Research Areas
- Neutrino physics (Nuclear, particle and astroparticle physics): Mainz Neutrino Mass Experiment (neutrino mass, 1987-2005), CHORUS (neutrino oscillation, CERN, 1995-1998), AMANDA (neutrino telescope, 1998-2001), KATRIN (neutrino mass, KIT, 2001-)
- Direct search for dark matter (particle physics, astroparticle physics): XENON100 and XENON1T experiment (Untergrundlabor LNGS/Italien, 2009-), DARWIN (2010-)
- Fundamental interactions (Atomic, nuclear and particle physics): WITCH experiment (CERN, 2007-2013), SpecTrap Libelle experiment (GSI, 2007-)
- Development of a TMB-based detector with Cherenkov light and charge readout for positron emission tomography (PET) (together with EIMI/CiM, 2017-) Readout for Positron Emission Tomography
- Hadron spectroscopy (nuclear and hadron physics): CBELSA-TAPS experiment (Bonn, 2001-2004)
CV
Education
- Habilitation in experimental physics at the Johannes Gutenberg-Universtität Mainz with Prof. Dr. Dr. h.c. E.W. Otten, translated title of habilitation: "Search for neutrino masses and oscillations"
- PhD thesis at Johannes Gutenberg-Universität Mainz, supervisor: Prof. Dr. Hartmut Backe, translated title: "A new upper limit for the rest mass of the electron neutrino from the tritium beta spectrum", grade: summa cum laude
- Study of mathematics and physics at Johannes Gutenberg-Universität Mainz, intermediate diploma in mathematics with grade "very good", diploma in physics with grade "with distinction". Translated title of diploma thesis: "Test and set up of the detector system of the Mainz Neutrino Mass Experiment", supervisor: Prof. Dr. H. Backe
Positions
- Professor of Physics (C4/W3, full professor) at the Westfälische Wilmhelms-Universität Münster
- Professor for physics (C3, similar to "associate professor") at University of Bonn, Germany
- Hochschuldozent (C2, faculty member, like "assistent professor") at the Johannes Gutenberg-Universität Mainz
- Postdoctoral fellow (C1) at the Johannes Gutenberg-Universität Mainz
- CERN fellow at the European particle physics laboratory CERN
- Postdoctoral fellow at the Johannes Gutenberg-Universität Mainz
- Research assistant at the Johannes Gutenberg-Universität Mainz
External Functions
- DESY (Scientific Council DESY)
- Member of the Senate Committee on Collaborative Research Centres of the German Research Foundation (DFG)
- International Advisory Board of the Nuclear Physics Institute of the Czech Academy of Sciences
- Deputy Spokesperson of the Research Training Group "Strong and Weak Interactions - from Hadrons to Dark Matter", financed through the German Science Foundation DFG (GRK 2149)
- Member of the Euroepan APPEC-SAC (Science Advisory Committee of the Astroparticle Physics European Consortium)
- Member of the International Scientific Advisory Committee (ISAC) of the Arthur B. McDonald Canadian Astroparticle Physics Research Institute
- Member of the Interfaculty Centre Cells in Motion (CiM)
- Chair of the Astroparticle Physics Committee (APC) of DESY (DESY)
- Institute for Nuclear Physics
- International KATRIN Collaboration (Collaboration of an international experiment)
- Advisory Board of the section "Particle Physics" of the German Physical Society (DPG)
- Spokesperson of the Research Training Group "Strong and Weak Interactions - from Hadrons to Dark Matter", financed through the German Science Foundation DFG (GRK 2149)
- Member of the Scientific Committee's of the Italien underground laboratory LNGS (Gran Sasso National Laboratory)
- Member of the Physics Review Committee (PRC) of DESY
- Chair of Scientific Council of the Cluster of Excellence PRISMA (Precision Physics, Fundamental Interactions and Structure of Matter) of Johannes Gutenberg University at Mainz
- Committee for astroparticle physics KAT (Chair 2013-2019) (Elected committee of the astroparticle phycists working in akademia in Germany)
- Dean of the Department of Physics of WWU
- Committee of the Deutsche Forschungsgemeinschaft "309 - Particles, nuclei and fields"
- Deputy Dean of the Department of Physics of the WWU
- Co-organizer of the yearly workshop "Arbeitstreffen Kernphysik" in Schleching
- Chair of the working team "school physics" of the faculty for physics of the Westfälische Wilhelms-Universität Münster
- Scientific Advisory Board of the Max-Planck-Institut for Nuclear Physics, Heidelberg
- Managing Director of the Institute for Nuclear Physics of the Westfälische Wilhelms-Universität Münster
- Committee for hadron and nuclear physics KHuK (elected member: 2005-2010, 2010-2012 the representative of the committee for astroparticle physics KAT in KHuK)
- Chair of the organisation committee of the spring meeting of the German Physical Society DPG at Münster with the divisions "hadron and nuclear physics" and "didactics of physics"
- Committee of the German Ministery for Education and Research "Hadron and nuclear physics", 2009 - 2011 vice chair
- Chair of the board of the internatinal graduate school FANTOM (Fundamental and Applied Nuclear and aTOMic physics)
- Committee of the German Federal Ministery for Education and Research "Ground-based astrophysics and astroparticle physics"
- Committee of the Deutsche Forschungsgemeinschaft "309 - Particles, nuclei and fields)
Publications
- . . ‘Search for Lorentz-invariance violation with the first KATRIN data.’ Physical Review D 107, No. 8: 082005. doi: 10.1103/PhysRevD.107.082005.
- . . ‘A next-generation liquid xenon observatory for dark matter and neutrino physics.’ Journal of Physics G: Nuclear Physics 50, No. 1: 013001. doi: 10.1088/1361-6471/ac841a.
- . . ‘Low-energy calibration of XENON1T with an internal $^{{\textbf {37}}}$Ar source.’ European Physical Journal C 83, No. 6: 542. doi: 10.1140/epjc/s10052-023-11512-z.
- . . ‘Detector signal characterization with a Bayesian network in XENONnT.’ Physical Review D 108, No. 1: 012016. doi: 10.1103/PhysRevD.108.012016.
- . . ‘Searching for Heavy Dark Matter near the Planck Mass with XENON1T.’ Physical Review Letters 130, No. 26: 261002. doi: 10.1103/PhysRevLett.130.261002.
- . . ‘First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment.’ Physical Review Letters 131, No. 4: 041003. doi: 10.1103/PhysRevLett.131.041003.
- . . ‘High resolution MCP-PMT readout using transmission lines.’ Nuclear Instruments and Methods in Physics Research A 1027: 166092. doi: 10.1016/j.nima.2021.166092.
- . . ‘KATRIN background due to surface radioimpurities.’ Astroparticle Physics 138: 102686. doi: 10.1016/j.astropartphys.2022.102686.
- . . ‘Direct neutrino-mass measurement with sub-electronvolt sensitivity.’ Nature Physics 18: 160–166. doi: 10.1038/s41567-021-01463-1.
