Professor Dr. Harald Hiesinger

Professor Dr. Harald Hiesinger

Wilhelm-Klemm-Str. 10
48149 Münster

T: +49 251 83-39057
F: +49 251 83-36301

  • Research Foci

    • Geologic evolution of terrestrial planets and moons
    • Planetary processes
  • CV

    Academic Education

    Promotion
    Studium der Geologie, Ludwig-Maximilians-Universität München

    Positions

    Visiting Professor, Dept. of Geological Sciences, Brown University, Rhode Island, USA
    Professor für Geologische Planetologie
    Senior Research Associate, Dept. of Geological Sciences, Brown University, Rhode Island, USA
    Assistant Professor, Department of Physics and Earth Sciences, Central Connecticut State University, USA
    Research Associate, Dept. of Geological Sciences, Brown University, Rhode Island, USA
    Wissenschaftlicher Angestellter, Freie Universität Berlin
    Visiting Researcher, Dept. of Geological Sciences, Brown University, Rhode Island, USA
    Wissenschaftlicher Angestellter, Deutsches Zentrum für Luft- und Raumfahrt, Berlin
    Wissenschaftlicher Angestellter, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen

    Honors

    Angioletta Coradini Mid-Career AwardNASA’s Solar System Exploration Research Virtual Institute (SSERVI)
    ESA Group Achievement Award – European Space Agency
    ESA Group Achievement Award – European Space Agency
    Namenspatronat für AsteroidInternationale Astronomische Union
    NASA Group Achievement Award (GAA) – National Aeronautics and Space Administration (NASA)
    NASA Group Achievement Award (GAA) – National Aeronautics and Space Administration (NASA)
    Teaching Honor Role – Central Connecticut State University, USA

    External Functions

    Member of American Geophysical Union
    Member of Geologic Society of America
    Member of European Geophysical Union
  • Projects

  • Publications

    • , , , and . “Geologic History of Deuteronilus Cavus in the Ismenius Lacus Region, Mars.Journal of Geophysical Research: Planets, 129 (2) e2023JE008039. doi: 10.1029/2023JE008039.
    • , , , , and . . “Laboratory reflectance spectra of enstatite and oldhamite mixtures for comparison with Earth-based reflectance spectra of asteroid 2867 Šteins and Mercury.Planetary and Space Science, 224 105887. doi: 10.1016/j.pss.2024.105887.
    • , , , , , , and . . “Micro-FTIR reflectance spectroscopy of Ryugu, CI chondrites and volatile-rich clasts – Comparing spectral features in the Mid-IR (2.5–16.5 μm) region.Icarus, 420: 116189116189. doi: 10.1016/j.icarus.2024.116189.
    • , , , , , , , and . . “Synthetic analogs for lava flows on the surface of Mercury: A mid-infrared study.Icarus, 415 116078. doi: 10.1016/j.icarus.2024.116078.
    • , , , , , , , , , and . . “Slopes along Apollo EVAs: Astronaut experience as input for future mission planning.Acta Astronautica, 223: 184196. doi: 10.1016/j.actaastro.2024.07.006.
    • , , , , and . . “Geologic History of the Amundsen Crater Region Near the Lunar South Pole: Basis for Future Exploration.The Planetary Science Journal, 5 (147) doi: 10.3847/PSJ/ad2c04.
    • , , , , , , , and . . “Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.Journal of Geophysical Research: Planets, 129 (8): e2024JE0e2024JE008483. doi: 10.1029/2024JE008483.

    • , , , , , and . “Rheological properties and ages of lava flows on Alba Mons, Mars.Icarus, 389 doi: 10.1016/j.icarus.2022.115267.
    • , , , , , , , , , , and . “Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.Icarus, 391 doi: 10.1016/j.icarus.2022.115344.
    • , , , , and . “The young resurfacing events at Ceres' Occator crater: Seismic shaking or deposition of cryovolcanic material?Icarus, 389 doi: 10.1016/j.icarus.2022.115259.
    • , , , , , , , and . . “A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.Icarus, 396: 115498. doi: 10.1016/j.icarus.2023.115498.
    • , , , , , and . “A comparative analysis of global lunar crater catalogs using OpenCraterTool – An open source tool to determine and compare crater size-frequency measurements.Planetary and Space Science, 231 105687. doi: 10.1016/j.pss.2023.105687.
    • , , , , , , and . “Possible sites for a Chinese International Lunar Research Station in the Lunar South Polar Region.Planetary and Space Science, 227 doi: 10.1016/j.pss.2022.105623.
    • , , , , , and . “Timing and Origin of Compressional Tectonism in Mare Tranquillitatis.Journal of Geophysical Research: Planets, 128 (2) doi: 10.1029/2022JE007533.
    • , , , , , , , , and . . “Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.Earth and Space Science, 10 (6): e2023EA002903. doi: 10.1029/2023EA002903.
    • , , , , and . . “Geological mapping and chronology of lunar landing sites: Apollo 14.Icarus, 406 doi: 10.1016/j.icarus.2023.115732.
    • , , , , , , , , and . . “Mid-IR spectral properties of different surfaces of silicate mixtures before and after excimer laser irradiation.Icarus, 404: 115683115683. doi: 10.1016/j.icarus.2023.115683.
    • , , , , , , and . . “Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.Journal of Geophysical Research: Planets, 128 (12): e2023JE0. doi: 10.1029/2023JE007895.
    • , , , , , , , , , , , and . “The Lunar Cratering Chronology.Reviews in Mineralogy and Geochemistry, 89 (1): 401451. doi: 10.2138/rmg.2023.89.10.

