Publications
- . . ‘Axion dark matter from frictional misalignment.’ Journal of High Energy Physics 2023, No. 1: 1–32. doi: 10.1007/JHEP01(2023)169.
- . . ‘Wash-in leptogenesis after axion inflation.’ Journal of High Energy Physics 2023, No. 1: 1–64. doi: 10.1007/JHEP01(2023)053.
- . . ‘Asymptotic symmetries and memories of gauge theories in FLRW spacetimes.’ Journal of High Energy Physics 2023, No. 1: 1–46. doi: 10.1007/JHEP01(2023)011.
- . . ‘Modern cosmology, an amuse-gueule.’ In Advances in Cosmology: Science - Art - Philosophy, edited by , 37–70. Cham: Springer. doi: 10.1007/978-3-031-05625-3.
- . . ‘Cosmological relaxation through the dark axion portal.’ Journal of High Energy Physics 2022, No. 7: 1–33. doi: 10.1007/JHEP07(2022)126.
- . . ‘Baryon asymmetry of the universe from lepton flavor violation.’ Physical Review Letters 129, No. 1: 1–8. doi: 10.1103/PhysRevLett.129.011803.
- . . Cosmology with the Laser Interferometer Space Antenna arXiv. doi: 10.48550/arXiv.2204.05434.
- . . ‘New ideas in baryogenesis: A Snowmass white paper.’ Contributed to the 2022 Snowmass Summer Study, Seattle. doi: 10.48550/arXiv.2203.05010.
- 10.1103/PhysRevD.105.043530. . ‘Hypermagnetogenesis from axion inflation: Model-independent estimates.’ Physical Review D 105, No. 4: 1–20. doi:
- . . ‘The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background.’ Monthly Notices of the Royal Astronomical Society 510, No. 4: 4873–4887. doi: 10.1093/mnras/stab3418.
- . . ‘Stochastic gravitational-wave background from metastable cosmic strings.’ Journal of Cosmology and Astroparticle Physics 2021, No. 12: 1–28. doi: 10.1088/1475-7516/2021/12/006.
- 10.1103/PhysRevD.104.123504. . ‘Gauge-field production during axion inflation in the gradient expansion formalism.’ Physical Review D 104, No. 12: 1–22. doi:
- . . EuCAPT White Paper: Opportunities and challenges for theoretical astroparticle physics in the next decade arXiv. doi: 10.48550/arXiv.2110.10074.
- . . ‘Leptogenesis and low-energy CP violation in a type-II-dominated left-right seesaw model.’ Nuclear Physics B 972: 1–39. doi: 10.1016/j.nuclphysb.2021.115552.
- . . ‘Wash-in leptogenesis.’ Physical Review Letters 126, No. 20: 1–7. doi: 10.1103/PhysRevLett.126.201802.
- . . ‘Model-independent energy budget for LISA.’ Journal of Cosmology and Astroparticle Physics 2021, No. 01: 1–25. doi: 10.1088/1475-7516/2021/01/072.
- . . ‘Has NANOGrav found first evidence for cosmic strings?’ Physical Review Letters 126, No. 4: 1–7. doi: 10.1103/PhysRevLett.126.041305.
- . . ‘New sensitivity curves for gravitational-wave signals from cosmological phase transitions.’ Journal of High Energy Physics 2021, No. 1: 1–61. doi: 10.1007/JHEP01(2021)097.
- . . ‘From NANOGrav to LIGO with metastable cosmic strings.’ Physics Letters B 811: 1–4. doi: 10.1016/j.physletb.2020.135914.
- . . ‘Fingerprint of low-scale leptogenesis in the primordial gravitational-wave spectrum.’ Physical Review Research 2, No. 4: 1–7. doi: 10.1103/PhysRevResearch.2.043321.
- . . ‘Probing the scale of grand unification with gravitational waves.’ Physics Letters B 809: 1–5. doi: 10.1016/j.physletb.2020.135764.