- . . ‘Double-Weak Decays of $^{124}$Xe and $^{136}$Xe in the XENON1T and XENONnT Experiments.’ Physical Review C 106: 024328. doi: 10.1103/PhysRevC.106.024328.
- . . ‘Material radiopurity control in the XENONnT experiment.’ European Physical Journal C: Particles and Fields 82: 599. doi: 10.1140/epjc/s10052-022-10345-6.
- . . ‘New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs.’ Physical Review Letters 129: 011806. doi: 10.1103/PhysRevLett.129.011806.
- . . ‘Wideband precision stabilization of the -18.6 kV retarding voltage for the KATRIN spectrometer.’ Journal of Instrumentation 17: P06003. doi: 10.1088/1748-0221/17/06/P06003.
- . . ‘Cryogenic bath-type heat exchangers for ultra-pure noble gas applications.’ Journal of Instrumentation 17: P05037. doi: 10.1088/1748-0221/17/05/P05037.
- . . ‘Application and modeling of an online distillation method to reduce krypton and argon in XENON1T.’ Progress of Theoretical and Experimental Physics 2022: 053H01. doi: 10.1093/ptep/ptac074.
- . . ‘Improved eV-scale Sterile-Neutrino Constraints from the Second KATRIN Measurement Campaign.’ Physical Review D 105: 072004. doi: 10.1103/PhysRevD.105.072004.
- . . ‘Background reduction at the KATRIN experiment by the shifted analysing plane configuration.’ European Physical Journal C 82: 258. doi: 10.1140/epjc/s10052-022-10220-4.
- . . ‘{KATRIN}: status and prospects for the neutrino mass and beyond.’ Journal of Physics G: Nuclear and Particle Physics 49, No. 10: 100501. doi: 10.1088/1361-6471/ac834e.
- . . ‘An approximate likelihood for nuclear recoil searches with~XENON1T data.’ European Physical Journal C 82, No. 11: 989. doi: 10.1140/epjc/s10052-022-10913-w.
- . . ‘Search for New Physics in Electronic Recoil Data from XENONnT.’ Physical Review Letters 129, No. 16: 161805. doi: 10.1103/PhysRevLett.129.161805.
- . . ‘An active transverse energy filter to differentiate low energy particles with large pitch angles in a strong magnetic field.’ European Physical Journal C 82, No. 10: 922. doi: 10.1140/epjc/s10052-022-10858-0.
- . . ‘Suppression of electrical breakdown phenomena in liquid TriMethyl Bismuth based ionization detectors.’ Journal of Instrumentation 17, No. 09: P09029. doi: 10.1088/1748-0221/17/09/P09029.
- . . ‘Design, construction and commissioning of a high-flow radon removal system for XENONnT.’ European Physical Journal C 82, No. 12: 1104. doi: 10.1140/epjc/s10052-022-11001-9.
- . . ‘Electro-purification studies and first measurement of relative permittivity of TMBi.’ Journal of Instrumentation 17, No. 12: P12021. doi: 10.1088/1748-0221/17/12/P12021.
- . . ‘Emission of single and few electrons in XENON1T and limits on light dark matter.’ Physical Review D 106, No. 2: 022001. doi: 10.1103/PhysRevD.106.022001.
- . . ‘Ultra-clean radon-free four cylinder magnetically-coupled piston pump.’ Journal of Instrumentation 16: P09011. doi: 10.1088/1748-0221/16/09/P09011.
- . . ‘The design, construction, and commissioning of the KATRIN experiment.’ Journal of Instrumentation 16, No. 08: T08015. doi: 10.1088/1748-0221/16/08/t08015.
- . . ‘$^{222}$Rn emanation measurements for the XENON1T experiment.’ Eur. Phys. J. C 81, No. 4: 337. doi: 10.1140/epjc/s10052-020-08777-z.
- . . ‘Bound on 3+1 Active-Sterile Neutrino Mixing from the First Four-Week Science Run of KATRIN.’ Phys. Rev. Lett. 126, No. 9: 091803. doi: 10.1103/PhysRevLett.126.091803.
- . . ‘Search for inelastic scattering of WIMP dark matter in XENON1T.’ Phys. Rev. D 103, No. 6: 063028. doi: 10.1103/PhysRevD.103.063028.
- . . ‘Search for Coherent Elastic Scattering of Solar $^8$B Neutrinos in the XENON1T Dark Matter Experiment.’ Phys. Rev. Lett. 126: 091301. doi: 10.1103/PhysRevLett.126.091301.
- . . ‘Analysis methods for the first KATRIN neutrino-mass measurement.’ Phys. Rev. D 104, No. 1: 012005. doi: 10.1103/PhysRevD.104.012005.
- . . ‘Reflectivity of VUV-sensitive silicon photomultipliers in liquid Xenon.’ JINST 16, No. 08: P08002. doi: 10.1088/1748-0221/16/08/P08002.
- . . ‘Laser spectroscopy of the $^2{\mathrmS}_{1/2}{-}^2{\mathrmP}_{{1}/2}$, $^2{\mathrmP}_{3/2}$ transitions in stored and cooled relativistic C$^{3+}$ ions.’ Sci. Rep. 11, No. 1: 9370. doi: 10.1038/s41598-021-88926-w.
- . . ‘Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment.’ Eur. Phys. J. C 81, No. 7: 579. doi: 10.1140/epjc/s10052-021-09325-z.
- . . ‘Time-Focusing Time-of-Flight, a new method to turn a MAC-E-filter into a quasi-differential spectrometer.’ European Physical Journal C 80: 956. doi: 10.1140/epjc/s10052-020-08484-9.
- . . ‘Searching for mysterious dark matter particles and the mass of neutrinos.’ The Innovation Platform 3: 88–91.
- . . ‘Energy resolution and linearity of XENON1T in the MeV energy range.’ European Physical Journal C 80: 785. doi: 10.1140/epjc/s10052-020-8284-0.
- . . ‘Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of ^{136}Xe.’ European Physical Journal C 80: 808. doi: 10.1140/epjc/s10052-020-8196-z.
- . . ‘Suppression of Penning discharges between the KATRIN spectrometers.’ European Physical Journal C 80: 821. doi: 10.1140/epjc/s10052-020-8278-y.
- . . ‘High-resolution spectroscopy of gaseous ^{83m}Kr conversion electrons with the KATRIN experiment.’ J. Phys. G 47, No. 6: 065002. doi: 10.1140/epjc/s10052-020-7718-z.
- . . ‘First operation of the KATRIN experiment with tritium.’ European Physical Journal C 80: 264. doi: 10.1140/epjc/s10052-020-7718-z.
- . . ‘Ionization parameters of Trimethylbismuth for high-energy photon detection.’ Nuclear Instruments and Methods A 958: 162646. doi: 10.1016/j.nima.2019.162646.
