Research Areas
- Mathematical Physics
- Quantum field theory
- Noncommutative geometry
CV
Education
- Habilitation in Physics, Technical University Vienna
- Dissertation in Physics, University of Leipzig (Prof. G. Rudolph)
- Study of Physics, University of Leipzig, Diploma Physics (Prof. G. Rudolph)
- Study of Physics, Otto-von-Guericke-University Magdeburg, Pre-diploma
Positions
- Professor (W2) for Pure Mathematics, WWU Münster
- Maître de Conférence invité, Université de Provence, Marseille
- Scientific Assistant, Max-Planck-Institute for Mathematics in the Sciences, Leipzig
- Marie-Curie Fellow, Faculty of Physics, University of Vienna
- DAAD Postdoc Fellow, Centre de Physique Théorique, Marseille
External Functions
- Member of the Editorial Board of the Journal of Noncommutative Geometry
- Principal Investigator in Cluster of Excellence "Mathematics Münster"
- Member of the Editorial Board of Annales Henri Poincaré
- Member of the German Physical Society
- Member of the German National Scholarship Foundation
Publications
Selection
- . . ‘An algebraic approach to a quartic analogue of the Kontsevich model.’ Mathematical Proceedings 174, No. 3: 471–495. doi: 10.1017/S0305004122000366.
- . . ‘Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures.’ Communications in Mathematical Physics 393: 1529–1582. doi: 10.1007/s00220-022-04392-z.
- . . ‘Lambert-W solves the noncommutative \Phi^4-model.’ Communications in Mathematical Physics 374: 1935–1961. doi: 10.1007/s00220-019-03592-4.
- . . Solution of all quartic matrix models arXiv. doi: 10.48550/arXiv.1906.04600. [submitted / under review]
- . . ‘Quantum field theory on noncommutative spaces.’ In Advances in Noncommutative Geometry, edited by , 607–690. Cham: Springer International Publishing. doi: 10.1007/978-3-030-29597-4_11.
- . . ‘Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory.’ Communications in Mathematical Physics 329, No. 3: 1069–1130. doi: 10.1007/s00220-014-1906-3.
- . . ‘Renormalisation of noncommutative \phi^4-theory by multi-scale analysis.’ Communications in Mathematical Physics 262, No. 3: 565–594. doi: 10.1007/s00220-005-1440-4.
- . . ‘Power-counting theorem for non-local matrix models and renormalisation.’ Communications in Mathematical Physics 254, No. 1: 91–127. doi: 10.1007/s00220-004-1238-9.
- . . ‘Renormalisation of \phi^4-theory on noncommutative R^4 in the matrix base .’ Communications in Mathematical Physics 256, No. 2: 305–374. doi: 10.1007/s00220-004-1285-2.
- . . ‘Perturbative quantum gauge fields on the noncommutative torus.’ International Journal of Modern Physics A 15, No. 7: 1011–1029. doi: 10.1142/S0217751X00000495.
Complete List
- . . A short note on BKP for the Kontsevich matrix model with arbitrary potential arXiv. doi: 10.48550/arXiv.2306.01501. [submitted / under review]
- . . ‘Generalized Heisenberg-Virasoro algebra and matrix models from quantum algebra.’ Journal of Mathematical Physics : 2303.08073. doi: 10.48550/arXiv.2303.08073. [accepted / in press (not yet published)]
- . . Blobbed topological recursion from extended loop equations arXiv. doi: 10.48550/arXiv.2301.04068. [submitted / under review]
- . . ‘A Laplacian to compute intersection numbers on M_{g,n} and correlation functions in NCQFT.’ Communications in Mathematical Physics 399: 481–517. doi: 10.1007/s00220-022-04557-w.
- . . ‘An algebraic approach to a quartic analogue of the Kontsevich model.’ Mathematical Proceedings 174, No. 3: 471–495. doi: 10.1017/S0305004122000366.
- . . ‘From scalar fields on quantum spaces to blobbed topological recursion.’ Journal of Physics A: Mathematical and Theoretical 55, No. 42: 423001. doi: 10.1088/1751-8121/ac9260.
