Professor Dr. Thorsten Kleine

Professor Dr. Thorsten Kleine

Wilhelm-Klemm-Str. 10, room 111a
48149 Münster

T: +49 251 83-33406

  • Research Foci

    • Chronology of the early solar system using short-lived nuclides
    • Early evolution of the solar nebula as inferred from nucleosynthetic isotope anomalies in meteorites and meteorite components
    • Accretion and differentiation of asteroids and terrestrial planets
  • CV

    Academic Education

    Venia Legendi for Geochemistry and Cosmochemistry, ETH Zürich, Switzerland
    Dr. rer. nat. (with honours), Institute of Mineralogy, WWU Münster
    Diplom (German equivalent of Master) in Mineralogy, WWU Münster
    Diplom (German equivalent of Master) in Geology and Palaentology, WWU

    Positions

    Professor (Chair) for Planetology, University of Muenster
    Assistant Professor for Isotope Geochemistry, ETH Zürich, Switzerland
    Senior Research Scientist (Oberassistent), Institute of Geochemistry and Petrology, ETH Zürich, Switzerland
    EU Marie Curie Postdoctoral Fellow, Institute of Geochemistry and Petrology, ETH Zürich, Switzerland
    Postdoctoral researcher, Institute for Isotope Geology and Mineral Resources, ETH Zürich, Switzerland
    Postdoctoral Researcher, Institute of Mineralogy, University of Muenster
    Research Assistant, Institute of Mineralogy, University of Muenster

    Honors

    Appointment as Member of the North Rhine-Westphalian Academy of Sciences, Humanities and the ArtsNorth Rhine-Westphalian Academy of Sciences, Humanities and the Arts (NRW-AdW)
    ERC Consolidator GrantEuropean Research Council (ERC)
    Marie Curie Fellowship – European Commission
    Fellow of the Meteoritical Society – The Meteoritical Society
    F.W. Clarke AwardThe Geochemical Society
    SNF-Förderungsprofessur – Schweizerischer Nationalfonds (SNF)
    Victor-Moritz-Goldschmidt-PreisDeutsche Mineralogische Gesellschaft
    Nier Priize – The Meteoritical Society
    Paul-Ramdohr-Preis – Deutsche Mineralogische Gesellschaft

    External Functions

    Member of the European Association of Geochemistry
    Member of the Meteoritical Society
    Member of the Geochemical Society
    Member of the German Mineralogical Society (DMG)
  • Projects

  • Publications

    • , , , , and . . “Origin of 182W Anomalies in Ocean Island Basalts.Geochemistry, Geophysics, Geosystems, 24: 112. doi: 10.1029/2022GC010688.

    • , , , , and . . “Origin of the analytical 183W effect and its implications for tungsten isotope analyses.Journal of Analytical Atomic Spectrometry, 37: 20052021. doi: 10.1039/D2JA00102K.
    • , , , , , , and . . “Tellurium isotope fractionation during evaporation from silicate melts.Geochimica et Cosmochimica Acta, 339: 3545. doi: 10.1016/j.gca.2022.10.032.

    • , , , , , , , , , , , , and . . “The Loongana (CL) group of carbonaceous chondrites.Geochimica et Cosmochimica Acta, 304: 131. doi: 10.1016/j.gca.2021.04.007.
    • , , , , , and . . “Tellurium isotope cosmochemistry: Implications for volatile fractionation in chondrite parent bodies and origin of the late veneer.Geochimica et Cosmochimica Acta, 309: 313328. doi: 10.1016/j.gca.2021.06.038.
    • , , and . “No 182W evidence for early Moon formation.Nature Geoscience, 14 doi: 10.1038/s41561-021-00820-2.

    • , , , , , , and . . “Hf-W chronology of a macrochondrule from the L5/6 chondrite Northwest Africa 8192.Meteoritics and Planetary Science, 55 (10): 22412255. doi: 10.1111/maps.13571.
    • , , , and . . “Origin of volatile element depletion among carbonaceous chondrites.Earth and Planetary Science Letters, 549: 116508. doi: 10.1016/j.epsl.2020.116508.

