Weitere Zugehörigkeit an der Universität Münster
Preise
- ERC Consolidator Grant – Europäischer Forschungsrat (ERC)
Projekte
- MNF – Münster Nanofabrication Facility ( – )
Gefördertes Einzelprojekt: DFG - Gerätezentren - Core Facilities | Förderkennzeichen: INST 211/914-1 - SFB 1459 C02 - Optoelektronische neuromorphe Architekturen ( – )
Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: SFB 1459/1, C02 - SFB 1459 C04 - Adaptive magnonische Netzwerke für Reservoir Computing im Nanomaßstab ( – )
Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: SFB 1459/1, C04 - SFB 1459 C06 - Mixed-Mode-In-Memory-Computing mit adaptiven Phasenwechselmaterialien ( – )
Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: SFB 1459/1, C06 - SFB 1459 Z01 - Zentrale Aufgaben des Sonderforschungsbereichs ( – )
Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Sonderforschungsbereich | Förderkennzeichen: SFB 1459/1, Z01 - PHOENICS – Photonic enabled Petascale in-memory computing with Femtojoule energy consumption ( – )
EU-Projekt koordiniert an der Universität Münster: EU H2020 - Research and innovation actions | Förderkennzeichen: 101017237 - QSAMIS – Verbundprojekt: Quanten-Schlüsselaustausch mit Gigabit-Datenraten über ein mehrkanaliges vollintegriertes System - Teilvorhaben: Vollintegrierte Sendeeinheit ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 16KIS1536 - IMMQUIRE – lntegrated Mechanics for Modular Quantum Reconfigurable Circuits ( – )
EU-Projekt koordiniert an der Universität Münster: EU H2020 - Marie Skłodowska-Curie Actions - Individual Fellowship | Förderkennzeichen: 896401 - SINPHOSS – KMU-innovativ Verbundprojekt: Single Photon Random Sampling Scope - Teilprojekt: Hochgenaue Quantendetektoren ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 13N15323 - PHEMTRONICS – Active Optical Phase-Change Plasmonic Transdimensional Systems Enabling Femtojoule and Femtosecond Extreme Broadband Adaptive Reconfigurable Devices ( – )
EU-Projekt koordiniert außerhalb der Universität Münster: EU H2020 - Research and innovation actions | Förderkennzeichen: 899598 - PhoBrain – Photonic Brain-Machine Interfaces ( – )
Gefördertes Einzelprojekt: VolkswagenStiftung - Momentum - Förderung für Erstberufene | Förderkennzeichen: 95 020 - MiReQu – Verbundprojekt: Mixed Reality Lernumgebungen zur Förderung fachlicher Kompetenzentwicklung in den Quantentechnologien - MiReQu, Teilvorhaben: Implementierung und Untersuchung der Lehr-/Lernumgebung ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 16DHB3028 - Fun-COMP – Functionally scaled computing technology: From novel devices to non-von Neumann architectures and algorithms for a connected intelligent world ( – )
EU-Projekt koordiniert außerhalb der Universität Münster: EU H2020 - Research and innovation actions | Förderkennzeichen: 780848 - EXIST-Forschungstransfer: PixelPhotonics ( – )
Gefördertes Einzelprojekt: BMWK - EXIST-Forschungstransfer | Förderkennzeichen: 03EFNNW219 - PINQS – Photonic integrated quantum transceivers ( – )
EU-Projekt koordiniert an der Universität Münster: EU H2020 - ERC Consolidator Grant | Förderkennzeichen: 724707 - EVO-CELL – KMU-innovativ-21: EVO-CELL - Entwicklung einer multiparametrischen Zellanalysetechnologie für die Erforschung und Entwicklung zellbasierter Therapien ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 031B0654B - SPP 1839 - Teilprojekt: Design und Kontrolle von Vielfachstreuung in ungeordneten Wellenleitern ( – )
Teilprojekt in DFG-Verbund koordiniert außerhalb der Universität Münster: DFG - Schwerpunktprogramm | Förderkennzeichen: PE 1832/6-2 - WINS – WINS - Waveguide Integrated nanotube Light Sources ( – )
participations in other joint project: VolkswagenStiftung | Förderkennzeichen: 93457 - ORQUID – Verbundprojekt: Organic Quantum lntegrated Devices - Teilvorhaben: Nanophotonische Quantenschaltkreise ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 13N14816 - QuPAD – Verbundprojekt: QuPAD - Ultraschnelle Quantenschlüssel-Verteilung durch Parallelisierung der Detektionskanäle ( – )
participations in bmbf-joint project: Bundesministerium für Bildung und Forschung | Förderkennzeichen: 13N14955 - TRR – Integration organischer Emitter in funktionale nanophotonische Schaltkreise ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: PE 1832/7-1 - AvH-Forschungskostenzuschuss für den Gastaufenthalt von Prof. Yegang Lyu ( – )
Gefördertes Einzelprojekt: Alexander von Humboldt-Stiftung | Förderkennzeichen: 196624-CHN-HFST-P - SINGSAW – Single-photon sources based on hybrid surface acoustic wave devices ( – )
