NIEHOFF, Dr. Philip


Porträt Philip Niehoff
© MEET/Lessmann

MEET - Münster Electrochemical Energy Technology
Raum: C1.1.01
Wilhelm-Schickard-Straße 8
D-48149 Münster

Tel.: +49 251 83-36029
Philip.Niehoff@uni-muenster.de

ORCID ID: 0000-0001-8892-8978

Position: Postdoktorand

Bereich / Gruppe: Cell System

Forschungsschwerpunkte: Alterungsuntersuchungen, Photoelektronenspektroskopie, Elektrochemische Untersuchungen

Dissertationsthema: Charakterisierung der fest/flüssig Grenzflächen von Lithiumionenbatterien im Hinblick auf Alterungseffekte

 
  • Publikationen

    • , , und . . „Impact of Different Amounts of Lithium Plating on the Thermal Safety of Lithium Ion Cells.Journal of The Electrochemical Society, Nr. 171 (7): 070538070538. doi: 10.1149/1945-7111/ad637a.
    • , , , , , , , , , , , , und . . „Sulfonyl diimidazole to stabilize fluoroethylene carbonate-based SEI in high-voltage Li ion cells with a SiOx containing negative electrode.Energy Storage Materials, Nr. 72: 103735103735. doi: 10.1016/j.ensm.2024.103735.
    • . . „Fluoroethylene Carbonate: Bis(2,2,2,) Trifluoroethyl Carbonate as High Performance Electrolyte Solvent Blend for High Voltage Application in NMC811|| Silicon Oxide-Graphite Lithium Ion Cells.Small Methods, Nr. online first 2400063. doi: 10.1002/sstr.202400063.

    • , , , , , und . . „Determining the Origin of Lithium Inventory Loss in NMC622|| Graphite Lithium Ion Cells Using an LiPF6-Based Electrolyte.Journal of The Electrochemical Society, Nr. 170 (1) 010530. doi: 10.1149/1945-7111/acb401.
    • , , , , und . . „Relaxation Effects in Self-Discharge Measurements of Lithium-Ion Batteries.Journal of The Electrochemical Society, Nr. 170 (2): 020502. doi: 10.1149/1945-7111/acb669.
    • , , , , , und . . „Transient Self-Discharge after Formation in Lithium-Ion Cells: Impact of State-of-Charge and Anode Overhang.Journal of The Electrochemical Society, Nr. 170 (8): 080524. doi: 10.1149/1945-7111/acf164.
    • , , , , , und . „High precision measurement of reversible swelling and electrochemical performance of flexibly compressed 5 Ah NMC622/graphite lithium-ion pouch cells.Journal of Energy Storage, Nr. 59: 106483. doi: 10.1016/j.est.2022.106483.

    • , , , , und . . „Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats.Journal of The Electrochemical Society, Nr. 169 (3): 30533. doi: 10.1149/1945-7111/ac5c08.
    • . . „A Method to Determine Fast Charging Procedures by Operando Overvoltage Analysis.Journal of The Electrochemical Society, Nr. 169: 070525. doi: 10.1149/1945-7111/ac81f7.
    • , , , , , und . . „Making Aqueously Processed LiNi0.5Mn0.3Co0.2O2‑Based Electrodes Competitive in Performance: Tailoring Distribution and Interconnection of Active and Inactive Electrode Materials through Paste Surfactants.ACS Applied Energy Materials, Nr. 5 (11): 1315513160. doi: 10.1021/acsaem.2c02755.

    • , , , , , und . . „The Impact of the C-rate on Gassing during Formation of NMC622 II Graphite Lithium Ion Battery Cells.Batteries & Supercaps, Nr. 4 (6): 13441350. doi: 10.1002/batt.202100056.
    • , , , , , , und . . „Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells.Journal of Energy Storage, Nr. 41: 102812. doi: 10.1016/J.EST.2021.102812.
    • , , , und . . „Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells.Journal of Energy Storage, Nr. 44: 103208. doi: 10.1016/J.EST.2021.103208.
    • , , , , , , , , und . . „Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells.Journal of Energy Storage, Nr. 44: 103479. doi: 10.1016/J.EST.2021.103479.
    • , , , , , , und . . „Effect of Li plating during formation of lithium ion batteries on their cycling performance and thermal safety.Journal of Power Sources, Nr. 484 doi: 10.1016/j.jpowsour.2020.229306.

    • , , , und . . „Protective coatings on silicon particles and their effect on energy density and specific energy in lithium ion battery cells: A model study.Journal of Energy Storage, Nr. 29 (March): 101376. doi: 10.1016/j.est.2020.101376.
    • , , , , , , und . . „The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, Nr. 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.
    • , , , , , , und . . „The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, Nr. 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.

    • , , , , , , und . . „Towards water based ultra-thick Li ion battery electrodes – A binder approach.Journal of Power Sources, Nr. 423: 183191. doi: 10.1016/j.jpowsour.2019.03.020.

    • , , , , und . . „Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries – II. Full Cell Cycling and Postmortem Analyses.Energy Technology, Nr. xx doi: 10.1002/ente.201800133.