- . . „Den kosmischen Leichtgewichten auf der Spur.“ Physik in unserer Zeit 51, No. 3: 116–122. doi: 10.1002/piuz.202001576.
- . . ‘A voyage to the heart of the neutrino.’ CERN Courier 60, No. 1: 28–32.
- . . ‘Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering.’ European Physical Journal C 80: 1133. doi: 10.1140/epjc/s10052-020-08602-7.
- . . ‘Detection prospects for the second-order weak decays of $^{124}$Xe in multi-tonne xenon time projection chambers.’ European Physical Journal C 80: 1161. doi: 10.1140/epjc/s10052-020-08726-w.
- . . ‘VUV Transmission of PTFE for Xenon-based Particle Detectors.’ Journal of Instrumentation 15: P12021. doi: 10.1088/1748-0221/15/12/P12021.
- . . ‘Excess Electronic Recoil Events in XENON1T'.’ Physical Review D 102: 072004. doi: 10.1103/PhysRevD.102.072004.
- . . ‘Projected WIMP sensitivity of the XENONnT dark matter experiment.’ Journal of Cosmology and Astroparticle Physics 11: 031. doi: 10.1088/1475-7516/2020/11/031.
- . . ‘Quantitative Long-Term Monitoring of the Circulating Gases in the KATRIN Experiment Using Raman Spectroscopy.’ Sensors 20: 4827. doi: 10.3390/s20174827.
- 10.1088/1361-6455/ab0ef0. . ‘Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth.’ J. Phys. G 52: 085003. doi:
- . . ‘XENON1T Dark Matter Data Analysis: Signal \& Background Models, and Statistical Inference.’ Physical Review D 99: 112009. doi: 10.1103/PhysRevD.99.112009.
- . . ‘A novel ppm-precise absolute calibration method for precision high-voltage dividers.’ Metrologia 56: 045007. doi: 10.1088/1681-7575/ab2997.
- 10.1007/s10751-019-1569-8. . ‘The hyperfine puzzle of strong-field bound-state QED.’ Hyperfine Interactions 240: 51. doi:
- . . ‘Gamma-induced background in the KATRIN main spectrometer.’ European Physical Journal C 79: 807. doi: 10.1140/epjc/s10052-019-7320-4.
- . . ‘The XENON1T Data Acquisition System.’ Journal of Instrumentation 14: P07016.
- . . ‘XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection.’ Physical Review D 100: 052014. doi: 10.1103/PhysRevD.100.052014.
- 10.1103/PhysRevLett.123.241803. . ‘Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T.’ Physical Review Letters 123: 241803. doi:
- 10.1103/PhysRevLett.123.251801. . ‘Light Dark Matter Search with Ionization Signals in XENON1T.’ Physical Review Letters 123: 251801. doi:
- . . ‘MeV neutrino dark matter: Relic density, lepton flavour violation and electron recoil.’ Journal of High Energy Physics 1911: 129. doi: 10.1007/JHEP11(2019)129.
- . . ‘Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN.’ Physical Review Letters 123: 221802. doi: 10.1103/PhysRevLett.123.221802.
- . . ‘Muon-induced background in the KATRIN main spectrometer.’ Astropart. Phys. 108: 40–49. doi: 10.1016/j.astropartphys.2019.01.003.
- . . ‘$β$-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment.’ Eur. Phys. J. C79, No. 3: 204. doi: 10.1140/epjc/s10052-019-6686-7.
- . . ‘First results on the scalar WIMP-pion coupling, using the XENON1T experiment.’ Phys. Rev. Lett. 122, No. 7: 071301. doi: 10.1103/PhysRevLett.122.071301.
- . . ‘Constraining the spin-dependent WIMP-nucleon cross sections with XENON1T.’ Phys. Rev. Lett. 122, No. 14: 141301. doi: 10.1103/PhysRevLett.122.141301.
- . . ‘Observation of two-neutrino double electron capture in 124Xe with XENON1T.’ Nature 568, No. 7753: 532–535. doi: 10.1038/s41586-019-1124-4.
- . . ‘Reflectance of VUV-sensitive SiPM surfaces in liquid xenon.’ Nuclear Instruments and Methods in Physics Research Section A 936: 577. doi: 10.1016/j.nima.2018.09.142.
- . . ‘Technical design and commissioning of the KATRIN large-volume air coil system.’ Journal of Instrumentation 13: P02003. doi: 10.1088/1748-0221/13/02/P02003.
- . . ‘Intrinsic backgrounds from Rn and Kr in the XENON100 experiment.’ Eur. Phys. J. C78, No. 2: 132. doi: 10.1140/epjc/s10052-018-5565-y.
- . . ‘Signal Yields of keV Electronic Recoils and Their Discrimination from Nuclear Recoils in Liquid Xenon.’ Phys. Rev. D97, No. 9: 092007. doi: 10.1103/PhysRevD.97.092007.
- . . ‘keV-Scale Sterile Neutrino Sensitivity Estimation with Time-Of-Flight Spectroscopy in KATRIN using Self-Consistent Approximate Monte Carlo.’ Eur. Phys. J. C78, No. 3: 212. doi: 10.1140/epjc/s10052-018-5656-9.
- . . ‘First transmission of electrons and ions through the KATRIN beamline.’ JINST 13, No. 04: P04020. doi: 10.1088/1748-0221/13/04/P04020.
- . . ‘Discriminating WIMP-nucleus response functions in present and future XENON-like direct detection experiments.’ Phys. Rev. D97, No. 10: 103532. doi: 10.1103/PhysRevD.97.103532.
- . . ‘Calibration of high voltages at the ppm level by the difference of $^{83\mathrmm}$Kr conversion electron lines at the KATRIN experiment.’ Eur. Phys. J. C78, No. 5: 368. doi: 10.1140/epjc/s10052-018-5832-y.
- . . ‘Magnetically-coupled piston pump for high-purity gas applications.’ Eur. Phys. J. C78, No. 7: 604. doi: 10.1140/epjc/s10052-018-6062-z.
- . . ‘Reduction of stored-particle background by a magnetic pulse method at the KATRIN experiment.’ Eur. Phys. J. C78, No. 9: 778. doi: 10.1140/epjc/s10052-018-6244-8.
- . . ‘Technical design and commissioning of a sensor net for fine-meshed measuring of the magnetic field at the KATRIN spectrometer.’ JINST 13, No. 08: T08010. doi: 10.1088/1748-0221/13/08/T08010.
- . . ‘Dark Matter Search Results from a One Ton-Year Exposure of XENON1T.’ Phys. Rev. Lett. 121, No. 11: 111302. doi: 10.1103/PhysRevLett.121.111302.
- . . ‘The KATRIN Superconducting Magnets: Overview and First Performance Results.’ JINST 13, No. 08: T08005. doi: 10.1088/1748-0221/13/08/T08005.
