Research Foci
- Geologic evolution of terrestrial planets and moons
- Planetary processes
CV
Academic Education
- Promotion
- Studium der Geologie, Ludwig-Maximilians-Universität München
Positions
- Visiting Professor, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Professor für Geologische Planetologie
- Senior Research Associate, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Assistant Professor, Department of Physics and Earth Sciences, Central Connecticut State University, USA
- Research Associate, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Wissenschaftlicher Angestellter, Freie Universität Berlin
- Visiting Researcher, Dept. of Geological Sciences, Brown University, Rhode Island, USA
- Wissenschaftlicher Angestellter, Deutsches Zentrum für Luft- und Raumfahrt, Berlin
- Wissenschaftlicher Angestellter, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen
Honors
- Angioletta Coradini Mid-Career Award – NASA’s Solar System Exploration Research Virtual Institute (SSERVI)
- ESA Group Achievement Award – European Space Agency
- ESA Group Achievement Award – European Space Agency
- Namenspatronat für Asteroid – Internationale Astronomische Union
- NASA Group Achievement Award (GAA) – National Aeronautics and Space Administration (NASA)
- NASA Group Achievement Award (GAA) – National Aeronautics and Space Administration (NASA)
- Teaching Honor Role – Central Connecticut State University, USA
External Functions
- Member of American Geophysical Union
- Member of Geologic Society of America
- Member of European Geophysical Union
Projects
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
participations in other joint project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50QW2201A - MUTED – Künstliche Intelligenz (KI) - gesteuerte Datenprozessierung und -auswertung mit der Multitemporalen Datenbank ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50OO2102 - CRC TRR 170 - A02: Constraining the age of the South Pole-Aitken basin and the lunar landing sites - implications for the lunar chronology ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/2 - CRC TRR 170 - A06: Comparative morphologies, ejecta plains, and ages of impact basins on the Moon and Mercury ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/2 - Missionsunterstützende und wissenschaftliche Arbeiten mit Daten der Lunar Reconnaissance Orbiter Camera (LROC) und Vorbereitung zukünftiger Mondmissionen ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50OW2001 - Europlanet 2024 Research Infrastructure ( – )
EU-Project Hosted outside the University of Münster: EC H2020 - Research and innovation actions | Project Number: 871149 - Lunar Science und Exploration Consortium ( – )
Individual Granted Project: Sino-German Center for Research Promotion | Project Number: M-0016 - BC MERTIS: Systemtests, Start, Inbetriebnahme, Cruise-Phase Teil 1 ( – )
participations in other joint project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50QW1701 - Missionsunterstützende Arbeiten und Untersuchung der Geologie des Asteroiden Ceres ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50OW1802 - PLANMAP – PLANMAP - Planetary Mapping ( – )
EU-Project Hosted outside the University of Münster: EC H2020 - Research and innovation actions | Project Number: 776276 - Lunar Reconnaissance Orbiter Camera mission support and geological studies of the lunar surface ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50OW1504 - CRC TRR 170 - A02: Constraining the age of the South Pole–Aitken basin and the lunar landing sites – implications for the lunar chronology ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/1 - Commercial ISRU Mission Preparation Phase ( – )
Individual Granted Project: OHB Italia SpA | Project Number: 2306/18/02 - SPP 1833 - Subproject: Modelling of accretion and differentiation of the proto-Earth and its building blocks ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Priority Programme | Project Number: NE 2055/1-1 - Untersuchungen von Oberflächenaltern und der Geologie des Asteroiden Ceres ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50OW1502 - HRSC III – Die multi-temporale High Resolution Stereo Camera (HRSC) Bilddatenbank - Weiterentwicklung basierend auf Anfragen des HRSC PI, des HRSC Teams und der internationalen wissenschaftlichen Gemeinschaft ( – )
Individual Granted Project: Federal Ministry of Economic Affairs and Climate Action | Project Number: 50QM1501 - Das Apollo Becken auf dem Mond: Untersuchung der stratigraphischen Position, der absoluten Modellalter und des Zusammenhangs mit vulkanischer Aktivität auf der erdabgewandten Mondseite ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: HI 1410/12-1 - New Views of the Moon 2 - Europe; 04.05. - 05.05.2017 in Münster ( – )
Scientific Event: Participation / conference fees - The European Lunar Symposium 2017, Münster, 02.05. - 03.05.2017 ( – )
Scientific Event: Participation / conference fees - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase E/F1 ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50QW1302 - Laboruntersuchungen im Spektralbereich UV, VIS, IR zur Charakterisierung der mineralogischen Zusammensetzung von Fe-armen Oberflächen, von space weathering Prozessen an Fe-armen Körpern sowie um Reflektanzspektren von organischen Analoga für die Interpretation der VIRTIS/Rosetta-Spektren von 67p/ Churyumov-Gerasimenko für den Aufbau einer Datenbank zur Verfügung zu stellen ( – )
Individual Granted Project: German Aerospace Center - Thumbprint Terrain in den nördlichen Tiefländern des Mars: Bildungsmechanismen und die Beziehung zu einem nördlichen Ozean ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: HI 1410/11-1 - Geologie einer Region an der Grenze zwischen der untere und der oberen Vastita Borealis Formation: Untersuchung der Hesperischen hydrologischen Aktivität und langwelliger Topographieveränderungen auf dem Mars ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: HI 1410/10-1 - LROC – LROC-Missionsupport ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50OW0901 - Crater Studies and the Dating of Planetary Surfaces ( – )