    • , , , , , and . “Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: Evidence from the Pilbara Craton, Western Australia.Earth Planet. Sci. Lett., 528 doi: 10.1016/j.epsl.2019.115841.
    • , , , , and . . “Hf-W chronology of ordinary chondrites.Geochimica et Cosmochimica Acta, 258: 290309. doi: 10.1016/j.gca.2019.05.040.
    • , , , , and . . “Titanium isotopic evidence for a shared genetic heritage of refractory inclusions from different carbonaceous chondrites.Geochimica et Cosmochimica Acta, 254: 4053. doi: 10.1016/j.gca.2019.03.011.

    • , , and . “Ruthenium isotope fractionation in protoplanetary cores.Geochimica et Cosmochimica Acta, 223: 7589. doi: 10.1016/j.gca.2017.11.033.
    • , , , , , , and . . “Ti isotopic evidence for a non-CAI refractory component in the inner Solar System.Earth and Planetary Science Letters, 498: 257265. doi: 10.1016/j.epsl.2018.06.040.
    • , , , , and . . “A Distinct Nucleosynthetic Heritage for Early Solar System Solids Recorded by Ni Isotope Signatures.Astrophysical Journal, 862: 2643. doi: 10.3847/1538-4357/aacb7e.
    • , and . . “Nature of late accretion to Earth inferred from mass-dependent isotope compositions in meteorites and mantle peridotites.Earth and Planetary Science Letters, 494: 5059. doi: 10.1016/j.epsl.2018.04.058.
    • , , and . . “No 182W excess in the Ontong Java Plateau source.Chemical Geology, 485: 2431. doi: 10.1016/j.chemgeo.2018.03.024.
    • , and . “Uranium isotope ratios of Muonionalusta troilite and complications for the absolute age of the IVA iron meteorite core.Earth and Planetary Science Letters, 490: 110. doi: 10.1016/j.epsl.2018.03.010.
    • , , , and . . “Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites.Journal of Geophysical Research: Planets, 123: 2017JE005411. doi: 10.1002/2017JE005411.
    • , , , and . “Pd-Ag chronometry of IVA iron meteorites and the crystallization and cooling of a protoplanetary core.Geochimica et Cosmochimica Acta, 220 (null): 8295. doi: 10.1016/j.gca.2017.09.009.
    • , , and . “Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula.Geochimica et Cosmochimica Acta, 222: 284304. doi: 10.1016/j.gca.2017.10.014.

    Research Articles (Journals)
    • , and . “Tungsten isotopes and the origin of the Moon.Earth and Planetary Science Letters, 475 (null): 1524. doi: 10.1016/j.epsl.2017.07.021.
    • , , , , , , and . “The early differentiation of Mars inferred from Hf–W chronometry.Earth and Planetary Science Letters, 474 (null): 345354. doi: 10.1016/j.epsl.2017.06.047.
    • , , , , and . . “Age of Jupiter inferred from the distinct genetics and formation times of meteorites.Proceedings of the National Academy of Sciences of the United States of America, 114 (26): 67126716. doi: 10.1073/pnas.1704461114.
    • , , , , , , , , , , and . . “Reconciliation of the excess 176Hf conundrum in meteorites: Recent disturbances of the Lu-Hf and Sm-Nd isotope systematics.Geochimica et Cosmochimica Acta, 212: 303323. doi: 10.1016/j.gca.2017.05.043.
    • , , , , and . . “The cosmic molybdenum-neodymium isotope correlation and the building material of the Earth.Geochemical Perspectives Letters, 3: 170178. doi: 10.7185/geochemlet.1720.
    • , , and . “Tungsten stable isotope compositions of terrestrial samples and meteorites determined by double spike MC-ICPMS.Chemical Geology, 450 (null): 135144. doi: 10.1016/j.chemgeo.2016.12.024.
    • , , , , and . “Mixing and Transport of Dust in the Early Solar Nebula as Inferred from Titanium Isotope Variations among Chondrules.Astrophysical Journal Letters, 841 (1) doi: 10.3847/2041-8213/aa72a2.
    • , , and . . “Ruthenium isotopic evidence for an inner Solar System origin of the late veneer.Nature, 541: 525527. doi: 10.1038/nature21045.
    • , , , , , , , , , , , , , , , , , , , , , , , and . “The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian.Geochimica et Cosmochimica Acta, 218 (null): 126. doi: 10.1016/j.gca.2017.08.037.
    • , and . “Tungsten Isotopes in Planets.Annual Review of Earth and Planetary Sciences, 45: 389417. doi: 10.1146/annurev-earth-063016-020037.
    • , and . “A low abundance of 135Cs in the early Solar System from barium isotopic signatures of volatile-depleted meteorites.The Astrophysical Journal Letters, 837
    Research Article (Book Contributions)
    • . . “Chronology of Planetesimal Differentiation.” in Planetesimals, Vol.16 of Cambridge Planetary Science, edited by Elkins-Tanton L. Weiss B.. doi: 10.1017/9781316339794.