- . . ‘Impact of a cryogenic baffle system on the suppression of radon-induced background in the KATRIN Pre-Spectrometer.’ JINST 13, No. 10: T10004. doi: 10.1088/1748-0221/13/10/T10004.
- . . ‘A pulsed, mono-energetic and angular-selective UV photo-electron source for the commissioning of the KATRIN experiment.’ European Physical Journal C 2017, No. 77: 410. doi: 10.1140/epjc/s10052-017-4972-9.
- . . ‘Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment.’ European Physical Journal C 2017, No. 77: 358. doi: 10.1140/epjc/s10052-017-4902-x.
- . . ‘Statistical sensitivity on right-handed currents in presence of eV scale sterile neutrinos with KATRIN.’ Journal of Cosmology and Astroparticle Physics 2017, No. 06: 015. doi: 10.1088/1475-7516/2017/06/015.
- . . ‘Removing krypton from xenon by cryogenic distillation to the ppq level.’ European Physical Journal C 77: 275. doi: 10.1140/epjc/s10052-017-4757-1.
- . . ‘High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.’ Nature Communications 8: 15484. doi: 10.1038/ncomms15484.
- . . ‘Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth.’ J. Physics B 50: 085004. doi: 10.1088/1361-6455/aa63a0.
- . . ‘Deconvolution of the energy loss function of the KATRIN experiment.’ Astroparticle Physics 89: 30–38. doi: 10.1016/j.astropartphys.2017.01.010.
- . . ‘Search for two-neutrino double electron capture of Xe-124 with XENON100.’ Physical Review C 95, No. 2: 024605. doi: 10.1103/PhysRevC.95.024605.
- . . ‘Search for Electronic Recoil Event Rate Modulation with 4 Years of XENON100 Data.’ Physical Review Letters 118: 101101. doi: 10.1103/PhysRevLett.118.101101.
- 10.1088/1475-7516/2017/01/025. . ‘A White Paper on keV sterile neutrino Dark Matter.’ Journal of Cosmology and Astroparticle Physics 2017, No. 1: 025. doi:
- . . ‘Results from a Calibration of XENON100 Using a Source of Dissolved Radon-220.’ Phys. Rev. D 95, No. 7: 072008. doi: 10.1103/PhysRevD.95.072008.
- . . ‘Search for magnetic inelastic dark matter with XENON100.’ Journal of Cosmology and Astroparticle Physics 2017, No. 10: 039. doi: 10.1088/1475-7516/2017/10/039.
- . . ‘Search for WIMP Inelastic Scattering off Xenon Nuclei with XENON100.’ Phys. Rev. D 96, No. 2: 022008. doi: 10.1103/PhysRevD.96.022008.
- . . ‘Material radioassay and selection for the XENON1T dark matter experiment.’ Eur. Phys. J. C77, No. 12: 890. doi: 10.1140/epjc/s10052-017-5329-0.
- . . ‘Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector.’ Phys. Rev. D 96, No. 4: 042004. doi: 10.1103/PhysRevD.96.042004.
- . . ‘First Dark Matter Search Results from the XENON1T Experiment.’ Phys. Rev. Lett. 119, No. 18: 181301. doi: 10.1103/PhysRevLett.119.181301.
- . . ‘The XENON1T Dark Matter Experiment.’ Eur. Phys. J. C 77, No. 12: 881. doi: 10.1140/epjc/s10052-017-5326-3.
- . . ‘Search for Bosonic Super-WIMP Interactions with the XENON100 Experiment.’ Phys. Rev. D 96, No. 12: 122002. doi: 10.1103/PhysRevD.96.122002.
- . . ‘First high-statistics and high-resolution recoil-ion data from the WITCH retardation spectrometer.’ European Physical Journal A 52: 206. doi: 10.1140/epja/i2016-16206-y.
- . ‘XENON100 dark matter results from a combination of 477 live days.’ Physical Review D 94: 122001.
- 10.1103/PhysRevD.94.092001. . ‘Low-mass dark matter search using ionization signals in XENON100.’ Physical Review D 94: 092001. doi:
- . . ‘DARWIN: towards the ultimate dark matter detector.’ Journal of Cosmology and Astroparticle Physics 2016, No. 11: 017. doi: 10.1088/1475-7516/2016/11/017.
- . . ‘Physics reach of the XENON1T dark matter experiment.’ Journal of Cosmology and Astroparticle Physics 2016, No. 04: 027. doi: 10.1088/1475-7516/2016/04/027.
- . . ‘Commissioning of the vacuum system of the KATRIN Main Spectrometer.’ Journal of Instrumentation 11: P04011. doi: 10.1088/1748-0221/11/04/P04011.
- . . ‘Erratum: Modification of the omega-Meson Lifetime in Nuclear Matter [Phys. Rev. Lett. 100, 192302 (2008)].’ Physicsal Review Letters 114: 199903. doi: 10.1103/PhysRevLett.114.199903.
- . . ‘Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data.’ Science 349, No. 6250: 851–854. doi: 10.1126/science.aab2069.
- . . „Wandelbare Geisterteilchen.“ Physik Journal 14, No. 12: 24–28.
- 10.1016/j.nima.2015.02.057. . ‘Space-charge effects in Penning ion traps.’ Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 785, No. null: 153–162. doi:
- 10.1088/1475-7516/2015/02/020. . ‘Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos.’ Journal of Cosmology and Astroparticle Physics 2015, No. 2: 020. doi:
- 10.1103/PhysRevLett.115.091302. . ‘Search for Event Rate Modulation in XENON100 Electronic Recoil Data.’ Physical Review Letters 115, No. 9: 091302. doi:
- 10.1140/epjc/s10052-015-3657-5. . ‘Lowering the radioactivity of the photomultiplier tubes for the XENON1T dark matter experiment.’ European Physical Journal C: Particles and Fields 75, No. 11: 1–10. doi:
- 10.1063/1.4934978. . ‘Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a 83mKr tracer method.’ Review of Scientific Instruments 86, No. 11: 115104. doi:
- 10.1007/s10751-015-1199-8. . ‘Status of deceleration and laser spectroscopy of highly charged ions at HITRAP.’ Hyperfine Interactions 235, No. null: 37–44. doi:
- 10.1088/1742-6596/583/1/012002. . ‘Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth.’ Contributed to the 17th International Conference on the Physics of Highly Charged Ions, San Carlos de Bariloche, Argentina. doi:
- 10.1088/0953-4075/48/14/144022. . ‘An improved value for the hyperfine splitting of hydrogen-like 209Bi82+.’ Journal of Physics B: Atomic, Molecular and Optical Physics 48, No. 14. doi:
- . . ‘Penning-trap experiments for spectroscopy of highly-charged ions at HITRAP.’ Physica Scripta T166: 014066. doi: 10.1088/0031-8949/2015/T166/014066.
- . . ‘Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment.’ Journal of Instrumentation 9, No. 11: P11009. doi: 10.1088/1748-0221/9/11/P11006.