Individual Granted Project: Barringer Crater Company - HRSC II – Development of a multitemporal data archive of High Resolution Stereo Camera (HRSC) images ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50QM1101 - Geological characteristics and topographic configuration of the edge of the Vastitas Borealis Formation: Implications for a Hesperian ocean on Mars ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: HI 1410/9-1 - Ages, mineralogy and volumes of lunar basalts in Mare Crisium and on the lunar farside ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: HI 1410/3-1 - Algorithmische Verbesserung einer Multi-Spektrum-Retrievalmethode ( – )
Individual Granted Project: Wirtschaft - Determination of surface ages and mineralogy of asteroid 4 Vesta ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50OW1102 - Evidence for mud volcanism in Acidalia Planitia: Implications for a Hesperian ocean on Mars ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: HI 1410/8-1 - Planetary evolution and life ( – )
Individual Granted Project: German Aerospace Center | Project Number: HA-203 - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase D/C2 ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50QW0901 - Thumbprint Terrain on Mars: Utopia and Isidis Comparison ( – )
Individual Granted Project: DFG - Initiation of International Collaboration | Project Number: HI 1410/5-1 - Mud volcanism in Utopia Planitia ( – )
Individual Granted Project: DFG - Initiation of International Collaboration | Project Number: HI 1410/7-1; 598589 - Einfluss lateraler Oberflächenbedingungen auf die Manteldynamik terrestrischer Planeten ( – )
Individual Granted Project: German Aerospace Center | Project Number: D/957/67144877 - Auftragsstudie "3D-Konvektionsmodell - Manteldynamik und Plattentektonik terrestrischer Planeten" ( – )
Individual Granted Project: German Aerospace Center - Virtis-Interpretation of Rosetta data from flybys at asteroids Steins and Lutetia ( – )
Individual Granted Project: Wirtschaft - Auftragsstudie "Untersuchungen zur Entkopplung von Wolkenparametern und Temperaturprofilen der Venus-Troposphäre zur Optimierung der Retrievalalgorithmen für die Bestimmung von Oberflächenemissivitäten auf der Basis von VEX/VIRTIS-Daten" ( – )
Individual Granted Project: German Aerospace Center | Project Number: D/957/67132390 - Auftragsstudie eines 3D Konvektionsprogramms sowie Modellrechnungen für den Mars, Auswertung von Virtis Daten, Thermische Entwicklung von Planetesimalen ( – )
Individual Granted Project: German Aerospace Center - The formation of thumbprint terrain on Mars ( – )
Individual Granted Project: DFG - Initiation of International Collaboration | Project Number: HI 1410/4-1 - Habitability and Planetary Dynamics - A new Tool for the Determination of zones with extinct or extant life on Mars ( – )
Individual Granted Project: German Aerospace Center, European Space Agency - Grant Award from The Barringer Family Fund for Meteorite Impact Research ( – )
Individual Granted Project: Barringer Crater Company - HRSC - Geologic Evolution of Mars ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50QM0702 - SERTIS Phase A Studie ( – )
Individual Granted Project: German Aerospace Center - The history of tectonism, volcanism and fluvial activity in the Amenthes Planum region of Mars ( – )
Individual Granted Project: DFG - Initiation of International Collaboration | Project Number: HI 1410/2-1 - MERTIS – Mercury Radiometer & Thermal Infrared Spectrometer, Phase B/C1 ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 50QW0601 - EUROPLANET – European Planetology Network ( – )
EU-Project Hosted outside the University of Münster: EC FP 6 - Integrating activities implemented as Coordination Actions | Project Number: 1637
- BC MERTIS: Cruise Phase Teil 2 - Teilvorhaben Labormessung und Missionsunterstützung ( – )
Publications
- 10.1029/2023JE008039. . ‘Geologic History of Deuteronilus Cavus in the Ismenius Lacus Region, Mars.’ Journal of Geophysical Research: Planets 129, № 2: e2023JE008039. doi:
- . . ‘Laboratory reflectance spectra of enstatite and oldhamite mixtures for comparison with Earth-based reflectance spectra of asteroid 2867 Šteins and Mercury.’ Planetary and Space Science 224: 105887. doi: 10.1016/j.pss.2024.105887.
- . . ‘Micro-FTIR reflectance spectroscopy of Ryugu, CI chondrites and volatile-rich clasts – Comparing spectral features in the Mid-IR (2.5–16.5 μm) region.’ Icarus 420: 116189. doi: 10.1016/j.icarus.2024.116189.
- . . ‘Synthetic analogs for lava flows on the surface of Mercury: A mid-infrared study.’ Icarus 415: 116078. doi: 10.1016/j.icarus.2024.116078.
- . . ‘Slopes along Apollo EVAs: Astronaut experience as input for future mission planning.’ Acta Astronautica 223: 184–196. doi: 10.1016/j.actaastro.2024.07.006.
- . . ‘Geologic History of the Amundsen Crater Region Near the Lunar South Pole: Basis for Future Exploration.’ The Planetary Science Journal 5, № 147. doi: 10.3847/PSJ/ad2c04.
- . . ‘Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution.’ Journal of Geophysical Research: Planets 129, № 8: e2024JE0–e2024JE008483. doi: 10.1029/2024JE008483.
- 10.1016/j.icarus.2022.115267. . ‘Rheological properties and ages of lava flows on Alba Mons, Mars.’ Icarus 389. doi:
- 10.1016/j.icarus.2022.115344. . ‘Simulation of surface regolith gardening and impact associated melt layer production under ns-pulsed laser ablation.’ Icarus 391. doi:
- 10.1016/j.icarus.2022.115259. . ‘The young resurfacing events at Ceres' Occator crater: Seismic shaking or deposition of cryovolcanic material?’ Icarus 389. doi:
- . . ‘A mid-infrared study of synthetic glass and crystal mixtures analog to the geochemical terranes on mercury.’ Icarus 396: 115498. doi: 10.1016/j.icarus.2023.115498.