    • , , , , and . “The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts.Earth and Planetary Science Letters, 453 (null): 171181. doi: 10.1016/j.epsl.2016.07.056.
    • , , , , , and . “A nucleosynthetic origin for the Earth's anomalous 142 Nd composition.Nature, 537 (7620): 394398. doi: 10.1038/nature18956.
    • , , , , , and . “Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites.Earth and Planetary Science Letters, 454: 293303. doi: 10.1016/j.epsl.2016.09.020.
    • , , , , and . “Tungsten isotopic constraints on the age and origin of chondrules.Proceedings of the National Academy of Sciences of the United States of America, 113: 28862891. doi: 10.1073/pnas.1524980113.
    • , , and . “Ruthenium stable isotope measurements by double spike MC-ICPMS.Journal of Analytical Atomic Spectrometry, 31: 15151526.

    Research Articles (Journals)
    • , , , , and . “Planetesimal differentiation revealed by the Hf-W systematics of ureilites.Earth and Planetary Science Letters, 430: 316325. doi: 10.1016/j.epsl.2015.08.034.
    • , , , and . “Ru isotope heterogeneity in the solar protoplanetary disk.Geochimica et Cosmochimica Acta, 168: 151171. doi: 10.1016/j.gca.2015.07.032.
    • , , , , and . “Pd-Ag chronometry of iron meteorites: Correction of neutron capture-effects and application to the cooling history of differentiated protoplanets.Geochimica et Cosmochimica Acta, 169 (null): 4562. doi: 10.1016/j.gca.2015.07.027.
    • , and . . “Lunar tungsten isotopic evidence for the late veneer.Nature, 520: 534537.
    • , , , , and . “Hf-W chronology of the eucrite parent body.Geochimica et Cosmochimica Acta, 156 (null): 106121. doi: 10.1016/j.gca.2015.02.018.
    • , , and . “Reply to comment by Peters et al. (2015) on "Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os-180W decay system".Geochimica et Cosmochimica Acta, 169: 240243.
    • , , and . “Uranium isotopic composition and absolute ages of Allende chondrules.Meteoritics & Planetary Science, 50 (12): 19952002. doi: 10.1111/maps.12567.
    Research Article (Book Contributions)
    • , and . “Early Differentiation and Core Formation: Processes and Timescales.” in The Early Earth: Accretion and Differentiation, Vol.212 of Geophysical Monograph, edited by J. Badro and M.J. Walter. N/A: Selbstverlag / Eigenverlag.

    • , , , , and . “Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions.Earth and Planetary Science Letters, 403: 317327.
    • , , , , , and . “Protracted core formation and rapid accretion of protoplanets.Science, 344 (6188): 11501154. doi: 10.1126/science.1251766.
    • , , , and . “Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation.Earth and Planetary Science Letters, 391 (null): 201211. doi: 10.1016/j.epsl.2014.01.037.
    • , , , and . “Cosmogenic 180W variations in meteorites and re-assessment of a possible 184Os-180W decay system.Geochimica et Cosmochimica Acta, 140 (null): 160176. doi: 10.1016/j.gca.2014.05.013.