Durch die Universität Münster intern gefördertes Projekt: Universität Münster-interne Förderung - Strategic Collaboration Grant - Phase-change nanophotonics ( – )
Gefördertes Einzelprojekt: Alexander von Humboldt-Stiftung - Notice of granting- CiM ( – )
Eigenmittelprojekt - EXC 1003 FF-2017-10 - Biohybrid neurosynaptic chips interfaced with nanostructured, integrated optics ( – )
Teilprojekt in DFG-Verbund koordiniert an der Universität Münster: DFG - Exzellenzcluster | Förderkennzeichen: FF-2017-10 - SPP 1839 - Teilprojekt: Design und Kontrolle von Vielfachstreuung in ungeordneten Wellenleitern ( – )
Teilprojekt in DFG-Verbund koordiniert außerhalb der Universität Münster: DFG - Schwerpunktprogramm | Förderkennzeichen: PE 1832/6-1 - Funktionalisierte optomechanische Schaltkreise aus Diamant für Infrarotspektroskopie und Gassensorik ( – )
Gefördertes Einzelprojekt: DFG - Sachbeihilfe/Einzelförderung | Förderkennzeichen: PE 1832/5-1 - PhotInd – Metrology for the photonics industry - optical fibres, waveguides and applications ( – )
participations in other joint project: EURAMET - European Metrology Programme for Innovation and Research | Förderkennzeichen: 14IND13 - Integrated Quantum Photonics and Opto-mechanics ( – )
Gefördertes Einzelprojekt: DFG - Emmy Noether-Programm | Förderkennzeichen: PE 1832/1-1
- MNF – Münster Nanofabrication Facility ( – )
Publikationen
- . . ‘Analyzing the Effective Use of Augmented Reality Glasses in University Physics Laboratory Courses for the Example Topic of Optical Polarization.’ Journal of Science Education and Technology . doi: 10.1007/s10956-024-10112-0. [accepted / in Press (not yet published)]
- . . ‘Scaling waveguide-integrated superconducting nanowire single-photon detector solutions to large numbers of independent optical channels.’ Review of Scientific Instruments 94, Nr. 1: 013103. doi: 10.1063/5.0114903.
- 10.1364/OE.469053. . ‘Ultrafast quantum key distribution using fully parallelized quantum channels.’ Optics Express 31, Nr. 2: 2675–2688. doi:
- . . ‘Coherent dimension reduction with integrated photonic circuits exploiting tailored disorder.’ Journal of the Optical Society of America B 40, Nr. 3: B35–B40.
- . . ‘Seeing the unseen – enhancing and evaluating undergraduate polarization experiments with interactive Mixed-Reality technology.’ European Journal of Physics 44, Nr. 6: 065701. doi: 10.1088/1361-6404/acf0a7.
- . . ‘Waveguide-Integrated Superconducting Nanowire Arrays for Single Photon Detection with Number-Resolution.’ In CLEO 2023, edited by , FM2E.3. Washington, DC: Optica. doi: 10.1364/CLEO_FS.2023.FM2E.3.
- . . ‘Teaching Quantum Optics and Quantum Cryptography with Augmented Reality Enhanced Experiments.’ In Q 23 Optomechanics I & Optovibronics , edited by , 1. Bad Honnef: Deutsche Physikalische Gesellschaft.
- . „High bandwidth photon detection enabled by a massively parallelized system.“ contributed to the SPIE 2023, San Francisco, . doi: 10.1117/12.2608713. [accepted / in Press (not yet published)]
- . . ‘Event-driven adaptive optical neural network.’ Science advances 9, Nr. 42: eadi9127. doi: 10.1126/sciadv.adi9127.
- . „Activation Functions in Non-Negative Neural Networks.“ contributed to the Machine Learning and the Physical Sciences Workshop, NeurIPS, New Orleans, .
- . . ‘Scalable Non-Volatile Tuning of Photonic Computational Memories by Automated Silicon Ion Implantation.’ Advanced Functional Materials 36, Nr. 8: 1–11. doi: 10.1002/adma.202310596.
- . . ‘High-quality factor Ta2O5-on-insulator resonators with ultimate thermal stability.’ Optics Letters 48, Nr. 21: 5783–5786. doi: 10.1364/OL.499726.
- . „Photonic integrated quantum communication receivers with superconducting nanowire detectors.“ contributed to the EQTC 2023, Hannover, .
- . . ‘High-Index Organic Polymeric Carbon Nitride-Based Photonic Devices for Telecommunication Wavelengths.’ ACS Photonics 1. doi: 10.1021/acsphotonics.2c00105.
- . . ‘Antimony as a Programmable Element in Integrated Nanophotonics.’ Nano Letters 1. doi: 10.1021/acs.nanolett.1c04286.
- . . ‘Artificial biphasic synapses based on non-volatile phase-change photonic memory cells.’ Advanced Science News 1: 1–7. doi: 10.1002/pssr.202100487.
- . . ‘Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials.’ Advanced Science 1, Nr. 2200383: 1–8. doi: 10.1002/advs.202200383.
- 10.1103/PhysRevApplied.18.054081. . ‘Propagation of Spin Waves in Intersecting Yttrium Iron Garnet Nanowaveguides.’ Physical Review Applied 18, Nr. 5. doi:
- . . ‘Exploration wichtiger ästhetischer Qualitäten der Wissenschaftsillustration am Beispiel von MR- AR- und Web3DApplikationen zur Präsentation von Experimenten in der Quantenphysik.’ Contributed to the DPG-Frühjahrstagung, virtuell.
