Recent publications
Spraker JE, Wiemann P, Baccile JA, Venkatesh N, Schumacher J, Schroeder FC, Sanchez LM, Keller NP (2018) Conserved responses in a war of small molecules between a plant-pathogenic bacterium and fungi. mBio 9:e00820-18. DOI: 10.1128/mBio.00820-18
Müller N, Leroch M, Schumacher J, Zimmer D, Könnel A, Klug K, Leisen T, Scheuring D, Sommer F, Mühlhaus T, Schroda M, Hahn M (2018) Investigations on VELVET regulatory mutants confirm the role of host tissue acidification and secretion of proteins in pathogenesis of Botrytis cinerea. New Phytol 219:1062-1074. DOI: 10.1111/nph.15221
Schumacher J (2017) How light affects the life of Botrytis. Fungal Genet Biol. 106:26-41. DOI: 10.1016/j.fgb.2017.06.002
Cohrs KC, Schumacher J (2017) The two cryptochrome/photolyase family proteins fulfill distinct roles in DNA photorepair and regulation of conidiation in the gray mold fungus Botrytis cinerea. Appl Environ Microbiol. 83:e00812-17. DOI: 10.1128/AEM.00812-17
Niehaus E-M, Schumacher J, Burkhardt I, Rabe P, Spitzer E, Münsterkötter M, Güldener U, Sieber CMK, Dickschat JS, Tudzynski B (2017) The GATA-Type transcription factor Csm1 regulates conidiation and secondary metabolism in Fusarium fujikuroi. Front Microbiol 8:1175. DOI: 10.3389/fmicb.2017.01175
Brandhoff B, Simon A, Dornieden A, Schumacher J (2017) Regulation of conidiation in Botrytis cinerea requires the light-responsive transcriptional regulators BcLTF3 and BcREG1. Curr Genet., 63:931-949. DOI: 10.1007/s00294-017-0692-9
Cohrs KC, Burbank J, Schumacher J (2017) A new transformant selection system for the gray mold fungus Botrytis cinerea based on the expression of fenhexamid-insensitive ERG27 variants. Fungal Genet Biol. 100:42-51. DOI: 10.1016/j.fgb.2017.02.001
González-Rodríguez VE, Garrido C, Cantoral JM, Schumacher J (2016) The F-actin capping protein is required for hyphal growth and full virulence but is dispensable for septum formation in Botrytis cinerea. Fungal Biol. 120:1225-35. DOI: 10.1016/j.funbio.2016.07.007
Cohrs KC, Simon A, Viaud M, Schumacher J (2016) Light governs asexual differentiation in the gray mold fungus Botrytis cinerea via the putative transcription factor BcLTF2. Environ Microbiol. 18:4068-4086. DOI: 10.1111/1462-2920.13431
Marschall R, Schumacher J, Siegmund U, Tudzynski P (2016) Chasing stress signals -Exposure to extracellular stimuli differentially affects the redox state of cell compartments in the wild type and signaling mutants of Botrytis cinerea. Fungal Genet Biol. 90:12-22.
DOI:10.1016/j.fgb.2016.03.002
Viaud M, Schumacher J, Porquier A, Simon A (2016) Regulation of secondary metabolism in the grey mould fungus Botrytis cinerea. In: Unden G, Thines E, Schüffler A (Eds.), Host - Pathogen Interaction: Microbial Metabolism, Pathogenicity and Antiinfectives - Part B: Adaptation of microbial metabolism in host/ fungus-interactions. Wiley-VCH Verlag GmbH, pp. 201-215.