    • , , , , , , and . . “Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.Earth and Planetary Science Letters, 593: 117647. doi: 10.1016/j.epsl.2022.117647.
    • , , , , , , , , and . “Brine residues and organics in the Urvara basin on Ceres.Nature Communications, 13 (1) 927. doi: 10.1038/s41467-022-28570-8.

    • , , , , , and . . “Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships.Journal of Geophysical Research, 126: e2020JE006693. doi: 10.1029/2020JE006693.
    • , , , , , , , , , , , , , , , , , and . . “China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials.Earth and Planetary Science Letters, 561: 116855. doi: 10.1016/j.epsl.2021.116855.
    • , , , , , and . . “Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum.Earth and Planetary Science Letters, 555: 116702. doi: 10.1016/j.epsl.2020.116702.
    • , , , , , , , and . . “Science-rich sites for in situ resource utilization characterization and end-to-end demonstration missions.The Planetary Science Journal, 2: 84. doi: 10.3847/PSJ/abedbb.
    • , , , , , , and . . “The Inner Solar System Chronology (ISOCHRON) lunar sample return mission concept: Revealing two billion years of history.The Planetary Science Journal, 2: 79. doi: 10.3847/PSJ/abe419.
    • , , , , , , , , , , , , , , , , , , , , , , , , , and . . “A Next Generation Lunar Orbiter Mission.Bulletin of the AAS, 53 (4) doi: 10.3847/25c2cfeb.8f28f012.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “NanoSWARM: NanoSatellites for Space Weathering, Surface Water, Solar Wind, and Remnant Magnetism.Bulletin of the AAS, 53 (4) doi: 10.3847/25c2cfeb.314447c9.
    • , , , , , , , , , , , , , , , , and . . “Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.Icarus, 361: 114363. doi: 10.1016/j.icarus.2021.114363.
    • , , , , , , , , , , , and . . “A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.ıcarus, 357: 114162. doi: 10.1016/j.icarus.2020.114162.
    • , , , , , , , , and . . “The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.Earth and Planetary Science Letters, 569: 117072. doi: 10.1016/j.epsl.2021.117072.
    • , , , , , , and . . “Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.Journal of Geophysical Research (Planets), 126 (8): e06832. doi: 10.1029/2021JE006832.
    • , , , and . “The lunar surface as a recorder of astrophysical processes: Astronomical events recorded by the Moon.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379 (2188) doi: 10.1098/rsta.2019.0562.

    • , , , , , and . . “Mid-infrared spectroscopy of alkali feldspar samples for space application.Mineralogy and Petrology, 114: 453–463. doi: 10.1007/s00710-020-00709-9.
    • , , , , , , , , , and . . “Impact melt facies in the Moon's Crisium basin: Identifying, characterizing, and future radiometric dating.Journal of Geophysical Research, 125: e2019JE006024. doi: 10.1029/2019JE006024.
    • , , , , , and . . “Degradation of small simple and large complex lunar craters: Not a simple scale dependence.Journal of Geophysical Research, 125: e2019JE006273. doi: 10.1029/2019JE006273.
    • , , , , , and . . “Re-examination of the population, stratigraphy, and sequence of mercurian basins: Implications for Mercury´s early impact history and comparison with the Moon.Journal of Geophysical Research, 125: e2019JE006212. doi: 10.1029/2019JE006212.
    • , , , , , , and . . “Troctolite 76535: A sample of the Moon’s South Pole-Aitken basin?Icarus, 338: 113430. doi: 10.1016/j.icarus.2019.113430.
    • , , , , , , , , , , , , and . . “Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.Space Science Reviews, 216 (6): 110. doi: 10.1007/s11214-020-00732-4.
    • , , , , , , , and . “Mid-infrerad reflectance spectroscopy of aubrite components.Meteoritics & Planetary Science, 55: 2080–2096. doi: 10.1111/maps.13568.
    • , , , , , , , , , , , and . . “Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study.Earth and Planetary Science Letters, 530 doi: 10.1016/j.epsl.2019.115884.
    • , , and . . “Geological mapping and chronology of lunar landing sites: Apollo 12.Icarus, 2020 113991. doi: 10.1016/j.icarus.2020.113991.

