Research areas
My research focuses on the understanding of the present-day physical and chemical structure of the Earth's mantle and crust as well as its physical and chemical evolution over geologic time. Within this general framework, my research has covered a range of subjects from global questions addressing the causes and development of mantle heterogeneity, the interaction of the Earth's mantle with other major reservoirs (continental crust, core), and the estimation of the bulk composition of major Earth reservoirs, to more localized aspects of melt generation and melt evolution. Hereby, the development of analytical techniques for high-precision isotope and trace element measurements and the development of quantitative tools for the investigation of local and large-scale chemical cycles is an integral part of my research.
Teaching
- Geochronology
- Introduction to Geochemistry
- Analytical Geochemistry, Mantle Geochemistry
- Modern techniques in isotope geochemistry
- Isotope geochemistry
CV
Academic Education
- Habilitation (Venia Legendi) ETH Zürich
- PhD Florida State University
- MSc Eberhard Karls University Tübingen
Positions
- Professor for Geochemistry
- Lecturer ETH Zürich
- Research Scientist MPI für Chemie
- Post Doc MPI für Chemie Mainz
- Post Doc Cambridge University
Honors
- Returning German scientists from foreign countries – Alfried Krupp von Bohlen und Halbach-Stiftung German Scholars Organization
- Doctoral Fellowship (HSP-III) – German Academic Exchange Service (DAAD)
- Certificate of Excellence in reviewing – Chemical Geology
- 2012 Editor's citation for excellence in reviewing – American Geophysical Union
Projects
- Constraining the Evolution of Continental Cores ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: KL 3162/3-1 - CRC TRR 170 - C03: 182W heterogeneities in Earth's mantle – early differentiation, late accretion, and core-mantle interaction ( – )
Subproject in DFG-Joint Project Hosted at the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/2 - Verbundprojekt: SO273 - Marion: ROV-Beprobung und Kartieren des Marion Rises am Südwest-Indischen-Rücken (SWIR); Vorhaben: Geochemische und petrologische Arbeiten im Fokus auf Peridotiten ( – )
participations in bmbf-joint project: Federal Ministry of Education and Research | Project Number: 03G0273E - CRC TRR 170 - C03: Preservation of 182W heterogeneities in the Earth's mantle – implications for the timing and nature of late accretion ( – )
Subproject in DFG-Joint Project Hosted outside the University of Münster: DFG - Collaborative Research Centre | Project Number: TRR 170/1 - Ce-Isotopnenmessungen offenbaren die Rolle von recycelten Sedimenten und die Ursache der zeitlichenVariabilität der Mantelquelle des Hawaii plumes ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: STR 853/9-1 - New constraints on the bulk composition and compositional evolution of the Earth from La-Ce isotope measurements ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: STR 853/5-1 - Origin and magmatic evolution of carbonatites and associated silicate rocks from Amba Dongar, India ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: STR 853/7-1 - MIRC – Establishing the Core facility Münster Isotope research center ( – )
Individual Granted Project: DFG - Individual Grants Programme | Project Number: STR 853/3-1 - Förderprogramm "Rückkehr deutscher Wissenschaftler aus dem Ausland" - Förderung eines Mikro-Röntgenspektrumeters ( – )
Individual Granted Project: German Scholars Organization e. V.
- Constraining the Evolution of Continental Cores ( – )
Publications
- 10.1016/B978-0-323-99762-1.00005-X. (). Application of isotope dilution and double spiking in geochemistry. In (Ed.), Treatise of Geochemistry (3rd Ed. , pp. 293–315). Amsterdam: Elsevier. doi:
- 10.1016/B978-0-323-99762-1.00057-7. (). The geochemical concept of a “Primitive Mantle”. In (Ed.), Treatise of Geochemistry (3rd Ed. , pp. 1–16). Amsterdam: Elsevier. doi:
- 10.1016/j.chemgeo.2023.121840. (). Deep segregation and crystallization of ultra-depleted melts in the sub-ridge mantle. Chemical Geology, 121840. doi:
- 10.1016/j.gca.2024.04.032. (). Sampling Earth’s mantle at intra-transform spreading ridges. Geochimica et Cosmochimica Acta, 374, 156–172. doi:
- 10.1038/s41561-024-01532-z. (). Upwelling of melt-depleted mantle under Iceland. Nature Geoscience, 17(9). doi:
- 10.7185/geochemlet.2437. (). Basalts record a limited extent of mantle depletion: cause and chemical geodynamic implications. Geochemical Perspectives Letters, 32, 21–26. doi:
- 10.1029/2022AV000792. (). Earth mantle's isotopic record of progressive chemical depletion. AGU Advances, 4, e2022AV000792, Article e2022AV000792. doi:
- 10.1029/2022GC010688. (). Origin of 182W anomalies in ocean island basalts. Geochemistry, Geophysics, Geosystems, 24, e2022GC01068. doi:
- 10.1093/petrology/egad013. (). Petrogenesis of the Girnar Complex in the Deccan Traps Province, India. Journal of Petrology, egad013. doi:
- 10.1016/j.gca.2023.04.008. (). Plume–lithosphere interactions and LIP-triggered climate crises constrained by the origin of Karoo lamproites. Geochimica et Cosmochimica Acta, 350, 87-105. doi:
- 10.1144/sp513-2021-84. (). Evolution of ultrapotassic volcanism on the Kaapvaal craton: deepening the orangeite versus lamproite debate. Geological Society, London, Special Publications, 513, 17–44. doi:
- . (). Cr stable isotope fractionation by evaporation from silicate melts. Chemical Geology, 610, Article 121096. doi: 10.1016/j.chemgeo.2022.121096.