- . . ‘On-chip integration of superconducting nanowire single-photon detectors and reconfigurable optical circuits in lithium-niobate-on-insulator waveguides.’ In Quantum Technologies 2022, edited by , 1213304. Bellingham, WA: SPIE. doi: 10.1117/12.2621288.
- . . ‘Ultra-fast single-photon counting with waveguide-integrated detectors for quantum technologies.’ In Advanced Photon Counting Techniques XVI, edited by , 1208907. Bellingham, WA: SPIE. doi: 10.1117/12.2620329.
- . . ‘SPIE Proceedings 12009-66: Multi-channel waveguide-integrated superconducting nanowire single-photon detector system for ultrafast quantum key distribution.’ In Proceedings of SPIE - The International Society for Optical Engineering, edited by , 179357. Bellingham, WA: SPIE. doi: 10.1117/12.2609887.
- . . ‘Colloidal quantum dots as integrated single photon sources.’ In Q 53 Nano-Optics II, edited by , 4. Bad Honnef: Deutsche Physikalische Gesellschaft.
- . „High-yield placement of colloidal quantum dot single-photon sources on nanophotonic chips.“ contributed to the DPG Springmeeting 2022, Erlangen, .
- . . ‘Die Rolle räumlicher Kontiguität beim Lernen am Experiment .’ In DD 3 Neue / digitale Medien – Konzeption, edited by , 3. Bad Honnef: Deutsche Physikalische Gesellschaft.
- . . ‘Technische Entwicklung eines Augmented-Reality-Experiments zu polarisationsverschränkten Photonenpaaren.’ In DD 17 Neue / digitale Medien – AR, edited by , 1. Bad Honnef: Deutsche Physikalische Gesellschaft.
- . „Exploration wichtiger ästhetischer Qualitäten der Wissenschaftsillustration am Beispiel von MR- AR- und Web3D-Applikationen zur Präsentation von Experimenten in der Quantenphysik .“ contributed to the DPG Springmeeting 2022, Heidelberg, .
- . . ‘Monolithic integration of single-photon detectors with low-loss reconfigurable LNOI optical circuits.’ In Conference on Lasers and Electro-Optics, edited by , FF4J.3. Washington, DC: Optica. doi: 10.1364/CLEO_QELS.2022.FF4J.3.
- . . ‘Integrated Slot Waveguide-Based Phase Shifter.’ In Light-Matter Interactions Towards the Nanoscale, edited by , 259–262. Heidelberg: Springer. doi: 10.1007/978-94-024-2138-5_18.
- . . ‘Monadic Pavlovian associative learning in a backpropagation-free photonic network.’ Optica 9, Nr. 7. doi: 10.1364/OPTICA.455864.
- . . ‘Cryo-compatible opto-mechanical low-voltage phase-modulator integrated with superconducting single-photon detectors.’ Optics Express 30, Nr. 17: 30066–30074. doi: 10.1364/OE.462163.
- . . ‘Spontaneous parametric downconversion in linearly uncoupled resonators.’ Optics Letters 47, Nr. 7: 1766–1769. doi: 10.1364/OL.453324.
- . . ‘Broadband photonic tensor core with integrated ultra-low crosstalk wavelength multiplexers.’ Nanophotonics 1. doi: 10.1515/nanoph-2021-0752.
- 10.1021/acsphotonics.1c01493. . ‘Single photon emission from individual nanophotonic-integrated colloidal quantum dots.’ ACS Photonics 9, Nr. 2: 551–558. doi:
- . . ‘Roadmap on Neuromorphic Computing and Engineering.’ Neuromorphic Computing and Engineering 2022, Nr. 2: 022501.
- . . ‘Special topic on non-classical light emitters and single-photon detectors.’ Applied Physics Letters 120, Nr. 1: 1–4. doi: 10.1063/5.0078886.
- . . ‘Coherent charaterisation of a single molecule in a photonic black box.’ Nature Communications 12, Nr. 706: 1–8. doi: 10.1038/s41467-021-20915-z.
- . . ‘Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits.’ Nature Communications 12, Nr. 1: 6847. doi: 10.1038/s41467-021-27205-8.
- . . ‘Efficient self-imaging grating couplers on a lithium-niobate-on-insulator platform at near-visible and telecom wavelengths.’ Optics Express 29, Nr. 13: 20205–20216. doi: 10.1364/OE.428138.
- . . ‘Physikalische Modelle erfahrbar machen - Mixed Reality im Praktikum.’ In PhyDid B, edited by , 415–420. Berlin.
- . . ‘Multi-channel quantum communication receiver made from waveguide-integrated superconducting nanowire single-photon detectors.’ Contributed to the Optical Fiber Communication Conference (OFC) 2021, Washington. doi: 10.1364/OFC.2021.M3B.5.
- . . ‘Integration of colloidal quantum dots with nanophotonic circuits.’ In Quantum Nanophotonic Materials, Devices, and Systems 2021, edited by , 15–21. Bellingham, WA: SPIE. doi: 10.1117/12.2594694.
- . . ‘Integrated Low Loss MEMS Phase Shifter with Single- Photon Detection.’ In Photonics in Switching and Computing 2021 (2021), paper Tu3A.4, edited by , Tu3A.4. Washington, DC: Optica. doi: 10.1364/PSC.2021.Tu3A.4.