- . . ‘Blobbed topological recursion of the quartic Kontsevich model I: Loop equations and conjectures.’ Communications in Mathematical Physics 393: 1529–1582. doi: 10.1007/s00220-022-04392-z.
- . . ‘Nested Catalan tables and a recurrence relation in noncommutative quantum field theory.’ Annales de l’Institut Henri Poincaré D: Combinatorics, Physics and their Interactions 9, No. 1: 47–72. doi: 10.4171/AIHPD/113.
- . . Intersection theory of the complex quartic Kontsevich model arXiv. doi: 10.48550/arXiv.2212.01359. [submitted / under review]
- . . ‘Correlation functions of U(N)-tensor models and their Schwinger-Dyson equations.’ Annales de l’Institut Henri Poincaré D: Combinatorics, Physics and their Interactions 8, No. 3: 377–458. doi: 10.4171/AIHPD/107.
- . . ‘Perturbative and geometric analysis of the quartic Kontsevich model.’ Symmetry, Integrability and Geometry: Methods and Applications 17: 085. doi: 10.3842/SIGMA.2021.085.
- . . Blobbed topological recursion of the quartic Kontsevich model II: Genus=0 arXiv. doi: 10.48550/arXiv.2103.13271. [submitted / under review]
- . . ‘Solution of the self-dual \Phi^4 QFT-model on four-dimensional Moyal space.’ Journal of High Energy Physics 01: 081. doi: 10.1007/JHEP01(2020)081.
- . . ‘The Leutwyler-Smilga relation on the lattice.’ Modern Physics Letters A 35, No. 01: 1950346. doi: 10.1142/S0217732319503462.
- . . ‘Lambert-W solves the noncommutative \Phi^4-model.’ Communications in Mathematical Physics 374: 1935–1961. doi: 10.1007/s00220-019-03592-4.
- . . ‘Nonperturbative evaluation of the partition function for the real scalar quartic QFT on the Moyal plane at weak coupling.’ Journal of Mathematical Physics 60, No. 8: 083504. doi: 10.1063/1.5063293.
- . . ‘On the large N limit of the Schwinger-Dyson equation of rank-3 tensor field theory.’ Journal of Mathematical Physics 60, No. 7: 073502. doi: 10.1063/1.5080306.
- . . Solution of all quartic matrix models arXiv. doi: 10.48550/arXiv.1906.04600. [submitted / under review]
- . . ‘Quantum field theory on noncommutative spaces.’ In Advances in Noncommutative Geometry, edited by , 607–690. Cham: Springer International Publishing. doi: 10.1007/978-3-030-29597-4_11.
- . . ‘Integrability and positivity in quantum field theory on noncommutative geometry.’ Journal of Geometry and Physics 134: 249–262. doi: 10.1016/j.geomphys.2018.08.001.
- . . ‘How Prof. Zeidler supported our research on exact solution of quantum field theory toy models.’ Vietnam Journal of Mathematics 47: 93–112. doi: 10.1007/s10013-018-0302-2.
- . . ‘Noncommutative 3-colour scalar quantum field theory model in 2D.’ European Physical Journal C 78: 580. doi: 10.1140/epjc/s10052-018-6042-3.
- . . ‘Lambert-W solves the noncommutative \Phi^4-model.’ Contributed to the Non-commutative Geometry, Index Theory and Mathematical Physics, Oberwolfach. doi: 10.4171/OWR/2018/32.
- . . ‘The \Phi^3_4 and \Phi^3_6 matricial QFT models have reflection positive two-point function.’ Nuclear Physics B 926: 20–48. doi: 10.1016/j.nuclphysb.2017.10.022.
- . . ‘Exact solution of matricial \Phi^3_2 quantum field theory.’ Nuclear Physics B 925: 319–347. doi: 10.1016/j.nuclphysb.2017.10.010.
- . . The asymptotic volume of diagonal subpolytopes of symmetric stochastic matrices arXiv.org. doi: 10.48550/arXiv.1701.07719. [submitted / under review]
- . . ‘Reflection positivity in large-deformation limits of noncommutative field theories.’ Contributed to the Reflection Positivity, Oberwolfach. doi: 10.4171/OWR/2017/55.