- 10.1029/2022GC010606. (). Chemical Geodynamics Insights from a Machine Learning Approach. Geochemistry, Geophysics, Geosystems, 23, e2022GC01060. doi:
- 10.1016/j.chemgeo.2022.121104. (). Open-system 182W-142Nd isotope evolution of the Earth. Chemical Geology, 611, 121104. doi:
Research Articles (Journals)
- . (). Constraining the presence of amphibole and mica in metasomatized mantle sources through halogen partitioning experiments. Lithos, 380-381, 105859. doi: 10.1016/j.lithos.2020.105859.
- 10.1016/j.chemgeo.2021.120350. (). A process-oriented approach to mantle geochemistry. Chemical Geology, 579, 120350. doi:
- 10.1093/petrology/egab046. (). Sheared peridotite and megacryst formation beneath the Kaapvaal craton: a snapshot of tectonomagmatic processes across the lithosphere–asthenosphere transition. Journal of Petrology, egab046. doi:
- 10.1016/j.epsl.2021.116981. (). Ancient refractory asthenosphere revealed by mantle re-melting at the Arctic Mid Atlantic Ridge. Earth and Planetary Science Letters, 566, 116981. doi:
- . (). The Loongana (CL) group of carbonaceous chondrites. Geochimica et Cosmochimica Acta, 304, 1–31. doi: 10.1016/j.gca.2021.04.007.
- 10.1016/j.gca.2021.02.035. (). Thallium elemental and isotopic systematics in ocean island lavas. Geochimica et Cosmochimica Acta, 301, 187–210. doi:
Entries in Encyclopediae (Book Contributions)
- 10.1016/B978-0-08-102908-4.00043-6. (). Composition of Earth's Mantle. In (Eds.), Encyclopedia of Geology (Second Edition) (pp. 164–177). Boston, New York, San Diego: Academic Press. doi:
- 10.1016/j.gca.2019.12.029. (). Constraints on mantle evolution from Ce-Nd-Hf isotope systematics. Geochimica et Cosmochimica Acta, 272, 36–53. doi:
- 10.1016/j.epsl.2019.115942. (). Tracing dehydration and melting of the subducted slab with tungsten isotopes in arc lavas. Earth Planet Sci Lett, 530, 115942. doi:
- 10.1016/j.chemgeo.2020.119869. (). A comparison of sulfur isotope measurements of geologic materials by inductively coupled plasma and gas source mass spectrometry. Chem. Geol., 558, 119869. doi:
- 10.1016/j.earscirev.2020.103287. (). Origins of kimberlites and carbonatites during continental collision – Insights beyond decoupled Nd-Hf isotopes. Earth-Science Reviews, 208, 103287. doi:
- 10.1016/j.epsl.2020.116473. (). The tungsten-182 record of kimberlites above the African superplume: exploring links to the core-mantle boundary. Earth Planet. Sci. Lett., 547, 116473. doi:
- 10.1016/j.chemgeo.2019.119307. (). Constraints on Archean crust formation from open system models of Earth evolution. Chem. Geol., 530. doi:
- 10.1016/j.epsl.2019.115841. (). Lack of late-accreted material as the origin of 182W excesses in the Archean mantle: Evidence from the Pilbara Craton, Western Australia. Earth Planet. Sci. Lett., 528. doi:
- 10.1093/petrology/egz026. (). The origin of carbonatites from Amba Dongar within the Deccan Large Igneous Province. Journal of Petrology, 60, 1119–1134. doi:
- . (). Process-related isotope variability in oceanic basalts revealed by high-precision Sr isotope ratios in olivine-hosted melt inclusions. Chemical Geology, 524, 1–10. doi: 10.1016/j.chemgeo.2019.04.031.
