Dr. Carolyn van der Bogert

Dr. Carolyn van der Bogert

Wilhelm-Klemm-Str. 10, room 110b
48149 Münster

T: +49 251 83-33011
F: +49 251 83-36301

Academic Profiles

  • CV

    Academic Education

    Graduate Gemologist, Gemological Institute of America
    Doctor of Philosophy, Department of Geological Sciences, Brown University
    Master of Science, Department of Geological Sciences, Brown University
    Bachelor of Arts in Geology; Planetary & Space Sciences, Boston University

    Positions

    Research Scientist, Institut für Planetologie, Universität Münster
    Research Scientist, Gemological Institute of America

    Honors

    Angioletta Coradini Mid-Career AwardNASA’s Solar System Exploration Research Virtual Institute (SSERVI)
    Brown University Charles Wilson Brown Dissertation Fellowship – Brown University
    Amelia Earhart Fellowship – Zonta International
    NASA-Rhode Island Space Grant Graduate Student Fellowship – NASA-Rhode Island Space Grant
    Spectroscopy 2009 Best Poster Award – Conference on Micro-Raman Spectroscopy and Luminescence Studies in the Earth and Planetary Sciences
    Stephen E. Dwornik Planetary Geoscience Student Poster Award – Geological Society of America
    Stephen E. Dwornik Planetary Geoscience Student Paper Award – Geological Society of America
    Stephen E. Dwornik Planetary Geoscience Student Paper Award – Geological Society of America
    Boston University Department of Earth Sciences Excellence Award – Boston University Department of Earth Sciences
    Boston University Collegiate Excellence Award in Earth Sciences – Boston University
  • Projects

  • Publications

    • , , , , , and . “Relationships between lobate debris aprons and lineated valley fill on Mars: Evidence for an extensive Amazonian valley glacial landsystem in Mamers Valles.Icarus, 426 doi: 10.1016/j.icarus.2024.116373.
    • , , , , , , , , , and . . “Geological Background of the Chang'e 6 Landing Site and the Provenance of Returned Samples.Journal of Geophysical Research: Planets, 130 (1) doi: 10.1029/2024JE008658.

    • , , , , , , , , , and . . “Slopes along Apollo EVAs: Astronaut experience as input for future mission planning.Acta Astronautica, 223: 184196. doi: 10.1016/j.actaastro.2024.07.006.
    • , , , , and . . “Geologic History of the Amundsen Crater Region Near the Lunar South Pole: Basis for Future Exploration.The Planetary Science Journal, 5 (147) doi: 10.3847/PSJ/ad2c04.

    • , , , , and . “The young resurfacing events at Ceres' Occator crater: Seismic shaking or deposition of cryovolcanic material?Icarus, 389 doi: 10.1016/j.icarus.2022.115259.
    • , , , , , and . “A comparative analysis of global lunar crater catalogs using OpenCraterTool – An open source tool to determine and compare crater size-frequency measurements.Planetary and Space Science, 231 105687. doi: 10.1016/j.pss.2023.105687.
    • , , , , , , and . “Possible sites for a Chinese International Lunar Research Station in the Lunar South Polar Region.Planetary and Space Science, 227 doi: 10.1016/j.pss.2022.105623.
    • , , , , , and . “Timing and Origin of Compressional Tectonism in Mare Tranquillitatis.Journal of Geophysical Research: Planets, 128 (2) doi: 10.1029/2022JE007533.
    • , , , , and . . “Geological mapping and chronology of lunar landing sites: Apollo 14.Icarus, 406 doi: 10.1016/j.icarus.2023.115732.
    • , , , , , , , , , , , and . “The Lunar Cratering Chronology.Reviews in Mineralogy and Geochemistry, 89 (1): 401451. doi: 10.2138/rmg.2023.89.10.

    • , , , , , and . . “Catastrophic rupture of lunar rocks: Implications for lunar rock size–frequency distributions.Icarus, 387 115200. doi: 10.1016/j.icarus.2022.115200.