- . . ‘Integrability in a 4D QFT model.’ Contributed to the Recent Mathematical Developments in Quantum Field Theory, Oberwolfach. doi: 10.4171/OWR/2016/36.
- . . ‘Construction of a quantum field theory in four dimensions.’ PoS - Proceedings of Science 224: 151. doi: 10.22323/1.224.0151.
- . . ‘A solvable four-dimensional QFT.’ In Quantum Mathematical Physics - A Bridge between Mathematics and Physics, edited by , 153–180. Cham Heidelberg New York Dordrecht London: Springer International Publishing. doi: 10.1007/978-3-319-26902-3_8.
- . . ‘The Moyal sphere.’ Journal of Mathematical Physics 2016, No. 57: 112301. doi: 10.1063/1.4965446.
- . . ‘On the fixed point equation of a solvable 4D QFT model.’ Vietnam Journal of Mathematics 2016, No. 44: 153–180. doi: 10.1007/s10013-015-0174-7.
- . . ‘Correlation functions of a just renormalizable tensorial group field theory: the melonic approximation.’ Classical and Quantum Gravity 32, No. 17: 175012. doi: 10.1088/0264-9381/32/17/175012.
- . . ‘Towards a construction of a quantum field theory in four dimensions.’ In Mathematical Structures of the Universe, edited by , 227–258. Kraków: Copernicus Center Press.
- . . ‘Noncommutative quantum field theory.’ Fortschritte der Physik 62, No. 9-10: 797–811. doi: 10.1002/prop.201400020.
- . . Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity arXiv. doi: 10.48550/arXiv.1406.7755. [submitted / under review]
- . . ‘Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory.’ Communications in Mathematical Physics 329, No. 3: 1069–1130. doi: 10.1007/s00220-014-1906-3.
- . . ‘Construction of the \Phi^4_4-quantum field theory on noncommutative Moyal space.’ RIMS Kôkyûroku 2014, No. 1904: 67–104.
- . . ‘Spectral geometry of the Moyal plane with harmonic propagation.’ Journal of Noncommutative Geometry 7, No. 4: 939–979. doi: 10.4171/JNCG/140.
- . . ‘Construction and properties of noncommutative quantum fields.’ In XVIIth International Congress on Mathematical Physics, edited by , 643–650. Singapore: World Scientific Publishing. doi: 10.1142/9789814449243_0066.
- . . Solvable limits of a 4D noncommutative QFT arXiv. doi: 10.48550/arXiv.1306.2816. [submitted / under review]
- . . ‘Construction of a Noncommutative Quantum Field Theory.’ In Spectral Analysis, Differential Equations and Mathematical Physics: A Festschrift in Honor of Fritz Gesztesy's 60th Birthday, edited by , 153–163. Providence, RI: American Mathematical Society. doi: 10.1090/pspum/087/01442.
- . . ‘A numerical approach to harmonic non-commutative spectral field theory.’ International Journal of Modern Physics A 27, No. 14: 1250075. doi: 10.1142/S0217751X12500753.
- . . ‘Renormalization of a noncommutative field theory.’ International Journal of Modern Physics A 27, No. 12: 1250067. doi: 10.1142/S0217751X12500674.
- . . ‘8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory.’ Journal of Geometry and Physics 62, No. 7: 1583–1599. doi: 10.1016/j.geomphys.2012.03.005.
- . . ‘Renormalization of a noncommutative field theory.’ International Journal of Modern Physics: Conference Series 13: 108–117. doi: 10.1142/S2010194512006770.
- . . ‘Renormalizable noncommutative quantum field theory.’ Journal of Physics: Conference Series 343: 012043. doi: 10.1088/1742-6596/343/1/012043.
- . . ‘Renormalisation of the Grosse-Wulkenhaar model.’ PoS - Proceedings of Science QGQGS, No. 2011: 011.