- . . ‘An angular-selective electron source for the KATRIN experiment.’ Journal of Instrumentation 9, No. 11: P11020. doi: 10.1088/1748-0221/9/11/P11020.
- . . ‘A novel 83mKr tracer method for characterizing xenon gas and cryogenic distillation systems.’ Journal of Instrumentation 9, No. 10: P10010. doi: 10.1088/1748-0221/9/10/P10010.
- . . ‘First axion results from the XENON100 experiment.’ Physical Review D 90, No. 6: 062009. doi: 10.1103/PhysRevD.90.062009.
- . . ‘High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment.’ Journal of Instrumentation 9, No. 6: P06022. doi: 10.1088/1748-0221/9/06/P06022.
- . . ‘Penning discharge in the KATRIN pre-spectrometer.’ Journal of Instrumentation 9: P07028. doi: 10.1088/1748-0221/9/07/P07028.
- . . ‘First beta neutrino correlation measurement from the recoil-energy spectrum of Penning trapped 35Ar ions.’ Physical Review C 90: 025502. doi: 10.1103/PhysRevC.90.025502.
- . . ‘Observation of the hyperfine transition in lithium-like bismuth Bi 209 80+: Towards a test of QED in strong magnetic fields.’ Physical Review A 90, No. 3: 030501. doi: 10.1103/PhysRevA.90.030501.
- . . ‘Direct measurements of neutrino mass.’ Il Nuovo cimento della Società italiana di fisica C 37, No. 3: 94. doi: 10.1393/ncc/i2014-11768-4.
- . . ‘A cryogenic distillation column for the XENON1T experiment.’ Journal of Physics: Conference Series 564, No. 1: 012006. doi: 10.1088/1742-6596/564/1/012006.
- . . ‘Analysis of the XENON100 dark matter search data.’ Astroparticle Physics 54: 11–24. doi: 10.1016/j.astropartphys.2013.10.002.
- . . ‘Observation and applications of single-electron charge signals in the XENON100 experiment.’ Journal of Physics G 41: 035201. doi: 10.1088/0954-3899/41/3/035201.
- . . ‘First observation of the ground-state hyperfine transition in $^{209}$Bi$^{80+}$.’ Physica Scripta T156: 014016. doi: 10.1088/0031-8949/2013/T156/014016.
- . . ‘Ellipsometry with polarisation analysis at cryogenic temperatures inside a vacuum chamber.’ Review of Scientific Instruments 84: 123103. doi: 10.1063/1.4838555.
- . . ‘Neutrino mass sensitivity by MAC-E-Filter based time-of-flight spectroscopy with the example of KATRIN .’ New Journal of Physics 15: 113020. doi: 10.1088/1367-2630/15/11/113020.
- . . ‘Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR.’ Nuclear Instruments and Methods 711: 90–95. doi: 10.1016/j.nima.2013.01.058.
- . . ‘Neutrino Masses.’ Annalen der Physik 525, No. 8-9: 565–575. doi: 10.1002/andp.201300063.
- . . ‘Detection system for forward emitted photons at the Experimental Storage Ring at GSI.’ Journal of Instrumentation 2013, No. 8: P09018. doi: 10.1088/1748-0221/8/09/P09018.
- . . ‘Next generation KATRIN high precision voltage divider for voltages up to 65kV.’ Journal of Instrumentation 8: P10026. doi: 10.1088/1748-0221/8/10/P10026.
- . . ‘Response of the XENON100 Dark Matter Detector to Nuclear Recoils.’ Physical Review D 88: 012006. doi: 10.1103/PhysRevD.88.012006.
- . . ‘The neutron background of the XENON100 dark matter search experiment .’ Journal of Physics G 40: 115201. doi: 10.1088/0954-3899/40/11/115201.
- . . ‘Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data.’ Physical Review Letters 111: 021301. doi: 10.1103/PhysRevLett.111.021301.
- . . ‘Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment .’ Journal of Instrumentation 8: P03009. doi: 10.1088/1748-0221/8/03/P03009.
- . . ‘Limit on sterile neutrino contribution from the Mainz Neutrino Mass Experiment.’ The European Physical Journal C 73: 2323.
- . . ‘In situ measurements of krypton in xenon gas with a quadrupole mass spectrometer following a cold-trap at a temporarily reduced pumping speed.’ Journal of Instrumentation 8: O92911. doi: 10.1088/1748-0221/8/02/P02011.
- . . ‘Direct neutrino mass measurements.’ Hyperfine Interactions 215: 85–93. doi: 10.1007/s10751-013-0808-7.
- . . ‘Current Direct Neutrino Mass Experiments.’ Advances in High Energy Physics 2013: 293986. doi: 10.1155/2013/293986.
- . . ‘The KATRIN pre-spectrometer at reduced filter energy.’ New Journal of Physics 14: 073054. doi: 10.1088/1367-2630/14/7/073054.
- . . ‘Measurement of the quantum efficiency of Hamamatsu R8520 photomultipliers at liquid xenon temperature.’ Journal of Instrumentation 7: P10005. doi: 10.1088/1748-0221/7/10/P10005.
- . . ‘Dark matter results from 225 live days of XENON100 data.’ Physical Review Letters 109, No. 18: 181301. doi: 10.1103/PhysRevLett.109.181301.
- . . ‘The distributed Slow Control System of the XENON100 Experiment.’ Journal of Instrumentation 2012, No. 7: T12001. doi: 10.1088/1748-0221/7/12/T12001.
- . . ‘Erratum: Study of the electromagnetic background in the XENON100 experiment.’ Physical Review D 85: 029904(E). doi: 10.1103/PhysRevD.85.029904.
- . . ‘APDs as single-photon detectors for visible and near-infrared wavelengths down to Hz rates .’ Journal of Instrumentation 7: P02015. doi: 10.1088/1748-0221/7/02/P02015.
- . . ‘Feasibility of photoelectron sources with sharp lines of stable energy between 20 and 80keV.’ Applied Radiation and Isotopes 69, No. 4: 672–677. doi: 10.1016/j.apradiso.2010.12.015.
- . . ‘Ion source for tests of ion behavior in the Karlsruhe tritium neutrino experiment beam line.’ Review of Scientific Instruments 82, No. 1. doi: 10.1063/1.3504372.
- . . ‘Photoproduction of ω mesons on nuclei near the production threshold.’ European Physical Journal A: Hadrons and Nuclei 47, No. 2: 1–5.
- . . ‘Prototype of an angular-selective photoelectron calibration source for the KATRIN experiment.’ Journal of Instrumentation 6: P01002. doi: 10.1088/1748-0221/6/01/P01002.
- . . ‘Computer controls for the WITCH experiment.’ Nuclear Instruments & Methods in Physics Research A 629: 396–405.
- . . ‘First detection and energy measurement of recoil ions following beta decay in a Penning trap with the WITCH experiment.’ Eur. Phys. J. A47: 45. doi: 10.1140/epja/i2011-11045-0.