- 10.1016/j.pss.2023.105687. . ‘A comparative analysis of global lunar crater catalogs using OpenCraterTool – An open source tool to determine and compare crater size-frequency measurements.’ Planetary and Space Science 231: 105687. doi:
- 10.1016/j.pss.2022.105623. . ‘Possible sites for a Chinese International Lunar Research Station in the Lunar South Polar Region.’ Planetary and Space Science 227. doi:
- 10.1029/2022JE007533. . ‘Timing and Origin of Compressional Tectonism in Mare Tranquillitatis.’ Journal of Geophysical Research: Planets 128, № 2. doi:
- . . ‘Mid-Infrared Spectroscopy of Feldspars From the Bühl Basalt (Northern Hesse, Germany) Formed Under Reducing Conditions as Terrestrial Analogue of Mercury for MERTIS.’ Earth and Space Science 10, № 6: e2023EA002903. doi: 10.1029/2023EA002903.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 14.’ Icarus 406. doi: 10.1016/j.icarus.2023.115732.
- . . ‘Mid-IR spectral properties of different surfaces of silicate mixtures before and after excimer laser irradiation.’ Icarus 404: 115683. doi: 10.1016/j.icarus.2023.115683.
- . . ‘Mid-infrared spectroscopy of sulfidation reaction products and implications for sulfur on Mercury.’ Journal of Geophysical Research: Planets 128, № 12: e2023JE0. doi: 10.1029/2023JE007895.
- 10.2138/rmg.2023.89.10. . ‘The Lunar Cratering Chronology.’ Reviews in Mineralogy and Geochemistry 89, № 1: 401–451. doi:
- . . ‘Sulfides and hollows formed on Mercury’s surface by reactions with reducing S-rich gases.’ Earth and Planetary Science Letters 593: 117647. doi: 10.1016/j.epsl.2022.117647.
- 10.1038/s41467-022-28570-8. . ‘Brine residues and organics in the Urvara basin on Ceres.’ Nature Communications 13, № 1: 927. doi:
- . . ‘Studying the global spatial randomness of impact craters on Mercury, Venus, and the Moon with geodesic neighborhood relationships.’ Journal of Geophysical Research 126: e2020JE006693. doi: 10.1029/2020JE006693.
- . . ‘China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials.’ Earth and Planetary Science Letters 561: 116855. doi: 10.1016/j.epsl.2021.116855.
- . . ‘Young lunar mare basalts in the Chang'e-5 sample return region, northern Oceanus Procellarum.’ Earth and Planetary Science Letters 555: 116702. doi: 10.1016/j.epsl.2020.116702.
- . . ‘Science-rich sites for in situ resource utilization characterization and end-to-end demonstration missions.’ The Planetary Science Journal 2: 84. doi: 10.3847/PSJ/abedbb.
- . . ‘The Inner Solar System Chronology (ISOCHRON) lunar sample return mission concept: Revealing two billion years of history.’ The Planetary Science Journal 2: 79. doi: 10.3847/PSJ/abe419.
- . . ‘A Next Generation Lunar Orbiter Mission.’ Bulletin of the AAS 53, № 4. doi: 10.3847/25c2cfeb.8f28f012.
- . . ‘NanoSWARM: NanoSatellites for Space Weathering, Surface Water, Solar Wind, and Remnant Magnetism.’ Bulletin of the AAS 53, № 4. doi: 10.3847/25c2cfeb.314447c9.
- . . ‘Mid-infrared reflectance spectroscopy of synthetic glass analogs for mercury surface studies.’ Icarus 361: 114363. doi: 10.1016/j.icarus.2021.114363.
- . . ‘A shock recovery experiment and its implications for Mercury's surface: The effect of high pressure on porous olivine powder as a regolith analog.’ ıcarus 357: 114162. doi: 10.1016/j.icarus.2020.114162.
- . . ‘The effect of excimer laser irradiation on mid-IR spectra of mineral mixtures for remote sensing.’ Earth and Planetary Science Letters 569: 117072. doi: 10.1016/j.epsl.2021.117072.
- . . ‘Mid-Infrared Spectroscopy of Anorthosite Samples From Near Manicouagan Crater, Canada, as Analogue for Remote Sensing of Mercury and Other Terrestrial Solar System Objects.’ Journal of Geophysical Research (Planets) 126, № 8: e06832. doi: 10.1029/2021JE006832.
- 10.1098/rsta.2019.0562. . ‘The lunar surface as a recorder of astrophysical processes: Astronomical events recorded by the Moon.’ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, № 2188. doi:
- . . ‘Mid-infrared spectroscopy of alkali feldspar samples for space application.’ Mineralogy and Petrology 114: 453–463. doi: 10.1007/s00710-020-00709-9.
- . . ‘Impact melt facies in the Moon's Crisium basin: Identifying, characterizing, and future radiometric dating.’ Journal of Geophysical Research 125: e2019JE006024. doi: 10.1029/2019JE006024.
- . . ‘Degradation of small simple and large complex lunar craters: Not a simple scale dependence.’ Journal of Geophysical Research 125: e2019JE006273. doi: 10.1029/2019JE006273.
- . . ‘Re-examination of the population, stratigraphy, and sequence of mercurian basins: Implications for Mercury´s early impact history and comparison with the Moon.’ Journal of Geophysical Research 125: e2019JE006212. doi: 10.1029/2019JE006212.
- . . ‘Troctolite 76535: A sample of the Moon’s South Pole-Aitken basin?’ Icarus 338: 113430. doi: 10.1016/j.icarus.2019.113430.
- . . ‘Studying the Composition and Mineralogy of the Hermean Surface with the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo Mission: An Update.’ Space Science Reviews 216, № 6: 110. doi: 10.1007/s11214-020-00732-4.
- 10.1111/maps.13568. . ‘Mid-infrerad reflectance spectroscopy of aubrite components.’ Meteoritics & Planetary Science 55: 2080–2096. doi:
- . . ‘Space weathering by simulated micrometeorite bombardment on natural olivine and pyroxene: A coordinated IR and TEM study.’ Earth and Planetary Science Letters 530. doi: 10.1016/j.epsl.2019.115884.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 12.’ Icarus 2020: 113991. doi: 10.1016/j.icarus.2020.113991.