    • , , , , , , and . . “Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.Icarus, 324: 86103. doi: 10.1016/j.icarus.2019.02.010.
    • , , and . . “Geological mapping and chronology of lunar landing sites: Apollo 11.Icarus, 333: 528547. doi: 10.1016/j.icarus.2019.06.020.
    • , , , , , and . “Seasonal Formation Rates of Martian Slope Streaks.Icarus, 323: 7686. doi: 10.1016/j.icarus.2019.01.010.

    • , , , , , and . . “The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event.Icarus, 309: 4560. doi: 10.1016/j.icarus.2018.02.030.
    • , , , , , , and . . “Ancient bombardment of the inner Solar System - Reinvestigation of the "fingerprints" of different impactor populations on the lunar surface.Journal of Geophysical Research: Planets, 123: 748762. doi: 10.1002/2017JE005451.
    • , , , , , and . . “How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions.Icarus, 306: 225242. doi: 10.1016/j.icarus.2018.01.019.
    • , , , , , and . . “Geologic history of the northern portion of the South Pole-Aitken basin on the Moon.Journal of Geophysical Research: Planets, 123: 25852612. doi: 10.1029/2018JE005590.
    • , , and . . “Lunar farside volcanism in and around the South Pole-Aitken basin.Icarus, 299: 538562. doi: 10.1016/j.icarus.2017.07.023.
    • , , , , , , and . . “Dating very young planetary surfaces from crater statistics: A review of issues and challenges.Meteoritics and Planetary Science, 53: 554582. doi: 10.1111/maps.12924.
    • , , , , , and . . “Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the Moon.Planetary and Space Science, 162: 4151. doi: 10.1016/j.pss.2017.05.006.
    • , , , , , and . . “A new tool to account for crater obliteration effects in crater size-frequency distribution measurements.Earth and Space Science, 5 doi: 10.1002/2018ea000383.
    • , , and . “Lunar farside volcanism in and around the South Pole–Aitken basin.Icarus, 299 (null): 538562. doi: 10.1016/j.icarus.2017.07.023.
    • , , , , , , , , , , , , , , , , , , , , , , , and . “Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains.Icarus, null (null) doi: 10.1016/j.icarus.2018.01.022.
    • , , , , , , and . “The Multi-Temporal Database of Planetary Image Data (MUTED): A Web-Based Tool for Studying Dynamic Mars.Planetary Space and Science, 159: 5665. doi: 10.1016/j.pss.2018.04.015.
    • , , , , , , and . . “Reflectance spectra of synthetic Fe-free ortho-and clinoenstatites in the UV/VIS/IR and implications for remote sensing detection of Fe-free pyroxenes on planetary surfaces.Planetary and Space Science, 159 doi: 10.1016/j.pss.2018.04.006.
    • , , , , , , , , , , , , , , , , , , , , , , , , and . “Ceres' Ezinu quadrangle: A heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater.Icarus, 316: 4662. doi: 10.1016/j.icarus.2017.10.038.
    • , , , , , , , , , , , , , , , , and . . “Geology of Ceres’ North Pole quadrangle with Dawn FC imaging data.Icarus, 316: 1427. doi: 10.1016/j.icarus.2017.09.036.
    • , , , , , , , , , , , , , , , , , , , , and . “Geologic constraints on the origin of red organic-rich material on Ceres.Meteoritics and Planetary Science, 53 (9): 19831998. doi: 10.1111/maps.13008.
    • , , , , , , , , , , , , , , , , , , and . “Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust.Icarus, 316: 2845. doi: 10.1016/j.icarus.2017.06.015.

    • , , , , , , , , and . “Geological characterization of the three high-priority landing sites for the Luna-Glob mission.Planetary and Space Science, null (null) doi: 10.1016/j.pss.2017.08.004.
    • , , , , , and . “Laser alteration on iron sulfides under various environmental conditions.Journal of Raman Spectroscopy, 2017 doi: 10.1002/jrs.5083.
    • , , , , and . . “Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon.Icarus, 298: 7888. doi: 10.1016/j.icarus.2017.08.017.
    • , , , , , , and . . “Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.Icarus, 298: 4963. doi: 10.1016/j.icarus.2016.11.040.
    • , , , , , and . . “Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon.Icarus, 298: 6477. doi: 10.1016/j.icarus.2017.01.030.
    • , , , , and . “Chelyabinsk – a rock with many different (stony) faces: An infrared study.Icarus, 284 (null): 431442. doi: 10.1016/j.icarus.2016.11.030.
    • , , , , , and . . “Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps.Icarus, 292: 111124. doi: 10.1016/j.icarus.2016.12.034.
    • , , , , , , , , , , , , , , , , , , , , , , , , , and . “The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field.Meteoritics and Planetary Science, 52 (8): 16831703. doi: 10.1111/maps.12883.
    • , , , , , , , , , , , , , , , , , , , , , , and . “The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres' oldest, largest impact basin.Icarus, null (null) doi: 10.1016/j.icarus.2017.08.015.
    • , , , , , , , , , , and . “The formation and evolution of bright spots on Ceres.Icarus, null (null) doi: 10.1016/j.icarus.2017.10.014.
    • , , , , , , and . “Lunar mare TiO2 abundances estimated from UV/Vis reflectance.Icarus, 296 (null): 216238. doi: 10.1016/j.icarus.2017.06.013.
    • , , , , , and . “Investigating the shock histories of lunar meteorites Miller Range 090034, 090070, and 090075 using petrography, geochemistry, and micro-FTIR spectroscopy.Meteoritics and Planetary Science, 52 (6): 11031124. doi: 10.1111/maps.12860.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , and . “Geomorphological evidence for ground ice on dwarf planet Ceres.Nature Geoscience, 10 (5): 338343. doi: 10.1038/ngeo2936.
    • , , , , , , , , , , , , , , , , and . “Geology of Ceres' North Pole quadrangle with Dawn FC imaging data.Icarus, null (null) doi: 10.1016/j.icarus.2017.09.036.
    • , , , , and . . “Topography of the Deuteronilus contact on Mars: Evidence for an ancient water/mud ocean and long-wavelength topographic readjustments.Planetary and Space Science, 144: 4970. doi: 10.1016/j.pss.2017.05.012.