- . . ‘Calibration of the ISOLDE acceleration voltage using a high-precision voltage divider and applying collinear fast beam laser spectroscopy.’ Nucl. Instrum. Meth. A632: 23–31. doi: 10.1016/j.nima.2010.12.145.
- . . ‘Study of the electromagnetic background in the XENON100 experiment.’ Phys. Rev. D83: 082001. doi: 10.1103/PhysRevD.83.082001.
- . . ‘Likelihood Approach to the First Dark Matter Results from XENON100.’ Phys. Rev. D84: 052003. doi: 10.1103/PhysRevD.84.052003.
- . . ‘Material screening and selection for XENON100.’ Astropart. Phys. 35: 43–49. doi: 10.1016/j.astropartphys.2011.06.001.
- . . ‘Implications on Inelastic Dark Matter from 100 Live Days of XENON100 Data.’ Phys. Rev. D84: 061101. doi: 10.1103/PhysRevD.84.061101.
- . . ‘Analysis of KATRIN data using Bayesian inference.’ Phys. Rev. C84: 045503. doi: 10.1103/PhysRevC.84.045503.
- . . „Den Geisterteilchen auf der Spur.“ Physik Journal 10N7: 31–37.
- . . ‘A compact radio frequency quadrupole for ion bunching in the WITCH experiment.’ Nucl. Instrum. Meth. A648: 1–14. doi: 10.1016/j.nima.2011.03.024.
- . . ‘Dark Matter Results from 100 Live Days of XENON100 Data.’ Physical Review Letters 107: 131302. doi: 10.1103/PhysRevLett.107.131302.
- . . ‘Simbuca, using a graphics card to simulate Coulomb interactions in a penning trap.’ Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2011, No. 638: 192–200.
- . . ‘A contact-less 2-dimensional laser sensor for 3-dimensional wire position and tension measurements.’ IEEE Transactions on Nuclear Science 57, No. 2 PART 2: 787–792. doi: 10.1109/TNS.2010.2042612.
- . . ‘Effect of a sweeping conductive wire on electrons stored in a Penning-like trap between the KATRIN spectrometers.’ European Physical Journal A: Hadrons and Nuclei 44, No. 3: 499–511.
- . . ‘Erratum: Development of a super-stable datum point for monitoring the energy scale of electron spectrometers in the energy range up to 20 keV (Measurement Techniques (2010) 53: 3 (305-312)).’ Measurement Techniques 53, No. 5: 573. doi: 10.1007/s11018-010-9545-3.
- . . ‘First dark matter results from the XENON100 experiment.’ Physical Review Letters 105, No. 13.
- . . ‘In-medium ω mass from the γ+Nb → π0γ+X reaction.’ Physical Review C 82, No. 3: 035209.
- . . ‘Neutrino oscillations with a polarized laser beam: An analogical demonstration experiment.’ Progress in Particle and Nuclear Physics 64, No. 2: 205–209. doi: 10.1016/j.ppnp.2009.12.011.
- . . ‘Non-oscillation probes of neutrino masses.’ AIP Conference Proceedings 1222: 36–41. doi: 10.1063/1.3399345.
- . . ‘The development of a super-stable datum point for monitoring the energy scale of electron spectrometers in the energy range up to 20 keV.’ Measurement Techniques 53, No. 3: 573–581. doi: 10.1007/s11018-010-9545-3.
- . . ‘Photoproduction of meson pairs: First measurement of the polarization observable I^s.’ Phys. Lett. B687: 11–15. doi: 10.1016/j.physletb.2010.02.076.
- . . ‘A UV LED-based fast-pulsed photoelectron source for time-of-flight studies.’ New Journal of Physics 11: 063018. doi: 10.1088/1367-2630/11/6/063018.
- . . ‘Precision high voltage divider for the KATRIN experiment.’ New Journal of Physics 11, No. 10: 103007. doi: 10.1088/1367-2630/11/10/103007.
- . . ‘Linearly polarised photon beams at ELSA and measurement of the beam asymmetry in pi^0-photoproduction off the proton.’ Eur. Phys. J. A39: 373–381. doi: 10.1140/epja/i2008-10708-1.
- . . ‘Photoproduction of $η$ and $η\prime$ Mesons off Protons.’ Phys. Rev. C80: 055202. doi: 10.1103/PhysRevC.80.055202.
- . . ‘Characterization of LN2 cooled LAAPDs for single photon counting applications.’ IEEE Nuclear Science Symposium Conference Record : 2475–2477.
- . . ‘Final results on νμ → ντ oscillation from the CHORUS experiment.’ Nuclear Physics B 793, No. 1-2: 326–343. doi: 10.1016/j.nuclphysb.2007.10.023.
- . . ‘K0πand K*0∑+ photoproduction off the proton.’ European Physical Journal A: Hadrons and Nuclei 35, No. 3: 333–342.
- . . ‘Modification of the ω-meson lifetime in nuclear matter.’ Physical Review Letters 100, No. 19: 192302. doi: 10.1103/PhysRevLett.100.192302.
- . . ‘Nucleon resonance decay by the K0∑channel.’ European Physical Journal A: Hadrons and Nuclei 35, No. 1: 39–45.
- . . ‘Photoproduction of η-mesons off nuclei for Eγ 2.2 GeV.’ European Physical Journal A: Hadrons and Nuclei 38, No. 2: 195–207.
- . . ‘Production of 83Rb for the KATRIN experiment.’ Applied Radiation and Isotopes 66, No. 12: 1838–1843. doi: 10.1016/j.apradiso.2008.04.020.
- . . ‘Study of the reaction γ p → p pi^0 η.’ European Physical Journal A: Hadrons and Nuclei 38, No. 2: 173–186.
- . . ‘The WITCH experiment: Acquiring the first recoil ion spectrum.’ Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266, No. 19-20: 4515–4520. doi: 10.1016/j.nimb.2008.05.150.
- 10.1016/j.physletb.2007.11.055. . ‘New results on the Roper resonance and the $P_{11}$ partial wave.’ Phys. Lett. B659: 94–100. doi:
- 10.1016/j.physletb.2007.11.054. . ‘N* and Delta* decays into N pi0 pi0.’ Phys. Lett. B659: 87–93. doi:
- . . ‘Evidence for a parity doublet $\Delta(1920)P_{33}$ and $\Delta(1940)D_{33}$ from $γ p\to pπ^0η$.’ Physical Review Letters 101: 202002. doi: 10.1103/PhysRevLett.101.202002.
- . . ‘Quasi-free photoproduction of eta-mesons of the neutron.’ Physical Review Letters 100: 252002. doi: 10.1103/PhysRevLett.100.252002.
- . . ‘Measurement of the beam asymmetry Sigma in pi eta: Production off the proton with the CBELSA/TAPS experiment.’ Eur. Phys. J. A35: 291–293. doi: 10.1140/epja/i2008-10566-9.