- . . ‘Mid-infrared spectroscopy of planetary analogs: A database for planetary remote sensing.’ Icarus 324: 86–103. doi: 10.1016/j.icarus.2019.02.010.
- . . ‘Geological mapping and chronology of lunar landing sites: Apollo 11.’ Icarus 333: 528–547. doi: 10.1016/j.icarus.2019.06.020.
- 10.1016/j.icarus.2019.01.010. . ‘Seasonal Formation Rates of Martian Slope Streaks.’ Icarus 323: 76–86. doi:
- . . ‘ The age of lunar mare basalts south of the Aristarchus Plateau and effects of secondary craters formed by the Aristarchus event.’ Icarus 309: 45–60. doi: 10.1016/j.icarus.2018.02.030.
- . . ‘Ancient bombardment of the inner Solar System - Reinvestigation of the "fingerprints" of different impactor populations on the lunar surface.’ Journal of Geophysical Research: Planets 123: 748–762. doi: 10.1002/2017JE005451.
- . . ‘How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions.’ Icarus 306: 225–242. doi: 10.1016/j.icarus.2018.01.019.
- . . ‘Geologic history of the northern portion of the South Pole-Aitken basin on the Moon.’ Journal of Geophysical Research: Planets 123: 2585–2612. doi: 10.1029/2018JE005590.
- . . ‘Lunar farside volcanism in and around the South Pole-Aitken basin.’ Icarus 299: 538–562. doi: 10.1016/j.icarus.2017.07.023.
- . . ‘Dating very young planetary surfaces from crater statistics: A review of issues and challenges.’ Meteoritics and Planetary Science 53: 554–582. doi: 10.1111/maps.12924.
- . . ‘Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the Moon.’ Planetary and Space Science 162: 41–51. doi: 10.1016/j.pss.2017.05.006.
- . . ‘A new tool to account for crater obliteration effects in crater size-frequency distribution measurements.’ Earth and Space Science 5. doi: 10.1002/2018ea000383.
- 10.1016/j.icarus.2017.07.023. . ‘Lunar farside volcanism in and around the South Pole–Aitken basin.’ Icarus 299, № null: 538–562. doi:
- 10.1016/j.icarus.2018.01.022. [online first] . ‘Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains.’ Icarus null, № null. doi:
- 10.1016/j.pss.2018.04.015. . ‘The Multi-Temporal Database of Planetary Image Data (MUTED): A Web-Based Tool for Studying Dynamic Mars.’ Planetary Space and Science 159: 56–65. doi:
- . . ‘Reflectance spectra of synthetic Fe-free ortho-and clinoenstatites in the UV/VIS/IR and implications for remote sensing detection of Fe-free pyroxenes on planetary surfaces.’ Planetary and Space Science 159. doi: 10.1016/j.pss.2018.04.006.
- 10.1016/j.icarus.2017.10.038. . ‘Ceres' Ezinu quadrangle: A heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater.’ Icarus 316: 46–62. doi:
- . . ‘Geology of Ceres’ North Pole quadrangle with Dawn FC imaging data.’ Icarus 316: 14–27. doi: 10.1016/j.icarus.2017.09.036.
- 10.1111/maps.13008. . ‘Geologic constraints on the origin of red organic-rich material on Ceres.’ Meteoritics and Planetary Science 53, № 9: 1983–1998. doi:
- 10.1016/j.icarus.2017.06.015. . ‘Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA's Dawn mission: Implications for a heterogeneously composed crust.’ Icarus 316: 28–45. doi:
- 10.1111/maps.12883. . ‘The Stubenberg meteorite—An LL6 chondrite fragmental breccia recovered soon after precise prediction of the strewn field.’ Meteoritics and Planetary Science 52, № 8: 1683–1703. doi:
- 10.1016/j.icarus.2017.08.015. [online first] . ‘The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres' oldest, largest impact basin.’ Icarus null, № null. doi:
- 10.1016/j.icarus.2017.10.014. [online first] . ‘The formation and evolution of bright spots on Ceres.’ Icarus null, № null. doi:
- 10.1016/j.icarus.2017.06.013. . ‘Lunar mare TiO2 abundances estimated from UV/Vis reflectance.’ Icarus 296, № null: 216–238. doi:
- 10.1111/maps.12860. . ‘Investigating the shock histories of lunar meteorites Miller Range 090034, 090070, and 090075 using petrography, geochemistry, and micro-FTIR spectroscopy.’ Meteoritics and Planetary Science 52, № 6: 1103–1124. doi:
- 10.1038/ngeo2936. . ‘Geomorphological evidence for ground ice on dwarf planet Ceres.’ Nature Geoscience 10, № 5: 338–343. doi:
- 10.1016/j.icarus.2017.09.036. [online first] . ‘Geology of Ceres' North Pole quadrangle with Dawn FC imaging data.’ Icarus null, № null. doi:
- 10.1016/j.pss.2017.08.004. [online first] . ‘Geological characterization of the three high-priority landing sites for the Luna-Glob mission.’ Planetary and Space Science null, № null. doi:
- 10.1002/jrs.5083. . ‘Laser alteration on iron sulfides under various environmental conditions.’ Journal of Raman Spectroscopy 2017. doi:
- . . ‘Investigation of newly discovered lobate scarps: Implications for the tectonic and thermal evolution of the Moon.’ Icarus 298: 78–88. doi: 10.1016/j.icarus.2017.08.017.
- . . ‘Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.’ Icarus 298: 49–63. doi: 10.1016/j.icarus.2016.11.040.
- . . ‘Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon.’ Icarus 298: 64–77. doi: 10.1016/j.icarus.2017.01.030.