    Research Articles (Journals)
    • , , , , , and . “Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.Icarus, 278: 162179. doi: 10.1016/j.icarus.2016.06.013.
    • , , , , , , , and . “Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.Icarus, 264: 352368. doi: 10.1016/j.icarus.2015.10.003.
    • , , , , , , , , , , , , , , and . “The missing large impact craters on Ceres.Nature Communications, 7 (null) doi: 10.1038/ncomms12257.
    • , , , , , , , , , , , and . “The Lassell massif-A silicic lunar volcano.Icarus, 273 (null): 248261. doi: 10.1016/j.icarus.2015.12.036.
    • , , , , , , , , , , , , , , , , , , , , , , , , , and . “The geomorphology of Ceres.Science, 353 (6303) doi: 10.1126/science.aaf4332.
    • , , , , , , , and . “Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.Icarus, 264 (null): 352368. doi: 10.1016/j.icarus.2015.10.003.
    • , , , , , and . “Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.Icarus, 278 (null): 162179. doi: 10.1016/j.icarus.2016.06.013.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . “Dawn arrives at Ceres: Exploration of a small, volatile-rich world.Science, 353 (6303): 10081010. doi: 10.1126/science.aaf4219.
    • , , , , , , , , , , , , , , , , , , , , and . “Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism.Geophysical Research Letters, 43 (23): 11,99412,003. doi: 10.1002/2016GL070370.
    • , , , , , , and . “A geologically supervised spectral analysis of 121 globally distributed impact craters as a tool for identifying vertical and horizontal heterogeneities in the composition of the shallow crust of Mercury.Planetary and Space Science, 132 (null): 3256. doi: 10.1016/j.pss.2016.08.004.
    • , , , , , , , , , , , , and . . “Composition and structure of the shallow subsurface of Ceres revealed by crater morphology.Nature Geoscience, 9 (7): 538+. doi: 10.1038/NGEO2743.
    • , , , , , , , , , , , , , , , , , , , , , , , , , and . “Cryovolcanism on Ceres.Science, 353 (6303) doi: 10.1126/science.aaf4286.
    • , , , , , , , , , , , , , , , , , , , , , , and . “Cratering on ceres: Implications for its crust and evolution.Science, 353 (6303) doi: 10.1126/science.aaf4759.
    • , , , , , , , , , , , , , and . “Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.Meteoritics and Planetary Science, 51 (1): 330. doi: 10.1111/maps.12586.
    • , , , , and . “Crater size-frequency distribution measurements and age of the Compton-Belkovich volcanic complex.Icarus, 273: 214223. doi: 10.1016/j.icarus.2016.03.015.
    • , , and . . “Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits.Icarus, 273: 164181. doi: 10.1016/j.icarus.2016.02.018.
    • , , , , , , , , , , and . . “The Lassell Massif - A silicic lunar volcano.Icarus, 273: 248261. doi: 10.1016/j.icarus.2015.12.036.
    • , , , , , and . . “The Multi-Temporal Database of Planetary Image Data (MUTED): A Database to Support the Identification of Surface Changes and Short-Lived Surface Processes.Planetary and Space Science (PSS), 125: 4361. doi: 10.1016/j.pss.2016.03.002.
    • , , , , , and . . “Photogeologic mapping and the geologic history of the Hellas basin floor, Mars.Icarus, 264: 407442. doi: 10.1016/j.icarus.2015.09.031.
    • , , , , , , , , , , , and . . “An exceptional grouping of lunar highland smooth plains: Geography, morphology, and possible origins.Icarus, 273: 121134. doi: 10.1016/j.icarus.2015.06.028.
    • , , , and . . “The honeycomb terrain on the Hellas basin floor, Mars: A case for salt or ice diapirism.Journal of Geophysical Research, 121 doi: 10.1002/2016JE005007.
    Review (Journals)
    • , , , , , , , , , , , , , , , , , , , , and . “FC colour images of dwarf planet Ceres reveal a complicated geological history.Planetary and Space Science, 134 (null): 122127. doi: 10.1016/j.pss.2016.10.017.