- . . ‘Beam asymmetry in near threshold omega photoproduction off the proton.’ Phys. Rev. D78: 117101. doi: 10.1103/PhysRevD.78.117101.
- . . ‘Neutrino mass limit from tritium beta decay.’ Rept. Prog. Phys. 71: 086201. doi: 10.1088/0034-4885/71/8/086201.
- . . ‘Exact relativistic β decay endpoint spectrum.’ Physical Review C 76, No. 4: 045501.
- . . ‘Measurement of the beam asymmetry in η photoproduction off the proton.’ European Physical Journal A: Hadrons and Nuclei 33, No. 2: 147–155.
- . . ‘Neutrino mass from beta decay.’ Nuclear Physics B - Proceedings Supplements 168: 5–10. doi: 10.1016/j.nuclphysbps.2007.02.001.
- . . ‘Photoproduction of η -mesons off protons.’ European Physical Journal A: Hadrons and Nuclei 33, No. 2: 133–146.
- . . ‘Photoproduction of π0-mesons off protons from the Δ(1232) region to Eγ = 3 GeV.’ European Physical Journal A: Hadrons and Nuclei 31, No. 1: 61–77.
- . . ‘Photoproduction of π0ω off protons for E γ ≤ 3 GeV.’ European Physical Journal A: Hadrons and Nuclei 31, No. 3: 365–372.
- . . „KATRIN: A key experiment of astroparticle physics.“ Nachr. Forsch. Zentr. Karlsruhe 39N1: 63–68.
- . . „Electrostatic spectrometers and detectors for KATRIN.“ Nachr. Forsch. Zentr. Karlsruhe 39N1: 75–80.
- . . ‘Direct neutrino mass measurements.’ International Journal of Modern Physics A 21, No. 8-9: 1875–1886. doi: 10.1142/S0217751X06032836.
- . . ‘Neutrino mass from triton decay.’ Progress in Particle and Nuclear Physics 57, No. 1: 22–37. doi: 10.1016/j.ppnp.2006.01.001.
- . . ‘Optimization calculations for the KATRIN magnet system.’ IEEE Transactions on Applied Superconductivity 16, No. 2: 1859–1861. doi: 10.1109/TASC.2006.871237.
- . . ‘The Q-value of tritium β-decay and the neutrino mass.’ International Journal of Mass Spectrometry 251, No. 2-3 SPEC. ISS.: 173–178. doi: 10.1016/j.ijms.2006.01.035.
- . . „Kern- und Teilchenphysik.“ In Physikzentrum Bad Honnef -- ein Platz für Dialog und Inspiration, herausgegeben von . unbekannt / n.a. / unknown.
- . . ‘Direct determination of the neutrino masses.’ Comptes Rendus Physique 6, No. 7: 768–777. doi: 10.1016/j.crhy.2005.07.005.
- . . ‘Measuring neutrino properties with tritium.’ Fusion Science and Technology 48, No. 1: 723–730.
- . . ‘The Mainz Neutrino Mass Experiment.’ Nucl. Phys. B Proc. Suppl. 143: 499.
- . . ‘Photoproduction of eta mesons off protons for 0.75-GeV < E(gamma) < 3-GeV.’ Physical Review Letters 94: 012004. doi: 10.1103/PhysRevLett.94.012004.
- . . ‘Neutral pion photoproduction off protons in the energy range 0.3-GeV < E(gamma) < 3-GeV.’ Physical Review Letters 94: 012003. doi: 10.1103/PhysRevLett.94.012003.
- . . ‘Final Results from phase II of the Mainz Neutrino Mass Search in Tritium $β$ Decay.’ Eur. Phys. J. C40: 447–468. doi: 10.1140/epjc/s2005-02139-7.
- . . ‘First observation of in-medium modifications of the omega meson.’ Physical Review Letters 94: 192303. doi: 10.1103/PhysRevLett.94.192303.
- . . KATRIN design report 2004 Scientific Report FZKA, No. 7090. http://bibliothek.fzk.de/zb/abstracts/7090.htm, .
- . . ‘Absolute masses of neutrinos: Experimental results and future possibilities.’ Physica Scripta T121: 166–171. doi: 10.1088/0031-8949/2005/T121/026.
- . . ‘Latest results from the Mainz Neutrino Mass Experiment.’ Eur. Phys. J. C33: s805–s807. doi: 10.1140/epjcd/s2003-03-902-9.
- . . ‘Calibration and survey of AMANDA with the SPASE detectors.’ Nucl. Instrum. Meth. A522: 347–359. doi: 10.1016/j.nima.2003.12.007.
- . . ‘Spectroscopy experiments at ELSA.’ AIP Conference Proceedings 717: 221–230. doi: 10.1063/1.1799707.
- . . ‘Self-charging of quench condensed tritium films.’ Journal of Low Temperature Physics 131: 69.
- . . ‘Laboratory limits on neutrino masses.’ In Massive Neutrinos, edited by , 25–52. Springer VDI Verlag.
- . . ‘Search for neutrino-induced cascades with the AMANDA detector.’ Phys. Rev. D67: 012003. doi: 10.1103/PhysRevD.67.012003.
- . . ‘Search for point sources of high energy neutrinos with AMANDA.’ Astrophysical Journal 583: 1040–1057. doi: 10.1086/345352.
- . . ‘IceCube: The next generation neutrino telescope at the South Pole.’ Nucl. Phys. Proc. Suppl. 118: 388–395.
- . . ‘Results from the antarctic muon and neutrino detector array.’ Nucl. Phys. Proc. Suppl. 118: 371–379. doi: 10.1016/S0920-5632(03)01335-5.
- . . ‘Results from the AMANDA telescope.’ Nucl. Phys. A721: 545–548. doi: 10.1016/S0375-9474(03)01120-5.
- . . ‘eta pi0 photoproduction off protons with the CB-ELSA experiment.’ Nucl. Phys. A721: 781–784. doi: 10.1016/S0375-9474(03)01180-1.
- . . ‘Direct neutrino mass experiments: Present and future.’ Nucl. Phys. Proc. Suppl. 118: 279–286. doi: 10.1016/S0920-5632(03)01330-6.
- . . ‘Search for supernova neutrino-bursts with the AMANDA detector.’ Astropart. Phys. 16: 345–359. doi: 10.1016/S0927-6505(01)00154-2.
- . . ‘Limits to the muon flux from WIMP annihilation in the center of the earth with the AMANDA detector.’ Phys. Rev. D66: 032006. doi: 10.1103/PhysRevD.66.032006.
- . . ‘Observation of high energy atmospheric neutrinos with the Antarctic Muon and Neutrino Detector Array.’ Phys. Rev. D66: 012005. doi: 10.1103/PhysRevD.66.012005.
- . . ‘Results from the Mainz neutrino mass experiment.’ Progress in Particle and Nuclear Physics 48: 133–139. doi: 10.1016/S0146-6410(02)00119-9.