    • , , and . “Isotopic evidence for chondritic Lu/Hf and Sm/Nd of the Moon.Earth and Planetary Science Letters, 380: 7787.
    • , , , , and . “The abundance and isotopic composition of Cd in iron meteorites.Meteoritics and Planetary Science, 48: 25972607.
    • , , and . “Rb-Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited.Earth and Planetary Science Letters, 374 (null): 204214. doi: 10.1016/j.epsl.2013.05.029.
    • , , , , and . “Experimental evidence for Mo isotope fractionation between metal and silicate liquids.Earth and Planetary Science Letters, 379 (null): 3848. doi: 10.1016/j.epsl.2013.08.003.
    • , , , , , and . . “Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals.Earth and Planetary Science Letters, 361: 162172. doi: 10.1016/j.epsl.2012.10.014.
    • , , and . . “Core Formation and Mantle Differentiation on Mars.Space Science Reviews, 174: 2748. doi: 10.1007/s11214-012-9935-8.

    • , , , , and . . “Thermal evolution and sintering of chondritic planetesimals.Astronomy and Astrophysics, 537 doi: 10.1051/0004-6361/201117177.
    • , , , and . . “Chronology of the angrite parent body and implications for core formation in protoplanets.Geochimica et Cosmochimica Acta, 84: 186203. doi: 10.1016/j.gca.2012.01.032.
    • , , , , , and . “Hf–W chronometry of core formation in planetesimals inferred from weakly irradiated iron meteorites.Geochimica et Cosmochimica Acta, 99: 287304.
    • , , , , , , , , and . . “Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies.Geochimica et Cosmochimica Acta, 85: 114141.
    • , , , and . . “Origin of isotopic heterogeneity in the solar nebula by thermal processing and mixing of nebular dust.Earth and Planetary Science Letters, 357: 298307. doi: 10.1016/j.epsl.2012.09.048.
    • , , , , and . . “Thermal history modelling of the H chondrite parent body.Astronomy & Astrophysics, 545: . doi: 10.1051/0004-6361/201219100.
    • , , , and . . “Nucleosynthetic tungsten isotope anomalies in acid leachates of the Murchison chondrite: Implications for hafnium-tungsten chronometry.Astrophysical Journal Letters, 753: L6.

    Research Articles (Journals)
    • , , , , , and . . “Molybdenum isotope anomalies in meteorites: Constraints on solar nebula evolution and origin of the Earth.Earth and Planetary Science Letters, 312: 390400. doi: 10.1016/j.epsl.2011.10.010.
    • . . “Earth's patchy late veneer.Nature, 477 (7363): 168169. doi: 10.1038/477168a.
    • , and . . “Chronometry of Meteorites and the Formation of the Earth and Moon.Elements, 7: 4146. doi: 10.2113/gselements.7.1.41.
    Entries in Encyclopediae (Book Contributions)
    • . . “Radiogenic Isotopes.” in Encyclopedia of Astrobiology, edited by M. Gargaud, R. Amils, Quintanilla J. Cernicharo, IIH.J. Cleaves, W.M. Irvine, D. Pinti and M. Viso. Düsseldorf: Springer VDI Verlag.

    Research Articles (Journals)
    • , , and . . “Broad bounds on Earth's accretion and core formation constrained by geochemical models.Nature Geoscience, 3: 439443. doi: 10.1038/ngeo872.
    • , , and . . “Tungsten isotopic evolution during late-stage accretion: Constraints on Earth-Moon equilibration.Earth and Planetary Science Letters, 292: 363370. doi: 10.1016/j.epsl.2010.02.003.
    Research Article (Book Contributions)
    • , and . . “Extint radionuclides and the earliest differentiation of the Earth and Moon.” in Timescales of Magmatic Processes: From Core to Atmosphere, edited by A. Dossetto, S.P. Turner and J.A. Van Orman. Hoboken, NJ, USA: Wiley-Blackwell.