    Research Articles (Journals)
    • , , , , , , and . “Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.Icarus, null (null) doi: 10.1016/j.icarus.2016.11.040.
    • , , , , and . “The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses.Meteoritics and Planetary Science, 50 (1): 141171. doi: 10.1111/maps.12408.
    • , , , , , , , , , and . “Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters.Planetary and Space Science, 119 (null): 250263. doi: 10.1016/j.pss.2015.10.007.
    • , , , , , , , , , and . “Near infrared spectroscopy of HED meteorites: Effects of viewing geometry and compositional variations.Icarus, 258 (null): 384401. doi: 10.1016/j.icarus.2015.06.034.
    • , , and . . “Small-scale lunar farside volcanism.Icarus, 257: 336354. doi: 10.1016/j.icarus.2015.04.040.
    • , , , , , , , , , and . “Landing site selection for Luna-Glob mission in crater Boguslawsky.Planetary and Space Science, 2015 (117): 4563. doi: 10.1016/j.pss.2015.05.007.
    • , , , and . . “Evidence for large reservoirs of water/mud in Utopia and Acidalia Planitiae on Mars.Icarus, 248: 383391. doi: 10.1016/j.icarus.2014.11.013.
    • , , , , , , , , and . . “Quantifying Geological Processes on Mars - Results of the High Resolution Stereo Camera (HRSC) on Mars Express.Planetary and Space Science (PSS), 112: 5397. doi: 10.1016/j.pss.2014.11.029.
    • , , , , , and . . “Present-day Seasonal Gully Activity in a South Polar Pit (Sisyphi Cavi) on Mars.Icarus, 251: 226243.
    Research Article (Book Contributions)
    • , , , and . “Volcanism and tectonism across the inner solar system: An overview.” in Volcanism and tectonism across the inner solar system: An overview, Vol.401 of Geological Society Special Publication, edited by Thomas Platz, Paul Byrne, Matteo Massironi and Harald Hiesinger. London: Geological Society of London. doi: 10.1144/SP401.22.

    Research Articles (Journals)
    • , and . . “Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean.Icarus, 228: 121140. doi: 10.1016/j.icarus.2013.09.018.
    • , , , , and . . “Water and Martian Habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance "Planetary Evolution and Life".Planetary and Space Sciences (PSS), 98: 128145. doi: 10.1016/j.pss.2014.02.013.
    • , , , , , , , , , , , , , , and . “The Miniature Radio Frequency instrument's (Mini-RF) global observations of Earth's Moon.Icarus, 243: 173190. doi: 10.1016/j.icarus.2014.07.018.
    • , , , , , and . . “Evidence for basaltic volcanism on the Moon within the past 100 millions years.Nature Geoscience, 12 October doi: 10.1038/ngeo2252.
    • , , , , and . “Estimation of lunar surface temperatures and thermophysical properties: Test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo.Planetary and Space Science, 101 (null): 2736. doi: 10.1016/j.pss.2014.06.004.
    • , , , and . “Modal mineralogy of the surface of Vesta: evidence for ubiquitous olivine and identification of meteorite analogue.Icarus, in press
    • , , , , , , , , , , , , , , and . “Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data.Journal of Geophysical Research, in press doi: 10.1002/2014JE004625.
    • , , , , , , , and . “Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations.Icarus, 235: 187206.
    • , , , , , and . “Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars.Icarus, null (null) doi: 10.1016/j.icarus.2014.03.040.
    • , , , , , , , , , , and . “Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta.Icarus, 2014
    • , , , , , , , , , , , , and . “Vesta’s north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes.Icarus, 2014 doi: 10.1016/j.icarus.2014.03.007.
    • , , , , , , , , , , , , , , , , , , and . “The Cratering Record, Chronology and Surface Ages of (4) Vesta in Comparison to Smaller Asteroids and the Ages of HED Meteorites.Planetary and Space Science, 2014
    • , , , , , and . . “Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.Icarus, 2014 doi: 10.1016/j.icarus.2014.01.035.
    • , , , , , , , , , , , , and . “Vesta's north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes.Icarus, null (null) doi: 10.1016/j.icarus.2014.03.007.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . “The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters.Icarus, null (null) doi: 10.1016/j.icarus.2014.01.033.
    • , , , , , , , , , , , , , , , , , , , and . “Geomorphology and structural geology of Saturnalia Fossae and nadjacent structures in the northern hemisphere of Vesta.Icarus, null (null) doi: 10.1016/j.icarus.2014.01.013.
    • , , , , , , , , , , , and . “Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.Icarus, null (null) doi: 10.1016/j.icarus.2014.01.035.
    • , , , , , and . . “Landscape Formation at the Deuteronilus Contact in Southern Isidis Planitia, Mars: Implications for an Isidis Sea?Icarus, 242: 329351. doi: 10.1016/j.icarus.2014.08.015.
    Other Scientific Publications
    • , , , , , , , , , and . . Landing Site Proposal for the 2018/2020 ExoMars Rover Mission: Southern Isidis Planitia, 1st LSSW, ESAC, Madrid,.