- . . ‘Waveguide-integrated single-photon detectors with high system detection efficiency and photon number resolution.’ In Frontiers in Optics + Laser Science 2021 (2021), paper FM1C.2, edited by , FM1C.2. Washington, DC: Optica. doi: 10.1364/FIO.2021.FM1C.2.
- . . ‘Colloidal quantum dots as single-photon sources for photonic integrated circuits.’ In {OSA} Advanced Photonics Congress 2021 (2021), paper IW1A.5, edited by , IW1A.5. Washington, DC: Optica. doi: 10.1364/IPRSN.2021.IW1A.5.
- . . ‘All‑optical phase control in nanophotonic silicon waveguides with epsilon‑near‑zero nanoheaters.’ Scientific Reports 11, Nr. 9474: 1–9. doi: 10.1038/s41598-021-88865-6.
- . . ‘Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency.’ Applied Physics Letters 118, Nr. 15: 154004. doi: 10.1063/5.0046057.
- . . ‘Hybrid Quantum Photonics Based on Artificial Atoms Placed Inside One Hole of a Photonic Crystal Cavity.’ ACS Photonics 1. doi: 10.1021/acsphotonics.1c00530.
- 10.1109/JLT.2021.3099914. . ‘System-Level Simulation for Integrated Phase-Change Photonics.’ Journal of Lightwave Technology 1: 1–11. doi:
- . . ‘The rise of intelligent matter.’ Nature 594: 345–355. doi: 10.1038/s41586-021-03453-y.
- . . ‘Plasmonics: Enabling functionalities with novel materials.’ Journal of Applied Physics 129, Nr. 220401: 1–4. doi: 10.1063/5.0056296.
- . . ‘Single organic molecules for photonic quantum technologies.’ Nature Materials 20, Nr. 6. doi: 10.1038/s41563-021-00987-4.
- . . ‘Chalcogenide phase-change devices for neuromorphic photonic computing.’ Journal of Applied Physics 129, Nr. 151103: 1–8. doi: 10.1063/5.0042549.
- . . ‘A plasmonically enhanced route to faster and more energy-efficient phase-change integrated photonic memory and computing devices.’ Journal of Applied Physics 129, Nr. 110902: 1–11. doi: 10.1063/5.0042962.
- . . ‘Detector-integrated on-chip QKD receiver for GHz clock rates.’ npj Quantum Information 7: 40. doi: 10.1038/s41534-021-00373-7.
- . . ‘Optoelectromechanical phase shifter with low insertion loss and a 13π tuning range.’ Optics Express 29, Nr. 4: 5525–5537. doi: 10.1364/OE.413202.
- . . ‘Photonics for artificial intelligence and neuromorphic computing.’ Nature Photonics 15: 102–114. doi: 10.1038/s41566-020-00754-y.
- . . ‘Parallel convolutional processing using an integrated photonic tensor core.’ Nature 589: 52–58. doi: 10.1038/s41586-020-03070-1.
- . . ‘Broadband fiber-to-chip coupling in different wavelength regimes realized by 3D-structures.’ In Conference on Lasers and Electro-Optics (2020), paper JTh2B.22, edited by , JTh2B.22. Washington, DC: Optica. doi: 10.1364/CLEO_AT.2020.JTh2B.22.
- . „Parallelizing single-photon detection for ultra-fast quantum key distribution.“ contributed to the Qcrypt 2020, virtuell, .
- . . ‘Waveguide Integrated Superconducting Single-Photon Detector Array for Ultra-Fast Quantum Optics Experiments.’ Contributed to the DPG Spring Meeting 2020, Hannover.
- . . „Phase wechsel dich.“ Physik Journal 7: 36–41.
- . . ‘Performance characteristics of phase-change integrated silicon nitride photonic devices in the O and C telecommunications bands.’ Optical Materials Express 10, Nr. 8: 1778–1791. doi: 10.1364/OME.10.001778.
- . . ‘Integrating two-photon nonlinear spectroscopy of rubidium atoms with silicon photonics.’ Optics Express 28, Nr. 13: 19593–19607. doi: 10.1364/OE.389644.
- . . „MiReQu – Mixed Reality Lernumgebungen zur Förderung fachlicher Kompetenzentwicklung in den Quantentechnologien.“ In PhyDid B, herausgegeben von , 451–459. Berlin.
- . . ‘Purcell-enhanced emission from individual SiV− center in nanodiamonds coupled to a Si3N4-based, photonic crystal cavity.’ Nanophotonics 20200257. doi: 10.1515/nanoph-2020-0257.
- . . ‘Reconfigurable nanophotonic circuitry enabled by direct-laser-writing.’ IEEE Journal of Quantum Electronics 2020: 1. doi: 10.1109/JSTQE.2020.3004278.
- . . ‘Hybrid integrated quantum photonic circuits.’ Nature Photonics 2020. doi: 10.1038/s41566-020-0609-x.
- . . ‘Broadband Spectrometer with Single-Photon Sensitivity Exploiting Tailored Disorder.’ Nano Letters 2020. doi: 10.1021/acs.nanolett.0c00171. [online first]
- . . ‘Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing.’ Optica 7, Nr. 3: 218–225. doi: 10.1364/OPTICA.379228.