DOI: 10.1002/9783527682386.ch11
Schumacher J (2016) DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes. Mol Microbiol. 99:729-748. DOI: 10.1111/mmi.13262
Schumacher J (2016) Signal transduction cascades regulating differentiation and virulence in Botrytis cinerea. In: Fillinger S, Elad Y (Eds.) Botrytis – the fungus, the pathogen and its management in agricultural systems. Springer International Publishing, pp. 247-267. DOI: 10.1007/978-3-319-23371-0_13
Schumacher J, Simon A, Cohrs KC, Traeger S, Porquier A, Dalmais B, Viaud M*, Tudzynski B (2015) The VELVET complex in the gray mold fungus Botrytis cinerea: impact of BcLAE1 on differentiation, secondary metabolism and virulence. Mol Plant Microbe Interact. 28:659-674. DOI: 10.1094/MPMI-12-14-0411-R
Giesbert S, Siegmund U, Schumacher J, Kokkelink L, Tudzynski P (2014) Functional analysis of BcBem1 and its interaction partners in Botrytis cinerea: impact on differentiation and virulence. Plos One. 9: e95172. DOI: 10.1371/journal.pone.0095172
Nanni V, Schumacher J, Giacomelli L, Brazzale D, Sbolci L, Moser C, Tudzynski P, Baraldi E (2014) Vv-AMP2, a grapevine flower specific defensin capable of Botrytis cinerea growth inhibition: insights into its mode of action. Plant Pathol. 63:899-910. DOI: 10.1111/ppa.12170
Schumacher J, Simon A, Cohrs KC, Viaud M, Tudzynski P (2014) The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet. 10:e1004040. DOI: 10.1371/journal.pgen.1004040
Canessa P, Schumacher J, Hevia M, Tudzynski P, Larrondo LF (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar complex. PLoS One. 8:e84223. DOI: 10.1371/journal.pone.0084223
Schumacher J, Gautier A, Morgant G, Studt L, Ducrot PH, Le Pêcheur P, Azeddine S, Fillinger S, Leroux P, Tudzynski B, Viaud M (2013) A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET. PLoS One. 8:e53729. DOI: 10.1371/journal.pone.0053729
Schumacher J, Pradier JM, Simon A, Traeger S, Moraga J, Collado IG, Viaud M, Tudzynski B (2012) Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. PLoS One. 7:e47840. DOI: 10.1371/journal.pone.0047840
Harren K, Schumacher J, Tudzynski B (2012) The Ca2+/calcineurin-dependent signaling pathway in the gray mold Botrytis cinerea: the role of calcipressin in modulating calcineurin activity. PLoS One. 7:e41761. DOI: 10.1371/journal.pone.0041761
Schumacher J (2012) Tools for Botrytis cinerea: New expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol. 49:483-497. DOI: 10.1016/j.fgb.2012.03.005
Giesbert S, Schumacher J, Kupas V, Espino J, Segmüller N, Haeuser-Hahn I, Schreier PH, Tudzynski P (2012) Identification of pathogenesis-associated genes by T-DNA-mediated insertional mutagenesis in Botrytis cinerea: a type 2A phosphoprotein phosphatase and an SPT3 transcription factor have significant impact on virulence. Mol Plant Microbe Interact. 25:481-495. DOI: 10.1094/mpmi-07-11-0199
Schumacher J, Tudzynski P (2012) Morphogenesis and Infection in Botrytis cinerea. In: Pérez-Martín J, Di Pietro A (Eds.), Topics in Current Genetics, Vol. Morphogenesis and Pathogenicity in Fungi. Springer-Verlag, Berlin Heidelberg, pp. 225-241. DOI: 10.1007/978-3-642-22916-9_11
Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet. 7:e1002230. DOI: 10.1371/journal.pgen.1002230
Dalmais B, Schumacher J, Moraga J, LE Pêcheur P, Tudzynski B, Collado IG, Viaud M (2011) The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol Plant Pathol. 12:564-579. DOI: 10.1111/j.1364-3703.2010.00692.x
Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado IG, Barakat R, Tudzynski P, Tudzynski B (2008) The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. Mol Plant Microbe Interact. 21:1443-1459. DOI: 10.1094/MPMI-21-11-1443
Schumacher J, de Larrinoa IF, Tudzynski B (2008) Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell. 7:584-601. DOI: 10.1128/EC.00426-07
Schumacher J, Viaud M, Simon A, Tudzynski B (2008) The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol. 67:1027-1050. DOI: 10.1111/j.1365-2958.2008.06105.x
Schulze Gronover C, Schumacher J, Hantsch P, Tudzynski B (2005) A novel seven-helix transmembrane protein BTP1 of Botrytis cinerea controls the expression of GST-encoding genes, but is not essential for pathogenicity. Mol Plant Pathol. 6:243-256. DOI: 10.1111/j.1364-3703.2005.00278.x