• Dr. Dirk Leifert

    © Dirk Leifert

    Dr.
    Dirk Leifert

    Akademischer Rat, tenured researcher

    Organisch-Chemisches Institut
    Room OC/BC I - 319
    Corrensstraße 40
    48149 Münster

    T: +49(0)251 83-33254
    F: +49(0)251 83-36523

    dirkleifert@uni-muenster.de
  • Academic Career & Functions

    since 2019
    Tenured Research Staff (Research, Infrastructure, Administration) in the Studer Research Group, WWU Münster
     
    2018-2019
    Postdoctoral Researcher in the Studer Research Group
    Feodor Lynen Return Fellowship
    Research Focus: Conjugated polymers, oligo- and polyelectrolytes, oxidative cascade reactions and persistent radicals
     
    2017-2018
    Postdoctoral Researcher in the Bazan Research Group
    Feodor Lynen Research Fellowship
    Research Focus: Design, synthesis and characterization of conjugated polymers, oligo- and polyelectrolytes and their doping mechanism
     
    2017
    PhD in Organic Chemistry (Dr. rer. nat.) with Prof. Armido Studer, WWU Münster, on
    "Radical Chain Reactions via Electron Catalysis or Atom Transfer"
     
    2013 - 2017
    PhD Studies in the Studer Research Group, WWU Münster
     
    Feb 2013
    Master of Science in Chemistry
    Master thesis: "Cross dehydrogenative couplings"
     