    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “In Situ Geochronology for the Next Decade: Mission Designs for the Moon, Mars, and Vesta.The Planetary Science Journal, 2: 145145. doi: 10.3847/psj/abedbf.
    • , , , , , and . . “Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships.Journal of Geophysical Research, 126: e2020JE006693. doi: 10.1029/2020JE006693.
    • , , , , , , , , , , , , , , , , , and . . “China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials.Earth and Planetary Science Letters, 561: 116855. doi: 10.1016/j.epsl.2021.116855.
    • , , , , , and . . “Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum.Earth and Planetary Science Letters, 555: 116702. doi: 10.1016/j.epsl.2020.116702.
    • , , , , , , , and . . “Science-rich sites for in situ resource utilization characterization and end-to-end demonstration missions.The Planetary Science Journal, 2: 84. doi: 10.3847/PSJ/abedbb.
    • , , , , , , and . . “The Inner Solar System Chronology (ISOCHRON) lunar sample return mission concept: Revealing two billion years of history.The Planetary Science Journal, 2: 79. doi: 10.3847/PSJ/abe419.
    • , , , , , , , , , , , , , , , , , , , , , , , , , and . . “A Next Generation Lunar Orbiter Mission.Bulletin of the AAS, 53 (4) doi: 10.3847/25c2cfeb.8f28f012.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “NanoSWARM: NanoSatellites for Space Weathering, Surface Water, Solar Wind, and Remnant Magnetism.Bulletin of the AAS, 53 (4) doi: 10.3847/25c2cfeb.314447c9.
    • , , , , , and . “Prominent volcanic source of volatiles in the south polar region of the Moon.Advances in Space Research, 68 (11): 46914701. doi: 10.1016/j.asr.2021.09.008.

    • , , and . . “Geological mapping and chronology of lunar landing sites: Apollo 12.Icarus, 2020 113991. doi: 10.1016/j.icarus.2020.113991.
    • , , , , , , , , , and . . “Impact melt facies in the Moon's Crisium basin: Identifying, characterizing, and future radiometric dating.Journal of Geophysical Research, 125: e2019JE006024. doi: 10.1029/2019JE006024.
    • , , , , , and . . “Degradation of small simple and large complex lunar craters: Not a simple scale dependence.Journal of Geophysical Research, 125: e2019JE006273. doi: 10.1029/2019JE006273.
    • , , , , , and . . “Re-examination of the population, stratigraphy, and sequence of mercurian basins: Implications for Mercury´s early impact history and comparison with the Moon.Journal of Geophysical Research, 125: e2019JE006212. doi: 10.1029/2019JE006212.
    • , , , , , , and . . “Troctolite 76535: A sample of the Moon’s South Pole-Aitken basin?Icarus, 338: 113430. doi: 10.1016/j.icarus.2019.113430.

    • , , and . . “Geological mapping and chronology of lunar landing sites: Apollo 11.Icarus, 333: 528547. doi: 10.1016/j.icarus.2019.06.020.

    • , , and . . “Lunar farside volcanism in and around the South Pole-Aitken basin.Icarus, 299: 538562. doi: 10.1016/j.icarus.2017.07.023.
    • , , , , , , and . . “Dating very young planetary surfaces from crater statistics: A review of issues and challenges.Meteoritics and Planetary Science, 53: 554582. doi: 10.1111/maps.12924.
    • , , , , , and . . “Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the Moon.Planetary and Space Science, 162: 4151. doi: 10.1016/j.pss.2017.05.006.
    • , , , , , and . . “A new tool to account for crater obliteration effects in crater size-frequency distribution measurements.Earth and Space Science, 5 doi: 10.1002/2018ea000383.
    • , , , , , and . . “The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event.Icarus, 309: 4560. doi: 10.1016/j.icarus.2018.02.030.
    • , , , , , , and . . “Ancient bombardment of the inner Solar System - Reinvestigation of the "fingerprints" of different impactor populations on the lunar surface.Journal of Geophysical Research: Planets, 123: 748762. doi: 10.1002/2017JE005451.
    • , , , , , and . . “How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions.Icarus, 306: 225242. doi: 10.1016/j.icarus.2018.01.019.
    • , , , , , and . . “Geologic history of the northern portion of the South Pole-Aitken basin on the Moon.Journal of Geophysical Research: Planets, 123: 25852612. doi: 10.1029/2018JE005590.

    • , , , , and . . “Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon.Icarus, 298: 7888. doi: 10.1016/j.icarus.2017.08.017.
    • , , , , , , and . . “Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.Icarus, 298: 4963. doi: 10.1016/j.icarus.2016.11.040.
    • , , , , , and . . “Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon.Icarus, 298: 6477. doi: 10.1016/j.icarus.2017.01.030.
    • , , , , , and . . “Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps.Icarus, 292: 111124. doi: 10.1016/j.icarus.2016.12.034.