- . . ‘LISA sensitivity to gravitational waves from sound waves.’ Symmetry 12, No. 9: 1–16. doi: 10.3390/sym12091477.
- . . ‘Trans-planckian censorship and inflation in grand unified theories.’ Physics Letters B 803: 1–8. doi: 10.1016/j.physletb.2020.135317.
- . . ‘A fresh look at the gravitational-wave signal from cosmological phase transitions.’ Journal of High Energy Physics 2020, No. 3: 1–26. doi: 10.1007/JHEP03(2020)004.
- . . ‘Type-I seesaw as the common origin of neutrino mass, baryon asymmetry, and the electroweak scale.’ Physical Review D 100, No. 7: 1–26. doi: 10.1103/PhysRevD.100.075029.
- . . ‘Imprint of a scalar era on the primordial spectrum of gravitational waves.’ Physical Review Research 1, No. 1: 1–8. doi: 10.1103/PhysRevResearch.1.013010.
- . . ‘Planck mass and inflation as consequences of dynamically broken scale invariance.’ Physical Review D 100, No. 1: 1–17. doi: 10.1103/PhysRevD.100.015037.
- . . ‘Low-scale leptogenesis assisted by a real scalar singlet.’ Journal of Cosmology and Astroparticle Physics 2019, No. 3: 1–21. doi: 10.1088/1475-7516/2019/03/037.
- . . ‘Axion isocurvature perturbations in low-scale models of hybrid inflation.’ Physical Review D 98, No. 7: 1–33. doi: 10.1103/PhysRevD.98.075003.
- . . ‘Low-scale leptogenesis in the scotogenic neutrino mass model.’ Physical Review D 98, No. 2: 1–12. doi: 10.1103/PhysRevD.98.023020.
- . . ‘Inflation from high-scale supersymmetry breaking.’ Physical Review D 97, No. 11: 1–46. doi: 10.1103/PhysRevD.97.115025.
- . . ‘Baryon asymmetry and gravitational waves from pseudoscalar inflation.’ Journal of Cosmology and Astroparticle Physics 2017, No. 12: 1–41. doi: 10.1088/1475-7516/2017/12/011.
- . . ‘Unified model of chaotic inflation and dynamical supersymmetry breaking.’ Physics Letters B 773: 320–324. doi: 10.1016/j.physletb.2017.08.050.
- . . ‘Unified model of D-term inflation.’ Physical Review D 95, No. 7: 1–8. doi: 10.1103/PhysRevD.95.075020.
- . . ‘Perturbed Yukawa textures in the minimal seesaw model.’ Journal of High Energy Physics 2017, No. 3: 1–29. doi: 10.1007/JHEP03(2017)158.
- . . ‘Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale.’ Nuclear Physics B 916: 688–708. doi: 10.1016/j.nuclphysb.2017.01.017.
- . . Minimal seesaw model with a discrete heavy-neutrino exchange symmetry arXiv. doi: 10.48550/arXiv.1612.08878.
- . . ‘Dynamical supersymmetry breaking and late-time R symmetry breaking as the origin of cosmic inflation.’ Physical Review D 94, No. 7: 1–46. doi: 10.1103/PhysRevD.94.074021.
- . . ‘Pure gravity mediation and spontaneous B-L breaking from strong dynamics.’ Nuclear Physics B 905: 73–95. doi: 10.1016/j.nuclphysb.2016.01.023.
- . . ‘Peccei-Quinn symmetry from dynamical supersymmetry breaking.’ Physical Review D 92, No. 7: 1–29. doi: 10.1103/PhysRevD.92.075003.
- . . ‘Cosmological selection of multi-TeV supersymmetry.’ Physics Letters B 749: 298–303. doi: 10.1016/j.physletb.2015.07.073.
- . . ‘Leptogenesis via axion oscillations after inflation.’ Physical Review Letters 115, No. 1: 1–6. doi: 10.1103/PhysRevLett.115.011302.