- 10.1038/s41561-019-0446-z. (). Ubiquitous ultra-depleted domains in Earth’s mantle . Nature Geoscience, 12, 851–855. doi:
- 10.1016/j.gca.2019.01.013. (). K-rich hydrous mantle lithosphere beneath the Ontong Java Plateau: significance for the genesis of oceanic basalts and Archean continents. Geochim. Cosmochim. Acta, 248, 311–342. doi:
- 10.1016/j.epsl.2018.12.004. (). Earth's chondritic light rare earth element composition: Evidence from the Ce–Nd isotope systematics of chondrites and oceanic basalt. Earth and Planetary Science Letters, 509, 55–65. doi:
Research Articles (Journals)
- . (). Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths. Geochimica et Cosmochimica Acta, 226, 192–205. doi: 10.1016/j.gca.2018.02.002.
- 10.1016/j.chemgeo.2017.11.010. (). Accurate and precise measurement of Ce isotope ratios by thermal ionization mass spectrometry (TIMS). Chem. Geol., 476, 119–129. doi:
- . (). Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface. Earth Planet. Sci. Lett., 482, 33–43. doi: 10.1016/j.epsl.2017.10.044.
Entries in Encyclopediae (Book Contributions)
- 10.1007/978-3-319-39193-9_286-1. (). Mantle Geochemistry. In (Ed.), Encyclopedia of Geochemistry (p. 12). Basel : Springer International Publishing. doi:
- 10.1016/j.epsl.2017.03.011. (). Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, mantle metasomatism and rift initiation. Earth Planet. Sci. Lett., 466, 152–167. doi:
- 10.1016/j.chemgeo.2016.08.019. (). Plates or plumes in the origin of kimberlites: U/PB perovskite and Sr-Nd-Hf-Os-C-O isotope constraints from the Superior craton (Canada). Chem. Geol., 455, 57–83. doi:
Research Articles (Journals)
- 10.1016/j.gca.2016.09.011. (). Open system models of isotopic evolution in Earth’s silicate reservoirs: implications for crustal growth and mantle heterogeneity. Geochim. Cosmochim. Acta., 195, 142–157. doi:
- 10.1016/j.chemgeo.2016.03.026. (). FeMnOx-1: A new microanalytical reference material for the investigation of Mn–Fe rich geological samples. Chem. Geol., 432, 34–40. doi:
- 10.1016/j.gca.2015.10.006. (). Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr-Nd-Hf-Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield. Geochimica et Cosmochimica Acta, 173(null), 1–36. doi:
- 10.1016/j.gca.2015.08.019. (). Comparing the nature of the western and eastern Azores mantle. Geochim. Cosmochim. Acta., 172, 76–92. doi:
Entries in Encyclopediae (Book Contributions)
- . (). Depleted Mantle. In (Eds.), Encyclopedia of Marine Geosciences (pp. 182–185). Basel : Springer International Publishing. doi: 10.1007/978-94-007-6238-1_11.
- . (). A rapid and efficient ion-exchange chromatography for Lu-Hf, Sm-Nd, and Rb-Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(11), 2323–2333. doi: 10.1039/C5JA00283D.
- 10.1002/2015GC005804. (). Effects of simple acid leaching of crushed and powdered geological materials on high-precision Pb isotope analyses. Geochemistry, Geophysics, Geosystems, 16(7), 27. doi:
Research Articles (Journals)
- . (). Anatexis of juvenile mafic to intermediate crust – constraints from major and trace element and Sr, Nd, Pb isotopes of diorites to granites (Damara orogen, Namibia). S. Afr. J. Geol., 117, 149–171. doi: 10.2113/gssajg.117.1.149.