- . . ‘Renormalizable noncommutative quantum field theory.’ General Relativity and Gravitation 43: 2491–2498. doi: 10.1007/s10714-010-1065-6.
- . . ‘Quantum field theory on noncommutative geometries.’ Contributed to the Noncommutative Geometry and Loop Quantum Gravity: Loops, Algebras and Spectral Triples, Oberwolfach. doi: 10.4171/OWR/2010/09.
- . . ‘Non-compact spectral triples with finite volume.’ In Quanta of Maths, edited by , 617–648. Providence, RI: American Mathematical Society.
- . . ‘Progress in solving a noncommutative QFT in four dimensions.’ Contributed to the Noncommutative Geometry, Oberwolfach. doi: 10.4171/OWR/2009/41.
- . . Progress in solving a noncommutative quantum field theory in four dimensions arXiv. doi: 10.48550/arXiv.0909.1389. [submitted / under review]
- . . ‘On the vacuum states for non-commutative gauge theory.’ European Physical Journal C: Particles and Fields 56, No. 2: 293–304. doi: 10.1140/epjc/s10052-008-0652-0.
- . . ‘Renormalization of noncommutative quantum field theory.’ In An invitation to noncommutative geometry, edited by , 129–168. Singapore: World Scientific Publishing. doi: 10.1142/9789812814333_0002.
- . . ‘Quantum field theory on projective modules.’ Journal of Noncommutative Geometry 1, No. 4: 431–496. doi: 10.4171/JNCG/13.
- . . ‘Noncommutative induced gauge theory.’ European Physical Journal C: Particles and Fields 51, No. 4: 977–987. doi: 10.1140/epjc/s10052-007-0335-2.
- . . ‘Noncommutative QFT and renormalization.’ In Quantum Gravity - Mathematical Models and Experimental Bounds, edited by , 315–326. Basel: Birkhäuser Verlag. doi: 10.1007/978-3-7643-7978-0_16.
- . . ‘The harmonic oscillator, its noncommutative dimension and the vacuum of noncommutative gauge theory.’ Contributed to the Noncommutative Geometry, Oberwolfach. doi: 10.4171/OWR/2007/43.
- . . ‘Renormalisation scalar quantum field theory on 4D-Moyal plane.’ Contributed to the The Rigorous Renormalization Group, Oberwolfach. doi: 10.4171/OWR/2006/17.
- . . ‘Noncommutative QFT and renormalization.’ Fortschritte der Physik 54, No. 2-3: 116–123. doi: 10.1002/prop.200510260.
- . . ‘Noncommutative QFT and renormalization.’ Bulgarian Journal of Physics 33, No. s1: 215–225.
- . . ‘Renormalisation of noncommutative \phi^4-theory by multi-scale analysis.’ Communications in Mathematical Physics 262, No. 3: 565–594. doi: 10.1007/s00220-005-1440-4.
- . . ‘Field theories on deformed spaces.’ Journal of Geometry and Physics 56, No. 1: 108–141. doi: 10.1016/j.geomphys.2005.04.019.
- . . ‘Power-counting theorem for non-local matrix models and renormalisation.’ Communications in Mathematical Physics 254, No. 1: 91–127. doi: 10.1007/s00220-004-1238-9.
- . . ‘Euclidean quantum field theory on commutative and noncommutative spaces.’ In Geometric and Topological Methods for Quantum Field Theory, edited by , 59––100. Berlin: Springer VDI Verlag. doi: 10.1007/11374060_2.
- . . ‘Renormalisation of \phi^4-theory on noncommutative R^4 in the matrix base .’ Communications in Mathematical Physics 256, No. 2: 305–374. doi: 10.1007/s00220-004-1285-2.
- . . ‘Renormalisation of scalar quantum field theory on noncommutative R^4 .’ Fortschritte der Physik 53, No. 5-6: 634––639. doi: 10.1002/prop.200410231.
- . . ‘Renormalisation of \phi^4-theory on non-commutative R^4 to all orders .’ Letters in Mathematical Physics 71, No. 1: 13––26. doi: 10.1007/s11005-004-5116-3.