- 10.1016/j.icarus.2016.11.030. . ‘Chelyabinsk – a rock with many different (stony) faces: An infrared study.’ Icarus 284, № null: 431–442. doi:
- . . ‘Length-displacement scaling of thrust faults on the Moon and the formation of uphill-facing scarps.’ Icarus 292: 111–124. doi: 10.1016/j.icarus.2016.12.034.
- . . ‘Topography of the Deuteronilus contact on Mars: Evidence for an ancient water/mud ocean and long-wavelength topographic readjustments.’ Planetary and Space Science 144: 49–70. doi: 10.1016/j.pss.2017.05.012.
Research Articles (Journals)
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278: 162–179. doi:
- . . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264: 352–368. doi: 10.1016/j.icarus.2015.10.003.
- 10.1038/ncomms12257. . ‘The missing large impact craters on Ceres.’ Nature Communications 7, № null. doi:
- 10.1016/j.icarus.2015.12.036. . ‘The Lassell massif-A silicic lunar volcano.’ Icarus 273, № null: 248–261. doi:
- 10.1126/science.aaf4332. . ‘The geomorphology of Ceres.’ Science 353, № 6303. doi:
- 10.1016/j.icarus.2015.10.003. . ‘Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater.’ Icarus 264, № null: 352–368. doi:
- 10.1016/j.icarus.2016.06.013. . ‘Mid-infrared bi-directional reflectance spectroscopy of impact melt glasses and tektites.’ Icarus 278, № null: 162–179. doi:
- 10.1126/science.aaf4219. . ‘Dawn arrives at Ceres: Exploration of a small, volatile-rich world.’ Science 353, № 6303: 1008–1010. doi:
- 10.1002/2016GL070370. . ‘Cryogenic flow features on Ceres: Implications for crater-related cryovolcanism.’ Geophysical Research Letters 43, № 23: 11,994–12,003. doi:
- 10.1016/j.pss.2016.08.004. . ‘A geologically supervised spectral analysis of 121 globally distributed impact craters as a tool for identifying vertical and horizontal heterogeneities in the composition of the shallow crust of Mercury.’ Planetary and Space Science 132, № null: 32–56. doi:
- . . ‘Composition and structure of the shallow subsurface of Ceres revealed by crater morphology.’ Nature Geoscience 9, № 7: 538+. doi: 10.1038/NGEO2743.
- 10.1126/science.aaf4286. . ‘Cryovolcanism on Ceres.’ Science 353, № 6303. doi:
- 10.1126/science.aaf4759. . ‘Cratering on ceres: Implications for its crust and evolution.’ Science 353, № 6303. doi:
- 10.1111/maps.12586. . ‘Cosmochemical and spectroscopic properties of Northwest Africa 7325-A consortium study.’ Meteoritics and Planetary Science 51, № 1: 3–30. doi:
- 10.1016/j.icarus.2016.03.015. . ‘Crater size-frequency distribution measurements and age of the Compton-Belkovich volcanic complex.’ Icarus 273: 214–223. doi:
- . . ‘Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits.’ Icarus 273: 164–181. doi: 10.1016/j.icarus.2016.02.018.
- . . ‘The Lassell Massif - A silicic lunar volcano.’ Icarus 273: 248–261. doi: 10.1016/j.icarus.2015.12.036.
- . . ‘The Multi-Temporal Database of Planetary Image Data (MUTED): A Database to Support the Identification of Surface Changes and Short-Lived Surface Processes.’ Planetary and Space Science (PSS) 125: 43–61. doi: 10.1016/j.pss.2016.03.002.
- . . ‘Photogeologic mapping and the geologic history of the Hellas basin floor, Mars.’ Icarus 264: 407–442. doi: 10.1016/j.icarus.2015.09.031.
- . . ‘An exceptional grouping of lunar highland smooth plains: Geography, morphology, and possible origins.’ Icarus 273: 121–134. doi: 10.1016/j.icarus.2015.06.028.
- . . ‘The honeycomb terrain on the Hellas basin floor, Mars: A case for salt or ice diapirism.’ Journal of Geophysical Research 121. doi: 10.1002/2016JE005007.
Review (Journals)
- 10.1016/j.pss.2016.10.017. . ‘FC colour images of dwarf planet Ceres reveal a complicated geological history.’ Planetary and Space Science 134, № null: 122–127. doi:
Research Articles (Journals)
- 10.1016/j.icarus.2016.11.040. [online first] . ‘Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts.’ Icarus null, № null. doi:
- 10.1111/maps.12408. . ‘The distribution of megablocks in the Ries crater, Germany: Remote sensing, field investigation, and statistical analyses.’ Meteoritics and Planetary Science 50, № 1: 141–171. doi:
- 10.1016/j.pss.2015.10.007. . ‘Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters.’ Planetary and Space Science 119, № null: 250–263. doi:
- 10.1016/j.icarus.2015.06.034. . ‘Near infrared spectroscopy of HED meteorites: Effects of viewing geometry and compositional variations.’ Icarus 258, № null: 384–401. doi:
- . . ‘Evidence for large reservoirs of water/mud in Utopia and Acidalia Planitiae on Mars.’ Icarus 248: 383–391. doi: 10.1016/j.icarus.2014.11.013.
- . . ‘Quantifying Geological Processes on Mars - Results of the High Resolution Stereo Camera (HRSC) on Mars Express.’ Planetary and Space Science (PSS) 112: 53–97. doi: 10.1016/j.pss.2014.11.029.
- . . ‘Present-day Seasonal Gully Activity in a South Polar Pit (Sisyphi Cavi) on Mars.’ Icarus 251: 226–243.
- . . ‘Small-scale lunar farside volcanism.’ Icarus 257: 336–354. doi: 10.1016/j.icarus.2015.04.040.