    • , , , , , , , , , and . . “Spectral reflectance properties of HED meteorites+CM2 carbonaceous chondrites: Comparison to HED grain size and compositional variations and implications for the nature of low-albedo features on Asteroid 4 Vesta.Icarus, 223 (2): 850877. doi: 10.1016/j.icarus.2013.02.003.
    • , , and . . “Lunar sinuous rilles: Distribution, characteristics, and implications for their origin.Planetary and Space Science, 79-80 (1): 138. doi: 10.1016/j.pss.2012.10.019.
    • , , , , , , , , , , , , , , , , , , , , , , , and . . “Dawn completes its mission at 4 Vesta.Meteoritics and Planetary Science, 10.1111/maps.12091 doi: 10.1111/maps.12091.
    • , , , , , , and . “The Developing of MERTIS as an advanced process – From the study up to the flight model.Proceedings of SPIE, 8867 doi: 10.1117/12.2024375.
    • , , , , , , , , , , , , , , , , , , , , , and . “Olivine in an unexpected location on Vesta’s surface.Nature, 504 doi: 10.1038/nature12665.
    • , , , , , , , and . “The 2.5-5.1μm reflectance spectra of HED meteorites and their constituent minerals: Implications for Dawn.Icarus, 225 (1): 581601. doi: 10.1016/j.icarus.2013.04.022.
    • , , , , , , , , , , , , , , , , , , , , , and . “Olivine in an unexpected location on Vesta's surface.Nature, 504 (7478): 122125. doi: 10.1038/nature12665.
    • , , , , and . . “Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars.Planetary and Space Science, 85: 261278. doi: 10.1016/j.pss.2013.06.022.

    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “Vesta's shape and morphology.Science, 336 (6082): 687690. doi: 10.1126/science.1219122.
    • , , , , , , , , , , , and . . “The present-day flux of large meteoroids on the lunar surface - A synthesis of models and observational techniques.Planetary and Space Science, 74 (1): 179193. doi: 10.1016/j.pss.2012.10.005.
    • , , , , , and . . “Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification.Icarus, 220 (1): 3650. doi: 10.1016/j.icarus.2012.04.008.
    • , , , , , , , , , , , , , , , , , , , , and . . “Geology, geochemistry, and geophysics of the Moon: Status of current understanding.Planetary and Space Science, 74 (1): 1541. doi: 10.1016/j.pss.2012.08.019.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , and . . “Dark material on Vesta from the infall of carbonaceous volatile-rich material.Nature, 491 (7422): 8386. doi: 10.1038/nature11561.
    • , , and . . “Gullies and their relationships to the dust-ice mantle in the northwestern Argyre Basin, Mars.Icarus, 219 (1): 129141.
    • , , and . “Rheologies and ages of lava flows on Elysium Mons, Mars.Icarus, 219 (1): 443457. doi: 10.1016/j.icarus.2012.03.014.
    • , , , , and . “Surface age of the ice-dust mantle deposit in Malea Planum, Mars.Planetary and Space Science, 60: 199206.
    • , , and . . “Major episodes of geologic history of Isidis Planitia on Mars.Icarus, 218: 2446. doi: 10.1016/j.icarus.2011.11.029.
    • , , , and . . “Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past: Insights from solifluction lobes on Svalbard.Icarus, 218: 489505.
    • , , , , , , , , , , and . “Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx.Journal of Geophysical Research, 117 (E00J13) doi: 10.1029/2012JE004108.
    • , , , , , , , , , , and . . “Geology of the King crater region: New insights into impact melt dynamics on the Moon.Journal of Geophysical Research, 117: E00H29. doi: 10.1029/2011JE003990.
    • , , , , , , , and . . “Confirmation of sublunarean voids and thin layering in mare deposits.Planetary and Space Science, 69 (1): 1827. doi: 10.1016/j.pss.2012.05.008.
    • , , , and . . “Valleys, Paleolakes and Possible Shorelines at the Libya Montes / Isidis Boundary: Implications for the Hydrologic Evolution of Mars.Icarus, 2012 (219): 393413. doi: 10.1016/j.icarus.2012.03.012.
    • , , , , , , , , and . “MERTIS - The Thermal Infrared Imaging Spectrometer Onboard of the Mercury Planetary Orbiter.Proceedings of ICSO, 162
    • , , , , , , , and . “Valleys, paleolakes and possible shorelines at the Libya Montes/Isidis boundary: Implications for the hydrologic evolution of Mars.Icarus, 219 (1): 393413. doi: 10.1016/j.icarus.2012.03.012.
    • , , , and . “Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.Journal of Geophysical Research, 117 (3) doi: 10.1029/2011JE004000.
    • , , , and . . “Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.Journal of Geophysical Research, 117
    • , , , , , , and . “How old are young lunar craters?Journal of Geophysical Research, 117 doi: 10.1029/2011JE003935.