- . . ‘Renormalisation of noncommutative scalar field theories.’ In Lie Theory and its Applications in Physics V, edited by , 109–123. World Scientific Publishing. doi: 10.1142/9789812702562_0006.
- . . ‘Renormalisation of noncommutative quantum field theories.’ Czechoslovak Journal of Physics 54, No. 11: 1305–1311. doi: 10.1007/s10582-004-9793-z.
- . . ‘Regularization and renormalization of quantum field theories on noncommutative spaces .’ Journal of Nonlinear Mathematical Physics 11, No. suppl.: 9–20. doi: 10.2991/jnmp.2004.11.s1.2.
- . . ‘Noncommutative U(1) super-Yang-Mills theory: perturbative self-energy corrections .’ International Journal of Modern Physics A 19, No. 25: 4231–4249. doi: 10.1142/S0217751X04018221.
- . . ‘IR singularities in noncommutative perturbative dynamics?’ Europhysics Letters 67, No. 2: 186–190. doi: 10.1209/epl/i2003-10285-9.
- . . ‘The \beta-function in duality-covariant non-commutative \phi^4-theory.’ European Physical Journal C: Particles and Fields 35, No. 2: 277–282. doi: 10.1140/epjc/s2004-01853-x.
- . ‘ Renormalisation of noncommutative \phi^4-theory to all orders.’ contributed to the Nichtkommutative Geometrie, Oberwolfach, . doi: 10.4171/OWR/2004/45.
- . . ‘Renormalisation group approach to noncommutative quantum field theory.’ In Particle Physics and the Universe, edited by , 197–208. Springer VDI Verlag. doi: 10.1007/3-540-26798-0_19.
- . . ‘Renormalisation of \phi^4-theory on noncommutative R^2 in the matrix base .’ Journal of High Energy Physics 03, No. 12: 019. doi: 10.1088/1126-6708/2003/12/019.
- . . ‘Seiberg-Witten map for noncommutative super Yang-Mills theory.’ International Journal of Modern Physics A 18, No. 19: 3325–3334. doi: 10.1142/S0217751X03015246.
- . . ‘Space/time non-commutative field theories and causality.’ European Physical Journal C: Particles and Fields 29, No. 1: 133–141. doi: 10.1140/epjc/s2003-01210-9.
- . . ‘Regularisation and renormalisation of quantum field theories on noncommutative spaces.’ In Modern Mathematical Physics, edited by , 29–46.: Belgrade Institute of Physics.
- . . ‘Discrete Kaluza-Klein from scalar fluctuations in noncommutative geometry.’ Journal of Mathematical Physics 43, No. 1: 182–204. doi: 10.1063/1.1418012.
- . . ‘Introduction to Hopf algebras in renormalization and noncommutative geometry.’ In Noncommutative geometry and the standard model of elementary particle physics, edited by , 313–324. Berlin: Springer VDI Verlag. doi: 10.1007/3-540-46082-9_17.
- . . ‘Quantisation of \theta-expanded non-commutative QED.’ European Physical Journal C: Particles and Fields 26, No. 1: 139–151. doi: 10.1140/epjc/s2002-01038-9.
- . . ‘The energy-momentum tensor on noncommutative spaces -- some pedagogical comments .’ Ukrainian Journal of Physics 47, No. 3: 219–225.
- . . ‘Noncommutative spin-1/2 representations.’ European Physical Journal C: Particles and Fields 24, No. 3: 491––494. doi: 10.1007/s10052-002-0938-6.
- . . ‘Perturbative analysis of the Seiberg-Witten map.’ International Journal of Modern Physics A 17, No. 16: 2219–2231. doi: 10.1142/S0217751X02010649.
- . . ‘Non-renormalizability of \theta-expanded non-commutative QED.’ Journal of High Energy Physics 02, No. 03: 024. doi: 10.1088/1126-6708/2002/03/024.
- . . ‘Noncommutative Lorentz symmetry and the origin of the Seiberg-Witten map.’ European Physical Journal C 24: 491–494. doi: 10.1007/s100520100857.