    • , , , , and . . “Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth's core.Earth and Planetary Science Letters, 287 (1-2): 7785. doi: 10.1016/j.epsl.2009.07.038.
    • , , , , , , , , and . . “Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets.Geochimica et Cosmochimica Acta, 73 (17): 51505188. doi: 10.1016/j.gca.2008.11.047.
    • , , , and . . “The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization.Geochimica et Cosmochimica Acta, 73 (17): 51155136. doi: 10.1016/j.gca.2008.12.031.
    • , , , , , and . . “Hf-W thermochronometry: II. Accretion and thermal history of the acapulcoite-lodranite parent body.Earth and Planetary Science Letters, 284 (1-2): 168178. doi: 10.1016/j.epsl.2009.04.022.
    • , , , , and . . “Tungsten isotopes in ferroan anorthosites: Implications for the age of the Moon and lifetime of its magma ocean.Icarus, 199 (2): 245249. doi: 10.1016/j.icarus.2008.11.018.

    Research Articles (Journals)
    • , , , , , , and . . “Hf-W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals.Geochimica et Cosmochimica Acta, 72 (24): 61776197. doi: 10.1016/j.gca.2008.10.023.
    • , , , and . . “Early differentiation of the Earth and the Moon.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (1883): 41054128. doi: 10.1098/rsta.2008.0125.
    • , , , , , , and . . “Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body.Earth and Planetary Science Letters, 270 (1-2): 106118. doi: 10.1016/j.epsl.2008.03.013.
    Research Article (Book Contributions)
    • . . “Hf-W chronometry of planetary accretion and differentiation.” in Chemical Evolution across Space and Time: From the Big Bang to Prebiotic Chemistry, ACS Symposium Series 981, edited by L. Zaikowski and J. Friedrich. Oxford: Oxford University Press.

    • , , , , and . . “Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals.Nature, 450 (7173): 12061209. doi: 10.1038/nature06428.
    • , and . . “How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation.Icarus, 191 (2): 497504. doi: 10.1016/j.icarus.2007.05.002.
    • , , , , , and . . “Hafnium-tungsten chronometry of angrites and the earliest evolution of planetary objects.Earth and Planetary Science Letters, 262 (1-2): 214229. doi: 10.1016/j.epsl.2007.07.035.
    • , , , , , and . . “Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific.Earth and Planetary Science Letters, 254 (3-4): 377392. doi: 10.1016/j.epsl.2006.11.046.

    Research Articles (Journals)
    • , , , and . . “Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects.Earth and Planetary Science Letters, 242 (1-2): 115. doi: 10.1016/j.epsl.2005.11.048.
    Research Article (Book Contributions)
    • , and . . “Meteorites and the Timing, Mechanisms, and Conditions of Terrestrial Planet Accretion and Early Differentiation.” in Meteorites and the Early Solar System II, edited by D.S. Lauretta and H.Y. McSween. N/A: Selbstverlag / Eigenverlag.

    • , , , , and . . “Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from Hf-182-W-182 in CAIs, metal-rich chondrites, and iron meteorites.Geochimica et Cosmochimica Acta, 69 (24): 58055818. doi: 10.1016/j.gca.2005.07.012.
    • , , , and . . “Hf-W chronometry of lunar metals and the age and early differentiation of the Moon.Science, 310 (5754): 16711674. doi: 10.1126/science.1118842.
    • , , , , and . . “The W isotope composition of eucrite metals: constraints on the timing and cause of the thermal metamorphism of basaltic eucrites.Earth and Planetary Science Letters, 231 (1-2): 4152. doi: 10.1016/j.epsl.2004.12.016.

    • , , , , and . . “182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars.Geochimica et Cosmochimica Acta, 68 (13): 29352946. doi: 10.1016/j.gca.2004.01.009.
    • , , , and . . “The W isotope evolution of the bulk silicate Earth: constraints on the timing and mechanisms of core formation and accretion.Earth and Planetary Science Letters, 228 (1-2): 109123. doi: 10.1016/j.epsl.2004.09.023.
    • , , , , and . . “Crustal evolution along the Early Ordovician proto-Andean margin of Gondwana: Trace element and isotope evidence from the Complejo Igneo Pocitos (northwest Argentina).Journal of Geology, 112 (5): 503520. doi: 10.1086/422663.

    • , , , , , and . . “Evolution of planetary cores and the earth-moon system from Nb/Ta systematics.Science, 301 (5629): 8487. doi: 10.1126/science.1084662.

    • , , , and . . “Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry.Nature, 418 (6901): 952955. doi: 10.1038/nature00982.