    Articles
    Research Articles (Journals)
    • , , , , , , , , , , , , , and . . “Non-mare silicic volcanism on the lunar farside at Compton-Belkovich.Nature Geoscience, 4 (8): 566571. doi: 10.1038/ngeo1212.
    • , , , , , , , , , , , , , , and . “Terrestrial gullies and debris-flow tracks on Svalbard as planetary analogs for Mars.Geological Society of America Special Paper, 483: 165175.
    • , , , , , , , , , , , , , , and . “Periglacial landscapes on Svalbard: Terrestrial analogs for cold-climate landforms on Mars.Geological Society of America Special Paper, 483: 177201.
    • , , , , , , , , , , , , and . “Landscape evolution in Martian mid-latitude regions: Insights from analogous periglacial landforms in Svalbard.Geological Society London, Special Publications, 356: 111131.
    • , , , , , , , , , and . “Evaluation of neutron sources for ISAGE-in-situ-NAA for a future lunar mission.Applied Radiation and Isotopes, 69 (11): 16251629. doi: 10.1016/j.apradiso.2011.05.025.
    • , , and . “Bright dust devil tracks on Earth: Implications for their formation on Mars.Icarus, 211: 917920.
    • , , , , and . . “The Stratigraphy of the Amenthes Region, Mars: Time limits for the Formation of Fluvial, Volcanic and Tectonic Landforms.Icarus, 215 (1): 128152. doi: 10.1016/j.icarus.2011.06.041.
    • , , , , , , , , , and . . “Ages and stratigraphy of lunar mare basalts: A synthesis.Geol. Soc. Am. Special Paper, 477 (477): 151.
    • , , , , , , , , , , , , , , , , , and . . “Timing and characteristics of the latest mare eruption on the Moon.Earth and Planetary Science Letters, 302 (3-4): 255266. doi: 10.1016/j.epsl.2010.12.028.
    Research Article (Book Contributions)
    • , , , , , , , , , , , , , and . “Terrestrial gullies and debris-fl ow tracks on Svalbard as planetary analogs for Mars.” in Analogs for Planetary Exploration, Vol.483 of Special Paper of the Geological Society of America, edited by Geological Society of America. N/A: unbekannt / n.a. / unknown. doi: 10.1130/2011.2483(11).
    Other Scientific Publications
    • , , , , , , , , and . . Libya Montes Layered Delta Deposits and Possible Coastal Cliffs, Mars: New Candidate Landing Site Proposal for Potential Future Missions after MSL Curiosity,

    Research Articles (Journals)
    • , , , and . “Morphologic, stratigraphic and morphometric investigations of valley networks in eastern Libya Montes, Mars: Implications for the Noachian/Hesperian climate change.Earth and Planetary Science Letters, 294: 291305. doi: 10.1016/j.epsl.2009.08.008.
    • , , , and . “Mars geology from three - dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express. An introduction to the special issue of Earth Planetary Science Letters.Earth and Planetary Science Letters, 294 (null): 183184. doi: 10.1016/j.epsl.2010.04.040.
    • , , , and . “Evidence for present day gully activity on the Russell crater dune field, Mars.Geophysical Research Letters, 37 (6) doi: 10.1029/2009GL042192.
    • , , , , and . “First in‐situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.Geophysical Research Letters, 37 (14) doi: 10.1029/2010GL044016.
    • , , , , , , , , , , and . . “Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera.Science, 329 (5994): 936940. doi: 10.1126/science.1189590.
    • , , , , and . . “First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.Geophysical Research Letters, 37
    • , , , and . . “Mars geology from three-dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express An introduction to the special issue of Earth Planetary Science Letters.Earth and Planetary Science Letters, 294 (3-4): 183184. doi: 10.1016/j.epsl.2010.04.040.
    • , , , , , , and . . “Dike indicators in the Hadriaca Patera-Promethei Terra region, Mars.Earth and Planetary Science Letters, 294 (3-4): 466478. doi: 10.1016/j.epsl.2009.06.038.
    • , , , , and . . “Distribution and evolution of scalloped terrain in the southern hemisphere, Mars.Icarus, 206 (2): 691706. doi: 10.1016/j.icarus.2009.09.010.
    • , , , , and . . “Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements.Journal of Geophysical Research, 115
    • , and . . “The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission.Planetary and Space Science, 58 (1-2): 144165. doi: 10.1016/j.pss.2008.09.019.
    • , , , , , , , , , , , , , , , , , , , , , , , , and . . “Mercury's surface and composition to be studied by BepiColombo.Planetary and Space Science, 58 (1-2): 2139. doi: 10.1016/j.pss.2008.09.001.
    • , , , , , , , , , , , , , , , , , , , , , , and . . “Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview.Space Science Reviews, 150 (1-4): 81124. doi: 10.1007/s11214-010-9634-2.
    Non-Scientific Contributions (Journals)
    • , and . “Die thermische Entwicklung und das Innere der Planeten - Erde und Mond.Astronomie und Raumfahrt im Unterricht, 47 (115): 47.
    • , and . “Die thermische Entwicklung und das Innere der Planeten - Die erdähnlichen Planeten.Astronomie und Raumfahrt im Unterricht, 47 (116): 3436.
    • , and . “Die thermische Entwicklung und das Innere der Planeten - Die jupiterähnlichen Planeten.Astronomie und Raumfahrt im Unterricht, 47 (117/118): 6569.