- . . ‘Leptogenesis during axion relaxation after inflation.’ Contributed to the 2nd Toyama International Workshop on Higgs as a Probe of New Physics, Toyama. doi: 10.48550/arXiv.1503.08908.
- . . ‘Dynamical D-terms in supergravity.’ Nuclear Physics B 891: 230–258. doi: 10.1016/j.nuclphysb.2014.12.007.
- . . ‘Dynamical fractional chaotic inflation.’ Physical Review D 90, No. 12: 1–39. doi: 10.1103/PhysRevD.90.123524.
- . . ‘The chaotic regime of D-term inflation.’ Journal of Cosmology and Astroparticle Physics 2014, No. 11: 1–14. doi: 10.1088/1475-7516/2014/11/006.
- . . ‘Hybrid inflation in the complex plane.’ Journal of Cosmology and Astroparticle Physics 2014, No. 7: 1–42. doi: 10.1088/1475-7516/2014/07/054.
- . . ‘Dynamical chaotic inflation in the light of BICEP2.’ Physics Letters B 733: 283–287. doi: 10.1016/j.physletb.2014.04.057.
- . . ‘A minimal supersymmetric model of particle physics and the early universe.’ In Cosmology and Particle Physics beyond Standard Models : Ten Years of the SEENET-MTP Network, edited by , 47–77. Geneva: CERN.
- . . The B-L phase transition: Implications for cosmology and neutrinos Dissertation thesis, Universität Hamburg. Cham: Springer. doi: 10.1007/978-3-319-00963-6.
- . . ‘Peccei-Quinn symmetry from a gauged discrete R symmetry.’ Physical Review D 88, No. 7: 1–27. doi: 10.1103/PhysRevD.88.075022.
- . . ‘The gravitational wave spectrum from cosmological B-L breaking.’ Journal of Cosmology and Astroparticle Physics 2013, No. 10: 1–48. doi: 10.1088/1475-7516/2013/10/003.
- . . ‘A simple solution to the Polonyi problem in gravity mediation.’ Physics Letters B 721, No. 1–3: 86–89. doi: 10.1016/j.physletb.2013.03.001.
- . . ‘Superconformal D-term inflation.’ Journal of Cosmology and Astroparticle Physics 2013, No. 4: 1–20. doi: 10.1088/1475-7516/2013/04/019.
- . . ‘Chaotic inflation with a fractional power-law potential in strongly coupled gauge theories.’ Physics Letters B 720, No. 1–3: 125–129. doi: 10.1016/j.physletb.2013.01.058.
- . . ‘Spontaneous B-L breaking as the origin of the hot early universe.’ Nuclear Physics B 862, No. 3: 587–632. doi: 10.1016/j.nuclphysb.2012.05.001.
- . . ‘WIMP dark matter from gravitino decays and leptogenesis.’ Physics Letters B 713, No. 2: 63–67. doi: 10.1016/j.physletb.2012.05.042.
- . . ‘Predicting θ_13 and the neutrino mass scale from quark lepton mass hierarchies.’ Journal of High Energy Physics 2012, No. 3: 1–13. doi: 10.1007/JHEP03(2012)008.
- . . The B-L phase transition: Implications for cosmology and neutrinos Dissertation thesis, Universität Hamburg. Hamburg: DESY. doi: 10.48550/arXiv.1307.3887.
- . . ‘Entropy, baryon asymmetry and dark matter from heavy neutrino decays.’ Nuclear Physics B 851, No. 3: 481–532. doi: 10.1016/j.nuclphysb.2011.06.004.
- . . ‘Matter and dark matter from false vacuum decay.’ Physics Letters B 693, No. 4: 421–425. doi: 10.1016/j.physletb.2010.09.004.
- . . ‘Global analysis of general SU(2)xSU(2)xU(1) models with precision data.’ Physical Review D 82, No. 3: 1–26. doi: 10.1103/PhysRevD.82.035011.