- 10.1016/j.pss.2015.05.007. . ‘Landing site selection for Luna-Glob mission in crater Boguslawsky.’ Planetary and Space Science 2015, № 117: 45–63. doi:
Research Article (Book Contributions)
- 10.1144/SP401.22. . ‘Volcanism and tectonism across the inner solar system: An overview.’ In Volcanism and tectonism across the inner solar system: An overview, edited by , 1–56. London: Geological Society of London. doi:
Research Articles (Journals)
- . . ‘Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean.’ Icarus 228: 121–140. doi: 10.1016/j.icarus.2013.09.018.
- . . ‘Water and Martian Habitability: Results of an integrative study of water related processes on Mars in context with an interdisciplinary Helmholtz research alliance "Planetary Evolution and Life".’ Planetary and Space Sciences (PSS) 98: 128–145. doi: 10.1016/j.pss.2014.02.013.
- 10.1016/j.icarus.2014.07.018. . ‘The Miniature Radio Frequency instrument's (Mini-RF) global observations of Earth's Moon.’ Icarus 243: 173–190. doi:
- . . ‘Evidence for basaltic volcanism on the Moon within the past 100 millions years.’ Nature Geoscience 12 October. doi: 10.1038/ngeo2252.
- 10.1016/j.pss.2014.06.004. . ‘Estimation of lunar surface temperatures and thermophysical properties: Test of a thermal model in preparation of the MERTIS experiment onboard BepiColombo.’ Planetary and Space Science 101, № null: 27–36. doi:
- . . ‘Modal mineralogy of the surface of Vesta: evidence for ubiquitous olivine and identification of meteorite analogue.’ Icarus in press. [online first]
- . . ‘Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data.’ Journal of Geophysical Research in press. doi: 10.1002/2014JE004625. [online first]
- . ‘Space weathering of silicate regoliths with various FeO contents: New insights from laser irradiation experiments and theoretical spectral simulations. .’ Icarus 235: 187–206.
- 10.1016/j.icarus.2014.03.040. [online first] . ‘Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars.’ Icarus null, № null. doi:
- . ‘Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta .’ Icarus 2014.
- . . ‘Vesta’s north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes .’ Icarus 2014. doi: 10.1016/j.icarus.2014.03.007.
- . . ‘The Cratering Record, Chronology and Surface Ages of (4) Vesta in Comparison to Smaller Asteroids and the Ages of HED Meteorites.’ Planetary and Space Science 2014.
- . . ‘Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.’ Icarus 2014. doi: 10.1016/j.icarus.2014.01.035.
- 10.1016/j.icarus.2014.03.007. [online first] . ‘Vesta's north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes.’ Icarus null, № null. doi:
- 10.1016/j.icarus.2014.01.033. [online first] . ‘The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters.’ Icarus null, № null. doi:
- 10.1016/j.icarus.2014.01.013. [online first] . ‘Geomorphology and structural geology of Saturnalia Fossae and nadjacent structures in the northern hemisphere of Vesta.’ Icarus null, № null. doi:
- 10.1016/j.icarus.2014.01.035. [online first] . ‘Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images.’ Icarus null, № null. doi:
- . . ‘Landscape Formation at the Deuteronilus Contact in Southern Isidis Planitia, Mars: Implications for an Isidis Sea?’ Icarus 242: 329–351. doi: 10.1016/j.icarus.2014.08.015.
Other Scientific Publications
- . . Landing Site Proposal for the 2018/2020 ExoMars Rover Mission: Southern Isidis Planitia. 1st LSSW, ESAC, Madrid,.
- . . ‘Spectral reflectance properties of HED meteorites+CM2 carbonaceous chondrites: Comparison to HED grain size and compositional variations and implications for the nature of low-albedo features on Asteroid 4 Vesta.’ Icarus 223, № 2: 850–877. doi: 10.1016/j.icarus.2013.02.003.
- . . ‘Lunar sinuous rilles: Distribution, characteristics, and implications for their origin.’ Planetary and Space Science 79-80, № 1: 1–38. doi: 10.1016/j.pss.2012.10.019.
- . . ‘Dawn completes its mission at 4 Vesta.’ Meteoritics and Planetary Science 10.1111/maps.12091. doi: 10.1111/maps.12091.
- 10.1117/12.2024375. . ‘The Developing of MERTIS as an advanced process – From the study up to the flight model.’ Proceedings of SPIE 8867. doi:
- . . ‘Olivine in an unexpected location on Vesta’s surface.’ Nature 504. doi: 10.1038/nature12665.
- 10.1016/j.icarus.2013.04.022. . ‘The 2.5-5.1μm reflectance spectra of HED meteorites and their constituent minerals: Implications for Dawn.’ Icarus 225, № 1: 581–601. doi:
- 10.1038/nature12665. . ‘Olivine in an unexpected location on Vesta's surface.’ Nature 504, № 7478: 122–125. doi:
- . . ‘Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars.’ Planetary and Space Science 85: 261–278. doi: 10.1016/j.pss.2013.06.022.
- . . ‘Vesta's shape and morphology.’ Science 336, № 6082: 687–690. doi: 10.1126/science.1219122.
- . . ‘The present-day flux of large meteoroids on the lunar surface - A synthesis of models and observational techniques.’ Planetary and Space Science 74, № 1: 179–193. doi: 10.1016/j.pss.2012.10.005.
- . . ‘Phase reddening on near-Earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification.’ Icarus 220, № 1: 36–50. doi: 10.1016/j.icarus.2012.04.008.
- . . ‘Geology, geochemistry, and geophysics of the Moon: Status of current understanding.’ Planetary and Space Science 74, № 1: 15–41. doi: 10.1016/j.pss.2012.08.019.
- . . ‘Dark material on Vesta from the infall of carbonaceous volatile-rich material.’ Nature 491, № 7422: 83–86. doi: 10.1038/nature11561.
- . . ‘Gullies and their relationships to the dust-ice mantle in the northwestern Argyre Basin, Mars.’ Icarus 219, № 1: 129–141.