    • , , , and . “Regional differences in gully occurrence on Mars: A comparison between the Hale and Bond craters.Planetary and Space Science, 57: 958974.
    • , , , , , , , , , , , , , and . . “Possible lunar lava tube skylight observed by SELENE cameras.Geophysical Research Letters, 36 doi: 10.1029/2009GL040635.
    • , , and . . “Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages.Planetary and Space Science, 57 (7): 784796. doi: 10.1016/j.pss.2009.02.002.

    • , , , , , , and . . “Mercury radiometer and thermal infrared spectrometer-a novel thermal imaging spectrometer for the exploration of Mercury.Journal of Applied Remote Sensing, 2
    • , , , , , , , , and . . “Identification of a new outflow channel on Mars in Syrtis Major Planum using HRSC/MEx data.Planetary and Space Science, 56 (7): 10301042. doi: 10.1016/j.pss.2008.01.011.

    • , , and . “Young lava flows on the eastern flank of Ascaraeus Mons: Rheological properties derived from High Resolution Stereo Camera(HRSC) images and Mars Orbiter Laser Altimeter(MOLA) data.Journal of Geophysical Research, 112 (5) doi: 10.1029/2006JE002717.
    • , , and . . “Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data.Journal of Geophysical Research, 112 (E5)

    • , and . . “New views of lunar geoscience: An introduction and overview.” in New Views of the Moon, edited by Mineralogical Society of America.

    • , , , , , , , , , , , , , , and . “Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera.Geophysical Research Letters, 32 (16) doi: 10.1029/2005GL023415.
    • , , , , , , , , , , , , and . . “Are there active glaciers on Mars? Reply.Nature, 438 (7069): E10E10.
    • , , , , , , , , , , , , and . . “Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars.Nature, 434 (7031): 346351. doi: 10.1038/nature03359.

    • , , , , , and . . “Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR).Planetary and Space Science, 52 (14): 12611285. doi: 10.1016/j.pss.2004.09.002.
    • , and . . “The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data.Journal of Geophysical Research, 109 (E1)

    • , , , , and . . “Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum.Journal of Geophysical Research, 108 (E7)

    • , and . . “Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history.Planetary and Space Science, 50 (10-11): 939981. doi: 10.1016/S0032-0633(02)00054-5.
    • , , , , and . . “Lunar mare basalt flow units: Thicknesses determined from crater size-frequency distributions.Geophysical Research Letters, 29 (8): 1248.

    Research Articles (Journals)
    • , , , and . . “Ages of mare basalts on the lunar nearside.Journal of Geophysical Research, 105 (E12): 2923929275. doi: 10.1029/2000JE001244.
    • , and . . “Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera Data.Journal of Geophysical Research, 105 (E5): 1199912022. doi: 10.1029/1999JE001193.
    Research Article (Book Contributions)
    • , , , , , and . “Moon and Mercury: Volcanism in early planetary history.” in Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, edited by J.R. Zimbelmann and T.K. P. Gregg. Dordrecht: Kluwer Academic.
    Non-Scientific Contributions (Journals)
    • , and . “Vulkanismus auf der Venus.Astronomie und Raumfahrt im Unterricht, 37 (3): 1621.
    • , and . . “Vulkanismus auf dem Mond.Astronomie und Raumfahrt im Unterricht, 37 (3): 915.

    • , , , , , , , , , , , , and . . “Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data.Science, 286: 21342137. doi: 10.1126/science.286.5447.2134.
    • , , , , , and . “Structural wavelengths of Ganymede grooved terrain determined from Fourier analysis of Galileo images.J. Geophys. Res., 104 (E10): 2405724074.

    • , , , , , , , and . “Oceans in the past history of Mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data.Geophys. Res. Lett., 25 (4): 44014404.

    • , , , and . “Multispektrale und photogrammetrische Auswertung von Clementine-Daten des Erdmondes.DLR-Nachrichten, 83 (83): 1727.