- . . ‘KATRIN, a next generation tritium beta decay experiment in search for the absolute neutrino mass scale.’ Progress in Particle and Nuclear Physics 48: 141–150. doi: 10.1016/S0146-6410(02)00120-5.
- . . ‘Limits on neutrino masses from tritium beta decay.’ Nucl. Phys. Proc. Suppl. 110: 395–397.
- . . ‘Results from the Mainz neutrino mass experiment.’ Phys. Atom. Nucl. 65: 2171–2175. doi: 10.1134/1.1530296.
- . . ‘Results from AMANDA.’ Mod. Phys. Lett. A17: 2019–2037. doi: 10.1142/S0217732302008575.
- . . ‘Observation of high energy atmospheric neutrinos with AMANDA.’. doi: 10.1063/1.1345374.
- . . ‘New results from a search for vμ → vτ and ve → vτ oscillation.’ Physics Letters B 497, No. 1-2: 8–22.
- . . ‘Results from the AMANDA high energy neutrino detector.’ Nucl. Phys. Proc. Suppl. 91: 423–430. doi: 10.1016/S0920-5632(00)00971-3.
- . . ‘Observation of weak neutral current neutrino production of J/psi.’ Phys. Lett. B503: 1–9. doi: 10.1016/S0370-2693(01)00130-7.
- . . ‘The Mainz neutrino mass experiment.’ Nucl. Phys. Proc. Suppl. 91: 273–279. doi: 10.1016/S0920-5632(00)00951-8.
- . . ‘Observation of high-energy neutrinos using Cherenkov detectors embedded deep in Antarctic ice.’ Nature 410: 441–443. doi: 10.1038/35068509.
- . . ‘Recent results from AMANDA.’ Int. J. Mod. Phys. A16S1C: 1013–1015.
- . . ‘Newest results from the Mainz neutrino mass experiment.’ Nucl. Phys. B Proc. Suppl. 85: 273–279.
- . . ‘On dewetting dynamics of solid films of hydrogen isotopes and its influence on tritium beta spectroscopy.’ Eur. Phys. J. B 16: 521–529.
- . . ‘Structural stability of solid deuterium films.’ Journal of Low Temperature Physics 119: 615–625.
- . . ‘Energy loss of 18 keV electrons in gaseous T-2 and quench condensed D-2 films.’ Eur. Phys. J. D 10: 39–52.
- . . ‘Results of the Mainz neutrino mass experiment.’ Nucl. Phys. Proc. Suppl. 87: 271–274. doi: 10.1016/S0920-5632(00)00677-0.
- . . ‘Newest results from the Mainz neutrino mass experiment.’ Phys. Atom. Nucl. 63: 969–974. doi: 10.1134/1.855733.
- . . ‘Neutrino mass from tritium beta decay: Present limits and perspectives.’ Acta Phys. Polon. B31: 1209–1220.
- . . ‘Dispersion relations measured at the D2 resonance of Rb-85 .’ European Journal of Physics 20: 231–239. doi: 10.1088/0143-0807/20/3/314.
- . . ‘Discussion of dispersion relations in atomic spectra with respect to experimental demonstration.’ European Journal of Physics 29: 221–229. doi: 10.1088/0143-0807/20/3/313.
- . . ‘New results from the Mainz Neutrino Mass Experiment.’ Nuclear Physics A 654: 988c–993c.
- . . ‘A high resolution electrostatic time-of-flight spectrometer with adiabatic magnetic collimation.’ Nuclear Instruments & Methods in Physics Research A 421: 256–265.
- . . ‘New results from the Mainz neutrino mass experiment.’ Nucl. Phys. Proc. Suppl. 77: 321–326. doi: 10.1016/S0920-5632(99)00436-3.
- . . ‘High precision measurement of the tritium beta spectrum near its endpoint and upper limit on the neutrino mass.’ Phys. Lett. B460: 219–226. doi: 10.1016/S0370-2693(99)00780-7.
- . . ‘A search for νμ → ντ oscillation.’ Physics Letters B 424, No. 1-2: 202–212. doi: 10.1016/S0370-2693(98)00081-1.
- . . ‘Search for vμ → vτ oscillation using the τ decay modes into a single charged particle.’ Physics Letters B 434, No. 1-2: 205–213.
- . . ‘The CHORUS scintillating fiber tracker and opto-electronic readout system.’ Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 412, No. 1: 19–37. doi: 10.1016/S0168-9002(98)00276-9.
- . . ‘Observation of neutrino induced diffractive D/s*+ production and subsequent decay D/s*+ --> D/s+ --> tau+ -- > mu+.’ Phys. Lett. B435: 458–464. doi: 10.1016/S0370-2693(98)00914-9.
- . . ‘Status of the Mainz neutrino mass experiment.’ Nucl. Phys. Proc. Suppl. 66: 183–186. doi: 10.1016/S0920-5632(98)00031-0.
- . . ‘Status and perspectives of the Mainz neutrino mass experiment.’ Progress in Particle and Nuclear Physics 40: 353–376. doi: 10.1016/S0146-6410(98)00045-3.
- . . ‘The CHORUS experiment to search for νμ → ντ oscillation.’ Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 401, No. 1: 7–44. doi: 10.1016/S0168-9002(97)00931-5.
- . . ‘The CHORUS experiment.’ Nucl. Phys. Proc. Suppl. 48: 183–187. doi: 10.1016/0920-5632(96)00234-4.
- . . ‘A new upper limit of the electron anti neutrino rest mass from tritium beta-decay.’ Nucl. Phys. B Proc. Suppl. 31: 46–49.
- . . ‘Resonant transition radiation in the X-Ray region from a low emittance 855-MeV electron beam.’ Z. Phys. A349: 87–92. doi: 10.1007/BF01296337.
- . . ‘Future perspectives of the Mainz neutrino mass experiment.’ Progress in Particle and Nuclear Physics 32: 173–174. doi: 10.1016/0146-6410(94)90017-5.
- . . ‘A New upper limit of the electron anti-neutrino rest mass from tritium beta decay.’ Nucl. Phys. A553: 313c–316c. doi: 10.1016/0375-9474(93)90632-8.
- . . ‘Improved limit on the electron anti-neutrino rest mass from tritium beta decay.’ Phys. Lett. B300: 210–216. doi: 10.1016/0370-2693(93)90355-L.
- . . ‘A solenoid retarding spectrometer with high-resolution and transmission for kev electrons.’ Nuclear Instruments & Methods in Physics Research B 63: 345–358.
- . . ‘Precision measurement of the conversion electron spectrum of Kr-83m with a solenoid retarding spectrometer.’ Zeitschrift für Physik A 342: 71–78.
- . . ‘Measurement of energy resolution and dead layer thickness of LN2-cooled PIN photodiodes.’ Nuclear Instruments and Methods A 311: 273–279.
Professor Dr. Christian Weinheimer
Professur für Kernphysik (Prof. Weinheimer)