- 10.1016/j.icarus.2012.03.014. . ‘Rheologies and ages of lava flows on Elysium Mons, Mars.’ Icarus 219, № 1: 443–457. doi:
- . . ‘Surface age of the ice-dust mantle deposit in Malea Planum, Mars.’ Planetary and Space Science 60: 199–206.
- . . ‘Major episodes of geologic history of Isidis Planitia on Mars.’ Icarus 218: 24–46. doi: 10.1016/j.icarus.2011.11.029.
- . . ‘Periglacial mass-wasting landforms on Mars suggestive of transient liquid water in the recent past: Insights from solifluction lobes on Svalbard.’ Icarus 218: 489–505.
- . . ‘Compositional investigation of the proposed chloride-bearing materials on Mars using near-infrared orbital data from OMEGA/MEx.’ Journal of Geophysical Research 117, № E00J13. doi: 10.1029/2012JE004108.
- . . ‘Geology of the King crater region: New insights into impact melt dynamics on the Moon.’ Journal of Geophysical Research 117: E00H29. doi: 10.1029/2011JE003990.
- . . ‘Confirmation of sublunarean voids and thin layering in mare deposits.’ Planetary and Space Science 69, № 1: 18–27. doi: 10.1016/j.pss.2012.05.008.
- . . ‘Valleys, Paleolakes and Possible Shorelines at the Libya Montes / Isidis Boundary: Implications for the Hydrologic Evolution of Mars.’ Icarus 2012, № 219: 393–413. doi: 10.1016/j.icarus.2012.03.012.
- . ‘MERTIS - The Thermal Infrared Imaging Spectrometer Onboard of the Mercury Planetary Orbiter.’ Proceedings of ICSO 162.
- 10.1016/j.icarus.2012.03.012. . ‘Valleys, paleolakes and possible shorelines at the Libya Montes/Isidis boundary: Implications for the hydrologic evolution of Mars.’ Icarus 219, № 1: 393–413. doi:
- 10.1029/2011JE004000. . ‘Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.’ Journal of Geophysical Research 117, № 3. doi:
- . . ‘ Origin of lunar sinuous rilles: Modeling effects of gravity, surface slope, and lava composition on erosion rates during the formation of Rima Prinz.’ Journal of Geophysical Research 117.
- 10.1029/2011JE003935. . ‘How old are young lunar craters?’ Journal of Geophysical Research 117. doi:
Articles
Research Articles (Journals)
- . . ‘Non-mare silicic volcanism on the lunar farside at Compton-Belkovich.’ Nature Geoscience 4, № 8: 566–571. doi: 10.1038/ngeo1212.
- . . ‘Terrestrial gullies and debris-flow tracks on Svalbard as planetary analogs for Mars.’ Geological Society of America Special Paper 483: 165–175.
- . . ‘Periglacial landscapes on Svalbard: Terrestrial analogs for cold-climate landforms on Mars.’ Geological Society of America Special Paper 483: 177–201.
- . . ‘Landscape evolution in Martian mid-latitude regions: Insights from analogous periglacial landforms in Svalbard.’ Geological Society London, Special Publications 356: 111–131.
- 10.1016/j.apradiso.2011.05.025. . ‘Evaluation of neutron sources for ISAGE-in-situ-NAA for a future lunar mission.’ Applied Radiation and Isotopes 69, № 11: 1625–1629. doi:
- . ‘Bright dust devil tracks on Earth: Implications for their formation on Mars.’ Icarus 211: 917–920.
- . . ‘The Stratigraphy of the Amenthes Region, Mars: Time limits for the Formation of Fluvial, Volcanic and Tectonic Landforms.’ Icarus 215, № 1: 128–152. doi: 10.1016/j.icarus.2011.06.041.
- . ‘Ages and stratigraphy of lunar mare basalts: A synthesis.’ Geol. Soc. Am. Special Paper 477, № 477: 1–51.
- . . ‘Timing and characteristics of the latest mare eruption on the Moon.’ Earth and Planetary Science Letters 302, № 3-4: 255–266. doi: 10.1016/j.epsl.2010.12.028.
Research Article (Book Contributions)
- 10.1130/2011.2483(11). . ‘Terrestrial gullies and debris-fl ow tracks on Svalbard as planetary analogs for Mars.’ In Analogs for Planetary Exploration, edited by , 165–175. N/A: unbekannt / n.a. / unknown. doi:
Other Scientific Publications
- . . Libya Montes Layered Delta Deposits and Possible Coastal Cliffs, Mars: New Candidate Landing Site Proposal for Potential Future Missions after MSL Curiosity.
Research Articles (Journals)
- 10.1016/j.epsl.2009.08.008. . ‘Morphologic, stratigraphic and morphometric investigations of valley networks in eastern Libya Montes, Mars: Implications for the Noachian/Hesperian climate change.’ Earth and Planetary Science Letters 294: 291–305. doi:
- 10.1016/j.epsl.2010.04.040. . ‘Mars geology from three - dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express. An introduction to the special issue of Earth Planetary Science Letters.’ Earth and Planetary Science Letters 294, № null: 183–184. doi:
- . . ‘Evidence for present day gully activity on the Russell crater dune field, Mars.’ Geophysical Research Letters 37, № 6. doi: 10.1029/2009GL042192.
- 10.1029/2010GL044016. . ‘First in‐situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.’ Geophysical Research Letters 37, № 14. doi:
- . . ‘Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera.’ Science 329, № 5994: 936–940. doi: 10.1126/science.1189590.
- . . ‘First in-situ analysis of dust devil tracks on Earth and their comparison with tracks on Mars.’ Geophysical Research Letters 37.
- . . ‘Mars geology from three-dimensional mapping by the High Resolution Stereo Camera (HRSC) Experiment on Mars Express An introduction to the special issue of Earth Planetary Science Letters.’ Earth and Planetary Science Letters 294, № 3-4: 183–184. doi: 10.1016/j.epsl.2010.04.040.