    • , , , , und . . „Comparative study of additives improving the safety-and electrochemical performance of lithium ion batteries.“ Beitrag präsentiert auf der Lithium Battery Discussions, Arcachon, France
    • , , , , und . . „Comparative study of additives improving the safety-and electrochemical performance of lithium ion batteries.“ Beitrag präsentiert auf der Lithium Battery Discussions, Arcachon, France
    • , , , , , , , und . . „Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior.Journal of Power Sources, Nr. 363: 7077. doi: 10.1016/j.jpowsour.2017.07.062.
    • , , , , und . . „Determination of the state of safety (SOS) of lithium ion cells in dependency of the state of health (SOH) and state of charge (SOC).“ Beitrag präsentiert auf der Batterieforum 2017, Berlin

    • , , , , , , , , und . . „Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes.Journal of Power Sources, Nr. 335: 4555. doi: 10.1016/j.jpowsour.2016.09.071.
    • , , , , , , und . . „Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells.Journal of Power Sources, Nr. 332: 6071. doi: 10.1016/j.jpowsour.2016.09.100.
    • , , , , , und . . „Comparison of Different Synthesis Methods for LiNi0.5Mn1.5O4—Influence on Battery Cycling Performance, Degradation, and Aging.Energy Technology, Nr. 12 (4): 16311640. doi: 10.1002/ente.201600383.
    • , , , , , , , , und . . „Influence of Electrolyte Additives on the Cathode Electrolyte Interphase (CEI) Formation on LiNi1/3Mn1/3Co1/3O2 in Half Cells with Li Metal Counter Electrode.Journal of Power Sources, Nr. 329: 3140. doi: 10.1016/j.jpowsour.2016.08.023.
    • , , , , , , , , , , und . . „3D Porous Li-rich cathode material with in situ modified surface for high performance lithium ion batteries with reduced voltage decay.J. Mater. Chem. A., Nr. xxxx
    • , , , , , , , , und . . „Hierarchical Ternary MoO2/MoS2/Heteroatom-Doped Carbon Hybrid Material for High-Performance Lithium-Ion Storage.ChemElectroChem, Nr. xxxx doi: 10.1002/celc.201600062.
    • , , , , , , , , und . „Hierarchical Ternary MoO2/MoS2/Heteroatom-Doped Carbon Hybrid Materials for High-Performance Lithium-Ion Storage.ChemElectroChem, Nr. 3: 922932. doi: 10.1002/celc.201600062.

    • , , , , , , und . . „On the interaction of water-soluble binders and nano silicon particles: alternative binder towards increased cycling stability at elevated temperatures.Physical Chemistry Chemical Physics, Nr. 17 (8): 56325641. doi: 10.1039/C4CP04090B.
    • , , , , , , , , und . . „Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4 Composite Cathode Electrode.Journal of The Electrochemical Society, Nr. 162 (3): A339–A343. doi: 10.1149/2.0401503jes.
    • , , , , , und . . „Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries.Journal of The Electrochemical Society,, Nr. 162: A1094–A1101. doi: 10.1149/2.0011507jes.

    • , , , , , , und . . „Investigations on Electrochemical Performance As Well As Thermal Stability of Two New Lithium Electrolyte Salts Compared to LiPF6.“ In Bd.MA2014-01 42 aus ECS Meeting Abstracts doi: 10.1149/MA2014-01/1/42.
    • , , , , , , , , , , , , , , , , und . . „Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods.Progress in Solid State Chemistry, Nr. 42 (4): 6584. doi: 10.1016/j.progsolidstchem.2014.04.003.

    • , , , , , , , , und . . „Aging of Li2FeSiO4 Cathode Material in Fluorine containing organic Electrolytes for Lithium-Ion Batteries.Electrochmica Acta, Nr. 85: 6671. doi: 10.1016/j.electacta.2012.07.109.
    • , , , , , , , , und . . „Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6.Electrochimica Acta, Nr. 114: 658666. doi: 10.1016/j.electacta.2013.09.155.
    • , und . . „Composition and Growth Behavior of the Surface and Electrolyte Decomposition Layer of/on a Commercial Lithium Ion Battery Li Ni Mn Co O Cathode Determined by Sputter Depth Profile X-ray Photoelectron Spectroscopy.Langmuir, Nr. 29 (51): 1581315821. doi: 10.1021/la403276p.
    • , , und . . „Parametrisation of the influence of different cycling conditions on the capacity fade and the internal resistance increase for lithium nickel manganese cobalt oxide/graphite cells.Journal of Electroanalytical Chemistry, Nr. 707 (null): 110116. doi: 10.1016/j.jelechem.2013.08.032.
    • , , und . . „Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy.Langmuir, Nr. 29 (19): 58065816. doi: 10.1021/la400764r.

    • , , , , und . „SEI-forming mechanism of 1-Fluoropropane-2-one in lithium-ion batteries.Electrochimica Acta, Nr. 81 (null): 161165. doi: 10.1016/j.electacta.2012.07.091.
    • , , , und . . „Monolayer formation of octyltrimethoxysilane and 7-octenyltrimethoxysilane on silicon (1 0 0) covered with native oxide.Applied Surface Science, Nr. 258 (7): 31913196. doi: 10.1016/j.apsusc.2011.11.062.

    • , , , , und . . „Synthesis, structural characterisation and anti-proliferative activity of NHC gold amino acid and peptide conjugates.Dalton Transactions, Nr. null (35): 70637070. doi: 10.1039/b906140a.
  • Wissenschaftliche Vorträge

    • Börner, Markus; Vortmann, Britta; Niehoff, Philip; Schappacher, Falko; Winter, Martin : “Comparison of different synthesis methods for LiNi0.5Mn1.5O4: Electrochemical performance and aging mechanisms”. 227th ECS Meeting, Chicago, USA, .
    • Murmann, Patrick; Niehoff, Philip; Schmitz, René; Nowak, Sascha; Sartori, Peter; Schmitz, Raphael Wilhelm; Winter, Martin : “Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6”. 225. Meeting of the Electrochemical Society, Orlando, Florida, USA, .