    • , , , , , , , , , , , and . . “An exceptional grouping of lunar highland smooth plains: Geography, morphology, and possible origins.Icarus, 273: 121134. doi: 10.1016/j.icarus.2015.06.028.
    • , , , , and . “Crater size-frequency distribution measurements and age of the Compton-Belkovich volcanic complex.Icarus, 273: 214223. doi: 10.1016/j.icarus.2016.03.015.
    • , , and . . “Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits.Icarus, 273: 164181. doi: 10.1016/j.icarus.2016.02.018.
    • , , , , , , , , , , and . . “The Lassell Massif - A silicic lunar volcano.Icarus, 273: 248261. doi: 10.1016/j.icarus.2015.12.036.

    Research Articles (Journals)
    • , , and . . “Small-scale lunar farside volcanism.Icarus, 257: 336354. doi: 10.1016/j.icarus.2015.04.040.
    • , , , , , , , , , and . “Landing site selection for Luna-Glob mission in crater Boguslawsky.Planetary and Space Science, 2015 (117): 4563. doi: 10.1016/j.pss.2015.05.007.
    Research Article (Book Contributions)
    • , and . “Lava tube.” in Encyclopedia of Planetary Landforms, edited by H. Hargitai and Á. Kereszturi. Düsseldorf: Springer VDI Verlag.
    • , , and . “Lobate scarp.” in Encyclopedia of Planetary Landforms, edited by H. Hargitai and Á. Kereszturi. Düsseldorf: Springer VDI Verlag.
    • , and . “Impact melt pond.” in Encyclopedia of Planetary Landforms, edited by H. Hargitai and Á. Kereszturi. Düsseldorf: Springer VDI Verlag.
    • , and . . “Skylight.” in Encyclopedia of Planetary Landforms, edited by H. Hargitai and Á. Kereszturi. Düsseldorf: Springer VDI Verlag.
    • , , and . “Pit crater.” in Encyclopedia of Planetary Landforms, edited by H. Hargitai and Á. Kereszturi. Düsseldorf: Springer VDI Verlag.
    • , and . “Boulder track.” in Encyclopedia of Planetary Landforms, edited by H. Hargitai and Á. Kereszturi. Düsseldorf: Springer VDI Verlag.

    • , , , , , and . . “Evidence for basaltic volcanism on the Moon within the past 100 millions years.Nature Geoscience, 12 October doi: 10.1038/ngeo2252.

    • , , , , , , and . “How old are young lunar craters?Journal of Geophysical Research, 117 doi: 10.1029/2011JE003935.
    • , , , , , , , , , , and . . “Geology of the King crater region: New insights into impact melt dynamics on the Moon.Journal of Geophysical Research, 117: E00H29. doi: 10.1029/2011JE003990.
    • , , , , , , , and . . “Confirmation of sublunarean voids and thin layering in mare deposits.Planetary and Space Science, 69 (1): 1827. doi: 10.1016/j.pss.2012.05.008.

    • , , , , , , , , , , , , , and . . “Non-mare silicic volcanism on the lunar farside at Compton-Belkovich.Nature Geoscience, 4 (8): 566571. doi: 10.1038/ngeo1212.

    • , , , , , , , , , , , and . . “New insight into lunar impact melt mobility from the LRO camera.Geophysical Research Letters, 37 doi: 10.1029/2010GL044666.
    • , , , , , , , , , , and . . “Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera.Science, 329 (5994): 936940. doi: 10.1126/science.1189590.

    • , , , , , , , , , , , , , and . . “Possible lunar lava tube skylight observed by SELENE cameras.Geophysical Research Letters, 36 doi: 10.1029/2009GL040635.
    • , , , , , , , , , , , , , and . . “Spectral properties of simulated impact glasses produced from martian soil analogue JSC Mars-1.Icarus, 202 (1): 336353. doi: 10.1016/j.icarus.2009.02.007.
    • , , , and . . “Gray-to-Blue-to-Violet Hydrogen-Rich Diamonds from the Argyle Mine, Australia.Gems and Gemology, 45 (1): 2037.

    • , and . . “Unusual gem pyroxmangite.Gems and Gemology, 42 (4): 266267.

    • . . “Diamond dyed rough.Gems and Gemology, 41 (3): 257258.

    • . . “Treated-color “golden” South Sea cultured pearls.Gems and Gemology, 40: 331332.

    • , , and . . “Impact-induced frictional melting in ordinary chondrites: A mechanism for deformation, darkening, and vein formation.Meteoritics and Planetary Science, 38 (10): 15211531.