J. Schmalzl, G.A. Houseman, U. Hansen
J. Geophys. Res. 101, 21.847-21.858 (1996)
DOI:10.1029/96JB01650The application of a finite volume multigrid method to three-dimensional flow problems in a highly viscous fluid with a variable viscosity
R. Trompert, U. Hansen
Geophys. Astrophys. Fluid Dyn. 83, 261-291 (1996)
DOI:10.1080/030919296082089681994
Mixing the Earth's mantle by thermal convection: A scale dependent phenomenon
J. Schmalzl, U. Hansen
Geophys. Res. Lett. 21, 987-990 (1994)
DOI:10.1029/94GL00049Dynamical consequences of depth-dependent thermal expansivity and viscosity on mantle circulations and thermal structure
U. Hansen, D. A. Yuen, Sherri E. Kroening, T.B. Larsen
Phys. Earth Planet. Int. 77, 987-990 (1994)
DOI:10.1016/0031-9201(93)90099-U1992
Mass and heat transport in strongly time-dependent thermal convection at infinite Prandtl number
U. Hansen, D. A. Yuen, S. E. Kroening
Geophys. Astrophys. Fluid Dyn. 63, 67-89 (1992)
DOI:10.1080/030919292082282781990
Transition to hard turbulence in thermal convection at infinite Prandtl number
U. Hansen, D. A. Yuen, S. E. Kroening
Phys. Fluids A2, 2157-2163 (1990)
DOI:10.1063/1.8578021989
Subcritical double-diffusive convection at infinite Prandtl number
U. Hansen, D. A. Yuen
Geophys. Astrophys. Fluid Dyn. 47, 199-224 (1989)
DOI:10.1080/03091928908221821