- . . ‘Integrated photonics chip for neural activity investigation.’ Optogenetics and Optical Manipulation 11227. doi: 10.1117/12.2546183.
- . . ‘Superconducting-Nanowire Single-Photon Spectrometer Exploiting Cascaded Photonic Crystal Cavities.’ Physical Review Applied 13, Nr. 014061: 1–13. doi: 10.1103/PhysRevApplied.13.014061.
- . . ‘Waveguide-Integrated Broadband Spectrometer Based on Tailored Disorder.’ Advanced Optical Materials 1, Nr. 1901602: 1–8. doi: 10.1002/adom.201901602.
- . . ‘Integrated 256 cell photonic phase change memory with 512-bit capacity.’ Journal of Selected Topics in Quantum Electronics 1. doi: 10.1109/JSTQE.2019.2956871.
- . . ‘Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality.’ Science advances 5, Nr. 11: 1–7. doi: 10.1126/sciadv.aaw2687.
- . . ‘Self-Holding Optical Actuator Based on a Mixed Ionic–Electronic Conductor Material.’ ACS Photonics 2019, 6, 5, 1182–1190. doi: 10.1021/acsphotonics.8b01708.
- . „QuPAD - Waveguide Integrated Superconducting Nanowire Array for Ultra-Fast Parallelized Single-Photon Detection.“ contributed to the Single Photon Workshop SPW-2019, Milano, .
- . „QuPAD - high bandwidth photon detection enabled by a massively parallelized system.“ contributed to the Single Photon Workshop SPW-2019, Milano, .
- . . ‘Broadband out-of-plane coupling at visible wavelengths.’ Optics Letters 44, Nr. 20: 5089–5092. doi: 10.1364/OL.44.005089.
- . . ‘Behavioral modeling of integrated phase-change photonic devices for neuromorphic computing applications.’ APL Materials 7, Nr. 091113: 1–7. doi: 10.1063/1.5111840.
- . . ‘Investigation on Metal-Oxide Graphene Field-Effect Transistors with clamped geometries.’ IEEE Journal of the Electron Devices Society 2019: 1–5. doi: 10.1109/JEDS.2019.2939574.
- . . ‘Plasmonically-enhanced all-optical integrated phase-change memory.’ Optics Express 27, Nr. 17: 24724–24737. doi: 10.1364/OE.27.024724.
- . . ‘Low-loss fiber-to-chip couplers with ultrawide optical bandwidth.’ APL Photonics 4 Volume 4, Issue 1. doi: 10.1063/1.5064401.
- . . ‘Polycrystalline diamond photonic waveguides realized by femtosecond laser lithography.’ Optical Material Express 9, Nr. 7. doi: 10.1364/OME.9.003109.
- . . ‘Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency.’ IEEE Transactions on Applied Superconductivity 1: 1. doi: 10.1109/TASC.2019.2906267.
- . . ‘Narrow Line Width Quantum Emitters in an Electron-Beam-Shaped Polymer.’ ACS Photonics 2019. doi: 10.1021/acsphotonics.9b01145.
- . . „Lichtschnelles Nervennetz.“ Physik in unserer Zeit 50, Nr. 6: 282–288. doi: 10.1002/piuz.201901557.
- . . ‘Python based open source design framework for integrated nanophotonic and superconducting circuitry with 2D-3D-hybrid integration.’ OSA Continuum 2, Nr. 11: 3091–3101. doi: 10.1364/OSAC.2.003091.
- . . ‘Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate.’ Applied Physics Letters 115, Nr. 101104: 1–4. doi: 10.1063/1.5113652.
- . . ‘Integrated phase-change photonic devices and systems.’ MRS Bulletin 44, Nr. 9: 721–727. doi: 10.1557/mrs.2019.203.
- . . ‘Efficient Coupling of an Ensemble of Nitrogen Vacancy Center to the Mode of a High-Q, Si3N4 Photonic Crystal Cavity.’ ACS Nano 2019. doi: 10.1021/acsnano.9b01668.
- . . ‘All-optical spiking neurosynaptic networks with self-learning capabilities.’ Nature 569: 208–214. doi: 10.1038/s41586-019-1157-8.
- . . ‘Self-Holding Optical Actuator Based on a Mixed Ionic–Electronic Conductor Material.’ ACS Photonics 6, Nr. 5: 1182–1190. doi: 10.1021/acsphotonics.8b01708.
- . . ‘In-memory computing on a photonic platform.’ Science advances 5, Nr. 2: 1–9. doi: 10.1126/sciadv.aau5759.
- . . ‘Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study.’ ACS Omega 4: 2256–2260. doi: 10.1021/acsomega.8b02836.
- . . ‘Tunable Volatility of Ge2Sb2Te5 in Integrated Photonics.’ Advanced Functional Materials 2019, Nr. 1807571: 1–7. doi: 10.1002/adfm.201807571.
- . . ‘Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics.’ Optical Materials Express 8, Nr. 9: 2455–2470. doi: 10.1364/OME.8.002455.
- . . ‘Design study of random spectrometers for applications at optical frequencies.’ Optic Letters 43, Nr. 13: 3180–3183.
- . . ‘Superconducting nanowire single-photon detector implemented in a 2D photonic crystal cavity.’ Optica 5, Nr. 5: 658–665.
