Next: Danksagung Up: Effektive Hamiltonfunktionen fürdas 2-dimensionale Previous: B Effektive Fugazitäten

References

ABR86
D. B. ABRAHAM. Phase Transitions and Critical Phenomena, volume 10, chapter Surface Structures and Phase Transistions - Exact Results. Academic, 1986.

BDFN92
J.J. BINNEY, N.J. DOWRICK, A.J. FISHER, and M.E.J NEWMAN. The Theory of Critical Phenomena. Oxford University Press, 1st edition, 1992.

BUR93
S. BURKHARDT. Parallele Rechensysteme, Programmierung und Anwendung. Verlag Technik GmbH Berlin, 1993.

BW74
T.L. BELL and K. WILSON. Nonlinear renormalization groups. Phys. Rev. B10 (1974) 3935.

EHM+91
H.G. EVERTZ, M. HASENBUSCH, M. MARCU, K. PINN, and S. SOLOMON. High precision measurement of the sos surface thickness in the rough phase. J. Phys. I France 1 (1991) 1669.

FP89
H. FLYVBJERG and H.G. PETERSEN. Error estimates on averages of correlated data. J. Chem. Phys. 91(1) (1989) 461.

GK80
K. GAWEDZKI and A. KUPIAINEN. A rigorous block spin approach to massless lattice theories. Commun. Math. Phys. 77 (1980) 31.

HB90
D.W. HEERMANN and A.N. BURKITT. Parallel Algorithms in Computational Sciences. Springer Verlag, Heidelberg, 1990.

HMP
M. HASENBUSCH, M. MARCU, and K. PINN. The sine gordon model: Perturbation theory and cluster monte carlo. Preprints CERN TH.7374/94, MS-TPI-94-9, Juli 1994 .

HMP94
M. HASENBUSCH, M. MARCU, and K. PINN. High precision renormalization group study of the roughening transition. Physica A 208 (1994) 124.

ID91
C. ITZYKSON and J.M. DROUFFE. Statistical field theory, volume 1. Cambridge Monographs on mathematical Physics, 1991.

KMPS92
T. KALKREUTER, G. MACK, G. PALMA, and M. SPEH. Effective field theories. In Computational Methods in Field Theory, edited by H. GAUSTERER and C.B. LANG. Springer-Verlag, 1992.

KOS74
J. M. KOSTERLITZ. J. Phys. C7, 1046 (1974).

KT73
J.M. KOSTERLITZ and D.J. THOULESS. J. Phys. C6, 1181 (1973).

PG87
M. POTTER and J. GOLDBERG. Mathematical Methods. Prentice Hall, second edition, 1987.

PIN88
K. PINN. Computation of effective hamiltonians by monte carlo simulations with fixed blockspins. DESY Preprint, 1988.

PIN90a
K. PINN. Computation of the effective potential for the two-dimensional nonlinear -modells. Z. Phys. C 45 (1990) 453.

PIN90b
K. PINN. Taylor expansion of effective hamiltonians by monte carlo simulations with fixed block spins. Z. Phys. C 47 (1990) 325.

PIN92
K. PINN. Computation of effective hamiltonians for the 2-dimensional lattice sine gordon model. private communication, 1992.

SAV80
R. SAVIT. Rev. Mod. Phys. 52 (1980) 453.

SB90
J. STOER and R. BULIRSCH. Numerische Mathematik II. Springer-Verlag, third edition, 1990.

SOK89
ALAN D. SOKAL. Monte carlo methods in statistical mechanics: Foundations and new algorithms. Cours de Troisieme Cycle de la Physique en Suisse Romande, Lausanne, 1989.

STA71
H.E. STANLEY. Introduction to Phase Transitions and Critical Phenomena. Clarendon Press Oxford, 1971.

TP77
G. TOULOUSE and P. PFEUTY. Introduction to the renormalization group and critical phenomena. John Wiley and Sons, 1977.

TUR94
L.H. TURCOTTE. A Survey of Software Environments of Exploiting Networked Computing Resources. 1994.

WK93
K.G. WILSON and J. KOGUT. The renormalization group and the expansion. Phys. Rep. C12, 75 (1993).



spander@
Dienstag, 6. September 1994, 17:45:39 Uhr MES