- 10.1016/j.lithos.2014.09.006. (). Lead transport in intra-oceanic subduction zones: 2D geochemical–thermo-mechanical modeling of isotopic signatures. Lithos, 208-209, 265–280. doi:
- 10.1016/j.lithos.2014.03.033. (). Generation of magnesian, high-K alkali-calcic granites and granodiorites from amphibolitic continental crust in the Damara orogen, Namibia. Lithos, 198–199, 217–233. doi:
- 10.1016/j.gr.2013.06.008. (). Petrogenesis of synorogenic high-temperature leucogranites (Damara orogen, Namibia): Constraints from U-Pb monazite ages and Nd, Sr and Pb isotopes. . Gondwana Res., 25(4), 1614–1626. doi:
Research Article (Book Contributions)
- 10.1016/B978-0-08-095975-7.01404-2. (). 15.4 - Application of Isotope Dilution in Geochemistry. In (Eds.), Treatise on Geochemistry (Second Edition) (pp. 71–86). Amsterdam: Elsevier. doi:
- 10.1093/petrology/egt042. (). Petrogenesis of Tertiary hornblende-bearing lavas in the Rhön, Germany. J. Petrol., 54, 2095–2123. doi:
- 10.1002/ggge.20152. (). Mantle architecture and distribution of radiogenic power. Geochem. Geophys. Geosys., 14, 2265–2285. doi:
- . (). The geochemical consequences of mixing melts from a heterogeneous mantle. Geochimica et Cosmochimica Acta, 114, 112–143. doi: 10.1016/j.gca.2013.03.042.
- . (). Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chemical Geology, 330-331, 274–299. doi: 10.1016/j.chemgeo.2012.08.007.
- . (). In situ analysis of 230Th-232Th-238U ratios in titanite by fs-LA-MC-ICPMS. Journal of Analytical Atomic Spectrometry, 27(11), 1863–1874. doi: 10.1039/C2JA30162H.
- 10.1016/j.epsl.2012.08.019. (). Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy. Earth and Planetary Science Letters, 355-356, 162–173. doi:
- 10.1016/j.epsl.2012.05.003. (). Fluorine in nominally fluorine-free mantle minerals: Experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. . Earth Planet. Sci. Lett., 337–338, 1–9. doi:
- 10.1093/petrology/egs008. (). Ultra-potassic mafic rocks as geochemical proxies for post-collisional dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. J. Petrol., 53, 1019–1055. doi:
- . (). Refractory element fractionation in the Allende meteorite: Implications for solar nebula condensation and the chondritic composition of planetary bodies. Geochim. Cosmochim. Acta, 85, 114–141. doi: 10.1016/j.gca.2012.02.006.
- . (). Melting of a two-component source beneath Iceland. Journal of Petrology, 53, 127–157. doi: 10.1093/petrology/egr059.
- 10.1016/j.gca.2011.11.017. (). A possible high Nb/Ta reservoir in the continental lithospheric mantle and consequences on the global Nb budget – Evidence from continental basalts from Central Germany. Geochim. Cosmoschim. Acta, 77, 232–251. doi:
- . (). The influence of source heterogeneity on the U–Th–Pa–Ra disequilibria in post-glacial tholeiites from Iceland. Geochimica et Cosmochimica Acta, 87, 243–266. doi: 10.1016/j.gca.2012.03.041.
- . (). GSD-1G and MPI-DING Reference Glasses for In Situ and Bulk Isotopic Determination. Geostandards and Geoanalytical Research, 35(2), 193–226. doi: 10.1111/j.1751-908X.2010.00114.x.
- 10.1016/j.chemgeo.2010.11.013. (). Timing of juvenile arc crust formation and evolution in the Sapat Complex (Kohistan, Pakistan). Chem Geol., 80, 243–256. doi:
- 10.1111/j.1751-908X.2011.00120.x. (). Determination of Reference Values for NIST SRM 610-617 Glasses following ISO Guidelines. Geostand. Geoanal. Res., 35(4), 397–429. doi:
- 10.1029/2011GC003617. (). Domains of ultra depleted mantle; new evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosys., 12(8), 18. doi:
- 10.1016/j.epsl.2011.06.012. (). Abyssal peridotite Hf isotopes identify extreme mantle depletion. Earth Plan. Sci. Lett., 308, 359–368. doi:
- . (). A new method for U-Th-Pa-Ra separation and accurate measurement of U-234-Th-230-(231)pa-Ra-226 disequilibria in volcanic rocks by MC-ICPMS. Chemical Geology, 277(1-2), 30–41. doi: 10.1016/j.chemgeo.2010.07.007.
- . (). Hf isotope compositions of Mediterranean lamproites: Mixing of melts from asthenosphere and crustally contaminated mantle lithosphere. Lithos, 119(3-4), 297–312. doi: 10.1016/j.lithos.2010.07.007.
- . (). Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 276(3-4), 188–197. doi: 10.1016/j.chemgeo.2010.06.005.
- . (). Chondritic Mg isotope composition of the Earth. Geochimica et Cosmochimica Acta, 74(17), 5069–5083. doi: 10.1016/j.gca.2010.06.008.