- . „Towards amorphous superconducting single-photon detectors integrated with nanophotonic waveguides.“ contributed to the DPG Spring Meeting 2018, Erlangen, .
- . . ‘Towards Integrated High-Tc Superconducting Nanowire Hot Electron Bolometers.’ Contributed to the DPG Spring Meeting 2018, Erlangen.
- 10.1364/OPTICA.6.000001. . ‘Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell.’ Optica 6, Nr. 1: 1–6. doi:
- 10.1021/acsphotonics.8b01127. . ‘Reconfigurable Nanophotonic Cavities with Nonvolatile Response.’ ACS Photonics 2018. doi:
- . . ‘Diamond as a Platform for Integrated Quantum Photonics.’ Advanced Quantum Technologies 2018. doi: 10.1002/qute.201800061.
- . . ‘Waveguide-integrated superconducting nanowire single-photon detectors.’ Nanophotonics 7, Nr. 11: 1725–1758. doi: 10.1515/nanoph-2018-0059.
- 10.1103/PhysRevB.98.054505. . ‘Experimental evidence for hotspot and phase-slip mechanisms of voltage switching in ultrathin YBa2Cu3O7–x nanowires.’ Physical Review B 98: 054505. doi:
- . . ‘Layout influence on microwave performance of graphene field effect transistors.’ Electronics Letters 54, Nr. 16: 984–986. doi: 10.1049/el.2018.5113.
- . . ‘Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials.’ Advanced Materials 2018. doi: 10.1002/adma.201802435.
- . . ‘Carbon nanotubes as emerging quantum-light sources.’ Nature Materials 2018.
- . . ‘Coupling Thermal Atomic Vapor to Slot Waveguides.’ Physical Review X 2018, Nr. 8: 021032. doi: 10.1103/PhysRevX.8.021032.
- . . ‘Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers.’ Beilstein J. Nanotechnol. 8: 38–44.
- . . ‘Superconducting nanowire single photon detector for coherent detection of weak signals.’ IEEE Trans. Appl. Supercond 2017. doi: 10.1109/TASC.2016.2645132.
- . . ‘On-chip photonic synapse.’ Science advances 3.
- . ‘Photostable Molecules on Chip: Integrated Sources of Nonclassical Light.’ ACS Photonics 2017.
- . . ‘Calculating with light using a chip-scale all-optical abacus.’ Nature Communications 8.
- . . ‘On-chip coherent detection with quantum limited sensitivity.’ Scientific Reports 7: 4812.
- . . ‘Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors.’ Optics Express 25, Nr. 8: 8739–8750.
- . . ‘Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits.’ Optica 4: 557–562.
- . . ‘On-chip waveguide coupling of a layered semiconductor single-photon source.’ Nanoletters 17: 5446–5451. doi: 10.1021/acs.nanolett.7b02092#cor1.
- . . ‘Directional couplers with integrated carbon nanotube incandescent light emitters.’ Optics Express 2016: 966.
- . . ‘Nichtflüchtiger optischer Speicher in photonischen Schaltkreisen.’ Physik unserer Zeit 47: 9.
- . . ‘Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.’ Nano Letters 16 5: 3341–3347.
- . . ‘Thermo-optical Effect in Phase-Change Nanophotonics.’ ACS Photonics 3: 828–835. doi: 10.1021/ascphotonics.6b00032.
- . . ‘Beaming light from a quantum emitter with a planar optical antenna.’ Light: Science & Applications 2017, Nr. 6: e16245.
- . . ‘Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.’ Nano Letters 2016. doi: 10.1021/acs.nanolett.6b03688.
- . . ‘Sub-Poisson-binomial light.’ Physical Review A 94: 053844.
- . . ‘Reconfigurable heat-induced spin wave lenses.’ Applied Physics Letters 109: 232407.
- . . ‘Diamond on aluminum nitride as a platform for integrated photonic circuits.’ Physica Statut Solid A 213.
- . . ‘Nonvolatile All-Optical 1 × 2 Switch for Chipscale Photonic Networks.’ Advance Optical Materials 2016. doi: 10.1002/adom.201600346.
- . . ‘Cavity-Enhanced and Ultrafast Superconducting Single-Photon Detectors.’ Nano Letters 16. doi: 10.1021/acs.nanolett.6b03344.
- . . ‘Fully integrated quantum photonic circuit with an electrically driven light source.’ Nature Photonics 2016. doi: 10.1038/nphoton.2016.178.
- . . ‘Coupling thermal atomic vapor to an integrated ring resonator.’ New Journal of Physics 18: 103031.
- . . ‘Cascaded Mach-Zehnder interferometer tunable filters.’ Journal of Optics 18: 064011.
- . . ‘Cavity-enhanced light emission from electrically driven carbon nanotubes.’ Nature Photonics 70.
- . . ‘Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires.’ Appl. Phys. Lett 106: 151101.
- . . ‘Photonic integration meets single-photon detection.’ Laser Focus World 51: 47–50.
- . . ‘Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths.’ Scientific Reports 5: 10941.
- . . ‘Atomic vapor spectroscopy in integrated photonic structures.’ Appl. Phys. Lett. 107: 041101.
- . . ‘High efficiency, on-chip single-photon detection for diamond nanophotonic circuits.’ IEEE Journal of Lightwave Technology 33: 01.
- . . ‘Integrated all-photonic nonvolatile multi-level memory.’ Nature Photonics 9: 725.