- . . Quantum field theories on noncommutative R^4 versus \theta-expanded quantum field theories. [submitted / under review]
- . . ‘Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map .’ Journal of High Energy Physics 01, No. 06: 013. doi: 10.1088/1126-6708/2001/06/013.
- . . Deformed QED via Seiberg-Witten map. [submitted / under review]
- . . ‘Perturbative quantum gauge fields on the noncommutative torus.’ International Journal of Modern Physics A 15, No. 7: 1011–1029. doi: 10.1142/S0217751X00000495.
- . . „Slavnov-Taylor identity in noncommutative geometry.“ International Journal of Modern Physics B 14, No. 22-23: 2503–2509. doi: 10.1142/S0217979200002053.
- . . ‘The superfield formalism applied to the non-commutative Wess-Zumino model.’ Journal of High Energy Physics 00, No. 10: 046. doi: 10.1088/1126-6708/2000/10/046.
- . . Renormalization of noncommutative Yang-Mills theories: A simple example. [submitted / under review]
- . . ‘On Kreimer's Hopf algebra structure of Feynman graphs.’ European Physical Journal C: Particles and Fields 7, No. 4: 697–708. doi: 10.1007/s100520050439.
- . . ‘SO(10)-unification in noncommutative geometry revisited.’ International Journal of Modern Physics A 14, No. 4: 559–588. doi: 10.1142/S0217751X99000282.
- . . ‘Gauge theories with graded differential Lie algebras.’ Journal of Mathematical Physics 40, No. 2: 787–794. doi: 10.1063/1.532685.
- . . ‘On Feynman graphs as elements of a Hopf algebra.’ In Quantum Groups, Noncommutative Geometry and Fundamental Physical Interactions, edited by , 233–242. Nova Science Publishers.
- . . On the Connes-Moscovici Hopf algebra associated to the diffeomorphisms of a manifold. [submitted / under review]
- . . ‘Graded differential Lie algebras and SU(5) x U(1)-grand unification .’ International Journal of Modern Physics A 13, No. 15: 2627–2692. doi: 10.1142/S0217751X98001359.
- . . ‘Graded differential Lie algebras and model building.’ Journal of Geometry and Physics 25, No. 3-4: 305–325. doi: 10.1016/S0393-0440(97)00029-6.
- . . ‘Gauge field theories in terms of graded differential Lie algebras.’ In Lie Theory and its Applications in Physics II, edited by , 310–321. World Scientific Publishing. doi: 10.1142/3852.
- . . ‘Noncommutative geometry with graded differential Lie algebras.’ Journal of Mathematical Physics 38, No. 6: 3358–3390. doi: 10.1063/1.532048.
- . . ‘The standard model within non-associative geometry.’ Physics Letters B 390, No. 1-4: 119–127. doi: 10.1016/S0370-2693(96)01336-6.
- . . ‘Yang-Mills-Higgs models arising from L-cycles.’ In GROUP 21, edited by , 597–601. World Scientific Publishing. doi: 10.1142/3473.
- . . Gyros as geometry of the standard model. [submitted / under review]
- . . ‘Graded Lie algebras with derivation and model building.’ In Lie Theory and its Applications in Physics, edited by , 149–158. World Scientific Publishing. doi: 10.1142/3301.
- . . ‘On certain graded Lie algebras arising in noncommutative geometry .’ Acta Physica Polonica Series B 27, No. 10: 2755–2762.
- . . ‘On the structure of a differential algebra used by Connes and Lott.’ Reports on Mathematical Physics 38, No. 1: 45–66. doi: 10.1016/0034-4877(96)87677-4.
- . . ‘On a certain construction of graded Lie algebras with derivation.’ Journal of Geometry and Physics 20, No. 2-3: 107–141. doi: 10.1016/0393-0440(95)00048-8.
- . . ‘Deriving the standard model from the simplest two-point K-cycle.’ Journal of Mathematical Physics 37, No. 8: 3797–3814. doi: 10.1063/1.531602.
Professor Dr. Raimar Wulkenhaar
Professur für Reine Mathematik (Prof. Wulkenhaar)
Einsteinstr. 62
48149 Münster