- . (). Reply to comment by E. Martin, M. Martin, and O. Sigmarsson on "Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation" by M. Willbold, E. Hegner, A. Stracke, and A. Rocholl. Earth and Planetary Science Letters, 293(1-2), 220–222. doi: 10.1016/j.epsl.2010.02.022.
- . (). Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy). Earth and Planetary Science Letters, 286(1-2), 208–218. doi: 10.1016/j.epsl.2009.06.028.
- . (). Continental geochemical signatures in dacites from Iceland and implications for models of early Archaean crust formation. Earth and Planetary Science Letters, 279(1-2), 44–52. doi: 10.1016/j.epsl.2008.12.029.
- . (). The importance of melt extraction for tracing mantle heterogeneity. Geochimica et Cosmochimica Acta, 73(1), 218–238. doi: 10.1016/j.gca.2008.10.015.
- . (). Between carbonatite and lamproite - Diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochimica et Cosmochimica Acta, 72(13), 3258–3286. doi: 10.1016/j.gca.2008.03.008.
- . (). Chemical geodynamics - Tracking mantle depletion. Nature Geoscience, 1(4), 215–216. doi: 10.1038/ngeo163.
- . (). Evidence for mantle plumes? Reply. Nature, 450(7169), E16E16.
- . (). The peculiar geochemical signatures of Sao Miguel (Azores) lavas: Metasomatised or recycled mantle sources? Earth and Planetary Science Letters, 259(1-2), 186–199. doi: 10.1016/j.epsl.2007.04.038.
- . (). Compositional diversity among primitive lavas of Mauritius, Indian Ocean: Implications for mantle sources. Journal of Volcanology and Geothermal Research, 164(1-2), 76–94. doi: 10.1016/j.jvolgeores.2007.04.004.
- . (). Craton reactivation on the Labrador Sea margins: Ar-40/Ar-39 age and Sr-Nd-Hf-Pb isotope constraints from alkaline and carbonatite intrusives. Earth and Planetary Science Letters, 256(3-4), 433–454. doi: 10.1016/j.epsl.2007.01.036.
- . (). Nb/Ta and Zr/Hf in ocean island basalts - Implications for crust-mantle differentiation and the fate of Niobium. Earth and Planetary Science Letters, 254(1-2), 158–172. doi: 10.1016/j.epsl.2006.11.027.
- . (). Insights into the dynamics of mantle plumes from uranium-series geochemistry. Nature, 444(7120), 713–717. doi: 10.1038/nature05341.
- . (). Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton. Journal of Petrology, 47(7), 1261–1315. doi: 10.1093/petrology/egl008.
- . (). Melt extraction in the Earth's mantle: Constraints from U-Th-Pa-Ra studies in oceanic basalts. Earth and Planetary Science Letters, 244(1-2), 97–112. doi: 10.1016/j.epsl.2006.01.057.
- . (). Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 7. doi: 10.1029/2005GC001005.
- . (). MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochemistry, Geophysics, Geosystems, 7. doi: 10.1029/2005GC001060.
- . (). Sources of primitive alkaline volcanic rocks from the central European volcanic province (Rhon, Germany) inferred from Hf, Os and Pb isotopes. Contributions to Mineralogy and Petrology, 150(5), 546–559. doi: 10.1007/s00410-005-0029-4.
- . (). FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6. doi: 10.1029/2004GC000824.
- . (). Comment to "Pb isotopic analysis of standards and samples using a Pb-207-Pb-204 double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS" by Baker et al. Chemical Geology, 217(1-2), 171–174. doi: 10.1016/j.chemgeo.2004.12.003.
- . (). Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochimica et Cosmochimica Acta, 68(12), 2699–2724. doi: 10.1016/j.gca.2003.10.029.
- . (). Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 5. doi: 10.1029/2003GC000597.
- . (). The dynamics of melting beneath Theistareykir, northern Iceland. Geochemistry, Geophysics, Geosystems, 4. doi: 10.1029/2002GC000347.
- . (). Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 4. doi: 10.1029/2001GC000223.
- . (). Theistareykir revisited. Geochemistry, Geophysics, Geosystems, 4. doi: 10.1029/2001GC000201.
- 10.1029/1999GC000013. (). Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium-neodymium-thorium isotope systematics. . Geochem. Geophys. Geosys., 1, 15. doi:
- 10.1016/S0024-4937(98)00049-8. (). Rifting related volcanism in an oceanic post-collisional setting: the Tabar-Lihir-Tanga-Feni (TLTF) island chain, Papua New Guinea. Lithos, 45, 545–560. doi:
Supervised Doctoral Study
Krabbe, Nadine Tungsten stable isotope fractionation during planetary differentiation