- . . ‘Superconducting single-photon detectors integrated with diamond nanophotonic circuits.’ Light: Science & Applications 4: e338.
- . . ‘Diamond as a material for monolithically integrated optical and optomechanical devices.’ Physica Status Solidi (A): Applications and Materials Science 212: 2385.
- . . ‘On-chip photonic memory elements employing phase change materials.’ Advanced Materials 26: 1372.
- . . ‘High-Q optomechanical circuits made from polished nanocrystalline diamond thin films.’ Diamond Rel. Mat 44: 49–53.
- . . ‘Waveguide integrated electroluminescent carbon nanotubes.’ Advanced Materials 2014.
- . . ‘Silicon integrated active ferroelectric BaTiO3 thin films and waveguiding devices.’ Nano Letters 14: 1419.
- . . ‘Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths.’ Applied Physics Letters 104, Nr. 9: 091108. doi: 10.1063/1.4867529.
- . . ‘Hybrid 2D–3D optical devices for integrated optics by direct laser writing.’ Nature Light: Science and Applications 2014.
- . . ‘Design of a silicon integrated electro-optic modulator based on ferroelectric BaTiO3 thin films.’ IEEE Photon. Tech. Lett. 2014.
- . . ‘Diamond Nanophotonic Circuits Functionalized by Dip-pen Nanolithography.’ Advanced Optical Materials 2014.
- . . ‘Integrated Optomechanics: materials and concepts.’ IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 61: 1889.
- . . ‘Diamond electro-optomechanical resonators integrated in nanophotonic circuits.’ Appl. Phys. Lett. 105 105: 251101.
- . . ‘Array of integrated superconducting single photon detectors with high timing resolution.’ IEEE Transactions on Applied Superconductivity 23: 2201007.
- . . ‘NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits.’ Applied Physics Letters 102: 051101.
- . . ‘Broadband directional coupling in aluminum nitride nanophotonic circuits.’ Optics Express 21: 7304–7315.
- . . ‘Diamond-integrated optomechanical circuits.’ Nature Communications 4: 1690.
- . . ‘Photonic crystal dumbbell resonators in silicon and aluminum nitride integrated optical circuits.’ Journal of Nanophotonics 7: 073095.
- . . ‘Waferscale nanophotonic circuits made from diamond-on-insulator substrates.’ Optics Express 21: 11031–11036.
- . . ‘Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films.’ Nanotechnology 4: 300–305.
- . . ‘Optical time domain reflectometry with low noise waveguide-coupled superconducting nanowire single-photon detectors.’ Appl. Phys. Lett. 102: 191104.
- . . ‘Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate.’ Scientific Reports 3: 1893.
- . . ‘Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits.’ Optics Express 21: 22683.
- . . ‘Mode control and mode conversion in nanophotonic aluminum nitride waveguides.’ Optics Express 21: 26742.
- . . ‘High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices.’ Optics Express 21: 31678–31689.
- . . ‘Second harmonic generation in aluminum nitride waveguides on silicon substrates.’ In Proceedings Conference on Lasers and Electro-Optics 2012, edited by , 6326824. New York City: Wiley-IEEE Computer Society Press.
- . . ‘High-Q aluminum nitride photonic crystal nanobeam cavities.’ Appl. Phys. Lett. 100: 091105.
- . . ‘Frequency and phase noise of ultrahigh Q silicon nitride nanomechanical resonators.’ Physical Review B (Rapid Communication) 85: 161410.
- . . ‘High Q micro-ring resonators fabricated from polycrystalline aluminum nitride films for near infrared and visible photonics.’ Optics Express 20: 12261.
- . . ‘Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators.’ Applied Physics Letters 100: 091105.
- . . ‘Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing.’ Nano Letters 12: 3562.
- . . ‘Photonic non-volatile memory based on phase-change materials.’ Applied Physics Letters 101: 171101.
- . . ‘Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics.’ New Journal of Physics 14: 095014.
- . . ‘Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison.’ Optics Express 20: 26486.
- . . ‘A silicon nanowire factorable photon pair source.’ Optical and Quantum Electronics 0.
- . . ‘Backaction limits on self-sustained optomechanical oscillations.’ Phys. Rev. A 86: 053826.
- . . ‘High Speed and High Efficiency Travelling Wave Single-Photon Detectors Embedded in Nanophotonic Circuits.’ Nature Communications 3: 1325.
- . . ‘Carrier and thermal dynamics of silicon photonic resonators at cryogenic temperatures.’ Optics Express 19: 3290.
- . . ‘Integrated GaN photonic circuits on silicon (100) for second harmonic generation.’ Optics Express 19: 10462.
- . . ‘Tunable optical coupler controlled by optical gradient forces.’ Optics Express 19: 015098.
- . . ‘GHz optomechanical resonators with high mechanical Q factor in air.’ Optics Express 19: 22316.
- . . ‘Dynamic manipulation of mechanical resonators in the high amplitude regime through optical backaction.’ Nature Nanotechnology 6: 726.
- . . ‘Finite-difference time-domain methods and material models for the simulation of plasmonic structures.’ Journal of Computational and Theoretical Nanoscience 7: 1.
- . . ‘A three-dimensional mesh-refinement algorithm with low boundary reflections for the simulation of metallic structures.’ International Journal of Numerical modelling 23: 183.