    2012 - 2013
    ProTalent - WWU Scholarship Programme
     
    2008 - 2013
    BSc and MSc in Chemistry, WWU Münster
     
    2008
    Abitur, Thomas-Morus-Gymnasium Oelde, North Rhine-Westphalia
  • Publications

    21.
    Thermal and photoinduced radical cascade annulation using aryl isonitriles: An approach to quinoline-derived benzophosphole oxides,
    S. K. Banjare, L. Lezius, E. S. Horst, D. Leifert, C. G. Daniliuc, F. A. Alasmary, A. Studer,
    Angew. Chem. Int. Ed. 2024, 63, e202404275. [doi:10.1002/anie.202404275]
    20.
    Access to Polyheterocyclic Compounds through Iron(II)-Mediated Radical Cascade Cyclization Utilizing 2-Ethynylbenzaldehydes and Aryl Isonitriles,
    S. K. Banjare, D. Leifert, F. Weidlich, C. G. Daniliuc, F. A. Alasmary, A. Studer,
    Org. Lett. 2023, 25, 6424-6428. [doi:10.1021/acs.orglett.3c02448]
    19.
    Organic Synthesis Using Nitroxides,
    D. Leifert, A. Studer,
    Chem. Rev. 2023, 123, 10302-10380. [doi:10.1021/acs.chemrev.3c00212]
    18.
    Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides,
    T. Drennhaus, D. Leifert, J. Lammert, J. P. Drennhaus, K. Bergander, C. G. Daniliuc, A. Studer,
    J. Am. Chem. Soc. 2023, 145, 8665-8676. [doi:10.1021/jacs.3c01667]
    17.
    Cooperative triple catalysis enables regioirregular formal Mizoroki–Heck reactions,
    K. Liu, D. Leifert, A. Studer,
    Nat. Synth. 2022, 6, 565-575. [doi:10.1038/s44160-022-00101-9]
    16.
    2,3-Difunctionalized Indoles via Radical Acylation or Trifluoromethylation of ortho-Alkynylphenyl Isonitriles,
    D. Leifert, F. Weidlich, F. Adler, C. G. Daniliuc, F. A. Adlasmary, A. Studer,
    Org. Lett. 2022, 23, 284-288. [doi:10.1021/acs.orglett.1c03916]
    15.
    A Living Biotic–Abiotic Composite that can Switch Function Between Current Generation and Electrochemical Energy Storage,
    Y. Su, S. R. McCuskey, D. Leifert, A. S. Moreland, L. Zhou, L. C. Llanes, R. J. Vazquez, L. Sepunaru, G. C. Bazan,
    Adv. Funct. Mater. 2021, 31, 2007351. [doi:10.1002/adfm.202007351]
    14.
    Organic Electrochemical Transistors Based on the Conjugated Polyelectrolyte PCPDTBT‐SO3K (CPE‐K),
    A. T. Lill, D. X. Cao, M. Schrock, J. Vollbrecht, J. Huang, T. Nguyen-Dang, V. V. Brus, B. Yurash, D. Leifert, G. C. Bazan, T.-Q. Nguyen,
    Adv. Mater. 2020, 32, 1908120. [doi:10.1002/adma.201908120]
    13.
    Photoswitchable Conjugated Oligoelectrolytes for Light‐Induced Change of Membrane Morphology,
    D. Leifert, A. S. Moreland, J. Limwongyut, A. A. Mikhailovsky, G. C. Bazan,
    Angew. Chem. Int. Ed. 2020, 59, 20333-20337. [doi:10.1002/anie.202004448]
    12.
    Living Bioelectrochemical Composites,
    S. R. McCuskey, Y. Su, D. Leifert, A. S. Moreland, G. C. Bazan,
    Adv. Mater. 2020, 32, 1908178. [doi:10.1002/adma.201908178]
    11.
    The Importance of Sulfonate to the Self-doping Mechanism of the Water-Soluble Conjugated Polyelectrolyte PCPDTBT-SO3K,
    D. X. Cao, D. Leifert, V. V. Brus, M. S. Wong, H. Phan, B. Yurash, N. Koch, G. C. Bazan, T.-Q. Nguyen,
    Mater. Chem. Front. 2020, 4, 3556-3566. [doi:10.1039/D0QM00073F]
    10.
    The Persistent Radical Effect in Organic Synthesis,
    D. Leifert, A. Studer,
    Angew. Chem. Int. Ed. 2020, 59, 74-108. [doi:10.1002/anie.201903726]
    9.
    Towards understanding the doping mechanism of organic semiconductors by Lewis acids,
    B. Yurash, D. X. Cao, V. V. Brus, D. Leifert, M. Wang, A. Dixon, M. Seifrid, A. E. Mansour, D. Lungwitz, T. Liu, P. J. Santiago, K. R. Graham, N. Koch, G. C. Bazan, T.-Q. Nguyen,
    Nat. Mater. 2019, 18, 1327-1334. [doi:10.1038/s41563-019-0479-0]
    8.
    Atomic-Level Insight into the Postsynthesis Band Gap Engineering of a Lewis Base Polymer Using Lewis Acid Tris(pentafluorophenyl)borane,
    B. Yurash+, D. Leifert+, G. N. M. Reddy, D. X. Cao, S. Biberger, V. V. Brus, M. Seifrid, P. J. Santiago, A. Köhler, B. F. Chmelka, G. C. Bazan, T.-Q. Nguyen,
    Chem. Mater. 2019, 31, 6715-6725. [doi:10.1021/acs.chemmater.9b01224]
    +These authors contributed equally to this work.
    7.
    Electrochemical initiation of electron-catalyzed phenanthridine synthesis by trifluoromethylation of isonitriles,
    M. Lübbesmeyer, D. Leifert, H. Schäfer, A. Studer,
    Chem. Commun. 2018, 54, 2240-2243. [doi:10.1039/C7CC09302K]
    6.
    Initiating radical reactions with non-thermal plasmas,
    Y. Gorbanev, D. Leifert, A. Studer, D. O'Connell, V. Chechik,
    Chem. Commun. 2017, 26, 3685-3688. [doi:10.1039/C7CC01157A]
    5.
    Iodinated (Perfluoro)alkyl Quinoxalines by Atom Transfer Radical Addition Using ortho‐Diisocyanoarenes as Radical Acceptors,
    D. Leifert, A. Studer,
    Angew. Chem. Int. Ed. 2016, 55, 11660-11663. [doi:10.1002/anie.201606023]
    4.
    Radical perfluoroalkylation – easy access to 2-perfluoroalkylindol-3-imines via electron catalysis,
    D. Leifert, D. G. Artiukhin, J. Neugebauer, A. Galstyan, C. A. Strassert, A. Studer,
    Chem. Commun. 2016, 35, 5997-6000. [doi:10.1039/C6CC02284G]
    3.
    9-Silafluorenes via base-promoted homolytic aromatic substitution (BHAS) - The electron as a catalyst,
    D. Leifert, A. Studer,
    Org. Lett. 2015, 17, 386-389. [doi:10.1021/ol503574k]
    2.
    6-Aroylated phenanthridines via base promoted homolytic aromatic substitution (BHAS),
    D. Leifert, G. C. Daniliuc, A. Studer,
    Org. Lett. 2013, 15, 6286-6289. [doi:10.1021/ol403147v]
    1.
    Cross dehydrogenative coupling via base-promoted homolytic aromatic substitution (BHAS): Synthesis of fluorenones and xanthones,
    S. Wertz, D. Leifert, A. Studer,
    Org. Lett. 2013, 15, 928-931. [doi:10.1021/ol4000857]