- . . ‘Dike indicators in the Hadriaca Patera-Promethei Terra region, Mars.’ Earth and Planetary Science Letters 294, № 3-4: 466–478. doi: 10.1016/j.epsl.2009.06.038.
- . . ‘Distribution and evolution of scalloped terrain in the southern hemisphere, Mars.’ Icarus 206, № 2: 691–706. doi: 10.1016/j.icarus.2009.09.010.
- . . ‘Ages and stratigraphy of lunar mare basalts in Mare Frigoris and other nearside maria based on crater size-frequency distribution measurements.’ Journal of Geophysical Research 115.
- . . ‘The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission.’ Planetary and Space Science 58, № 1-2: 144–165. doi: 10.1016/j.pss.2008.09.019.
- . . ‘Mercury's surface and composition to be studied by BepiColombo.’ Planetary and Space Science 58, № 1-2: 21–39. doi: 10.1016/j.pss.2008.09.001.
- . . ‘Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview.’ Space Science Reviews 150, № 1-4: 81–124. doi: 10.1007/s11214-010-9634-2.
Non-Scientific Contributions (Journals)
- . „Die thermische Entwicklung und das Innere der Planeten - Erde und Mond.“ Astronomie und Raumfahrt im Unterricht 47, № 115: 4–7.
- . „Die thermische Entwicklung und das Innere der Planeten - Die erdähnlichen Planeten.“ Astronomie und Raumfahrt im Unterricht 47, № 116: 34–36.
- . „Die thermische Entwicklung und das Innere der Planeten - Die jupiterähnlichen Planeten.“ Astronomie und Raumfahrt im Unterricht 47, № 117/118: 65–69.
- . ‘Regional differences in gully occurrence on Mars: A comparison between the Hale and Bond craters.’ Planetary and Space Science 57: 958–974.
- . . ‘Possible lunar lava tube skylight observed by SELENE cameras.’ Geophysical Research Letters 36. doi: 10.1029/2009GL040635.
- . . ‘Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages.’ Planetary and Space Science 57, № 7: 784–796. doi: 10.1016/j.pss.2009.02.002.
- . . ‘Mercury radiometer and thermal infrared spectrometer-a novel thermal imaging spectrometer for the exploration of Mercury.’ Journal of Applied Remote Sensing 2.
- . . ‘Identification of a new outflow channel on Mars in Syrtis Major Planum using HRSC/MEx data.’ Planetary and Space Science 56, № 7: 1030–1042. doi: 10.1016/j.pss.2008.01.011.
- 10.1029/2006JE002717. . ‘Young lava flows on the eastern flank of Ascaraeus Mons: Rheological properties derived from High Resolution Stereo Camera(HRSC) images and Mars Orbiter Laser Altimeter(MOLA) data.’ Journal of Geophysical Research 112, № 5. doi:
- . . ‘Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data.’ Journal of Geophysical Research 112, № E5.
- . . ‘New views of lunar geoscience: An introduction and overview.’ In New Views of the Moon, edited by , 1.
- . . ‘Are there active glaciers on Mars? Reply.’ Nature 438, № 7069: E10E10.
- 10.1029/2005GL023415. . ‘Interior channels in Martian valleys: Constraints on fluvial erosion by measurements of the Mars Express High Resolution Stereo Camera.’ Geophysical Research Letters 32, № 16. doi:
- . . ‘Tropical to mid-latitude snow and ice accumulation, flow and glaciation on Mars.’ Nature 434, № 7031: 346–351. doi: 10.1038/nature03359.
- . . ‘Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR).’ Planetary and Space Science 52, № 14: 1261–1285. doi: 10.1016/j.pss.2004.09.002.
- . . ‘The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data.’ Journal of Geophysical Research 109, № E1.
- . . ‘Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum.’ Journal of Geophysical Research 108, № E7.
- . . ‘Topography and morphology of the Argyre Basin, Mars: implications for its geologic and hydrologic history.’ Planetary and Space Science 50, № 10-11: 939–981. doi: 10.1016/S0032-0633(02)00054-5.
- . . ‘Lunar mare basalt flow units: Thicknesses determined from crater size-frequency distributions.’ Geophysical Research Letters 29, № 8: –1248.
Research Articles (Journals)
- . . ‘Ages of mare basalts on the lunar nearside.’ Journal of Geophysical Research 105, № E12: 29239–29275. doi: 10.1029/2000JE001244.
- . . ‘Characteristics and origin of polygonal terrain in southern Utopia Planitia, Mars: Results from Mars Orbiter Laser Altimeter and Mars Orbiter Camera Data.’ Journal of Geophysical Research 105, № E5: 11999–12022. doi: 10.1029/1999JE001193.
Research Article (Book Contributions)
- . ‘Moon and Mercury: Volcanism in early planetary history.’ In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, edited by , 143–178. Dordrecht: Kluwer Academic.
Non-Scientific Contributions (Journals)
- . „Vulkanismus auf der Venus.“ Astronomie und Raumfahrt im Unterricht 37, № 3: 16–21.
- . „Vulkanismus auf dem Mond.“ Astronomie und Raumfahrt im Unterricht 37, № 3: 9–15.
- 10.1126/science.286.5447.2134. . ‘Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data.’ Science 286: 2134–2137. doi:
- . ‘Structural wavelengths of Ganymede grooved terrain determined from Fourier analysis of Galileo images.’ J. Geophys. Res. 104, № E10: 24057–24074.
- . ‘Oceans in the past history of Mars: Tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data.’ Geophys. Res. Lett. 25, № 4: 4401–4404.
- . „Multispektrale und photogrammetrische Auswertung von Clementine-Daten des Erdmondes.“ DLR-Nachrichten 83, № 83: 17–27.