- . . ‘A three-dimensional mesh-refinement algorithm with low boundary reflections for the simulation of metallic structures.’ International Journal of Numerical modelling 23: 183.
- . . ‘Finite-difference time-domain methods and material models for the simulation of plasmonic structures.’ Journal of Computational and Theoretical Nanoscience 7: 1.
- . . ‘Analysis of short range forces in optomechanical devices with a nanogap.’ Optics Express 18: 12615.
- . . ‘Adiabatic embedment of nanomechanical resonators in photonic microring cavities.’ Applied Physics Letters 96: 363101.
- . . ‘Time-domain measurement of optical transport in silicon micro-ring resonators.’ Optics Express 18: 18438.
- . . ‘High Q optomechanical resonators in silicon nitride nanophotonic circuits.’ Appl. Phys. Lett. 97: 073112.
- . . ‘High performance nanophotonic circuits based on partially buried horizontal slot waveguides.’ Optics Express 18: 20690.
- . . ‘Ultrahigh-Frequency Nano-Optomechanical Resonators in Slot Waveguide Ring Cavities.’ Applied Physics Letters 97: 073112.
- . . ‘Reactive Cavity Optical Force on Micro-disk Coupled Nanomechanical Beam Waveguides.’ Physical Review Letters 103: 223901.
- . . ‘A mechanical Kerr effect in deformable photonic media.’ Applied Physics Letters 95: 123507.
- . . ‘Modelling of optical forces in 3d nanomechanical waveguides.’ Optics Express 17: 16032.
- . ‘Silicon Nitride Membrane Photonics.’ Journal of Optics A 11: 114017.
- . . ‘Simulation of Optical Resonators using DGTD and FDTD.’ Journal of Optics A 11: 114015.
- . . ‘Tunable bipolar optical interactions between guided lightwaves.’ Nature Photonics 3: 464.
- . . ‘Broadband all-photonic transduction of nanocantilevers.’ Nature Nanotechnology 4: 377.
- . . ‘Optomechanical coupling in photonic crystal supported nanomechanical waveguides.’ Optics Express 17: 12424.
- . . ‘Theoretical investigation of the transverse optical force between a silicon nanowire and a substrate.’ Optics Express 17: 1806.
- . . ‘Photothermal actuation in nanomechanical waveguide devices.’ Journal of Applied Physics 105: 014508.
- . . ‘Gigahertz photothermal effect in silicon waveguides.’ Applied Physics Letters 93: 213106.
- . . ‘An ADI based Fourier Spectral method for the simulation of metallic structures.’ Journal of Computational and Theoretical Nanoscience 5: 571.
- . . ‘Numerical investigation of Littrow lasing in open resonator photonic crystal waveguides.’ Europhysics Letters 82: 54001.
- . . ‘Harnessing optical forces in integrated photonic circuits.’ Nature 456: 480.
- . . ‘Diamond components with integrated abrasion sensor for tribological applications.’ Diamond and Related Materials 16: 991.
- . . ‘An FDTD method for the simulation of dispersive metallic structures.’ Optical and Quantum Electronics 38: 843.
- . . ‘Pseudo-spectral time-domain modeling of real metals.’ Optical and Quantum Electronics 39: 877.
- . . ‘A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals.’ Journal of Lightwave Technology 25: 2306.
- . . ‘Numerical investigation of field enhancement on metal nano-particles using a hybrid FDTD-PSTD algorithm.’ Optics Express 15: 11433.
- . . ‘In-plane Littrow lasing of broad photonic crystal waveguides.’ Applied Physics Letters 91: 041111.
- . . ‘Finite-difference time-domain simulation of dispersive features smaller than the grid-spacing.’ Int. Journal of Numerical modeling 20: 916.
- . . ‘A general framework for the finite-difference time-domain simulation of real metals.’ IEEE Transactions on Antennas and Propagation 55: 916.
- . . ‘Pseudo-spectral time-domain simulation of the transmission and the group delay of photonic devices.’ Optical and Quantum Electronics 40: 1.
Betreute Promotionen
Dzikonski, Dustin Laser-sculpted hydrogel scaffolds for cell inspection (Arbeitstitel) Hanafi, Haissam Untersuchung von photonischen Festkörperstrukturen sowie nichtlinearen Strukturen für die Frequenzkonversion mithilfe der Femtosekunden-Laserstrahllithographie (Arbeitstitel) Tonndorf, Philipp Einzelphotonenquellen in zweidimensionalen Schichthalbleitern Boguslawski, Martin Multispectral, aperiodic, and random photonic lattices Schmidt, Robert Ultraschnelle Dynamik und Manipulation von Exzitonen in atomar dünnen Halbleitern Kroesen, Sebastian Walter Karl Integrated photonics in nonlinear media by direct femtosecond laser lithography Wissenschaftliche Vorträge
- Wolff, Martin : “Towards high-Tc superconducting nanowire single-photon detectors”. Quantum Symposium 2018, 1st International Symposium on "Single Photon based Quantum Technologies", Max-Born-Saal, Berlin, Deutschland, .
- Wolff, Martin : “Towards integrated High-Tc Superconducting single-photon detectors integrated with nanophotonic waveguides”. DPG-Frühjahrstagung 2018, Universität Erlangen, Erlangen, Deutschland, .