Research Foci
High pressure-temperature experiments
Piston cilinder press, multi-anvil press, laser-heated diamond anvil cell, gas mixing furnaces
Planetary accretion processes
Volatiles in planetary interiors
Trace element partitioning
Sulfide ore petrogenesis
Optimization of LA-ICP-MS analyses of metal, sulfide and copper targets
CV
Academic Education
- PhD (Cum Laude) - Experimental Petrology (VU Amsterdam)
- Master of Science (Cum Laude) - Geochemistry (VU Amsterdam)
- Bachelor of Science - Geology (VU Amsterdam)
Positions
- TRR-170 Fellow (WWU)
- Carnegie Postdoctoral Fellow (Earth and Planets Laboratory, Carnegie Institution for Science, Washington D.C., USA)
- Visiting Scientist (Carnegie Institution for Science)
- Lunar and Planetary Institute Exploration Intern (2015)
Honors
- Europlanet Transnational Access Programme – Europlanet Society
- Marie Skłodowska-Curie Postdoctoral Fellowship – European Commission
- Carnegie Postdoctoral Fellowship – Carnegie Institution for Science
- LPI Career Development Award – Lunar and Planetary Institute (LPI)
- 2015 PSI Pierazzo Student Travel Award – Planetary Science Institute
Publications
Books (Monographs)
Research Articles (Journals)
- . . ‘Thermal Stability of F-rich Phlogopite and K-richterite during Partial Melting of Metasomatized Mantle Peridotite with Implications for Deep Earth Volatile Cycles.’ Journal of Geophysical Research - Solid Earth 129, № 3: e2023JB0. doi: 10.1029/2023JB028202.
- . . ‘Quantification of evaporative loss of volatile metals from planetary cores and metal-rich planetesimals .’ Geochimica et Cosmochimica Acta 384: 93–110. doi: 10.1016/j.gca.2024.08.021.
- . . ‘Experimental and petrological investigations into the origin of the lunar Chang'e 5 basalts.’ Icarus 402: 15625. doi: 10.1016/j.icarus.2023.115625.
- . . ‘Evaporation of moderately volatile elements from metal and sulfide melts: implications for volatile element abundances in magmatic iron meteorites.’ Earth and Planetary Science Letters 622, № 118406. doi: 10.1016/j.epsl.2023.118406.
- . . ‘Sulfur solubility in a deep magma ocean and implications for the deep sulfur cycle.’ Geochemical Perspectives Letters 22: 5–9. doi: 10.7185/geochemlet.2219.
- . . ‘Analysis of the CHARM Cu-alloy reference materials using excimer ns-LA-ICP-MS: assessment of matrix effects and applicability to artefact provenancing.’ Archaeometry 64, № 3: 655–670. doi: 10.1111/arcm.12729.
- . . ‘The effect of alkalinity on Ni–O bond length in silicate glasses: implications for Ni isotope geochemistry.’ Chemical Geology 610, № 5: 121070. doi: 10.1016/j.chemgeo.2022.121070.
- . . ‘Partitioning of Ru, Pd, Ag, Re, Pt, Ir and Au between sulfide-, metal- and silicate liquid at highly reduced conditions: implications for terrestrial accretion and aubrite parent body evolution.’ Geochimica et Cosmochimica Acta 336: 15–32. doi: 10.1016/j.gca.2022.08.021.
- . . ‘Highly reduced accretion of the Earth by large impactors? Evidence from elemental partitioning between sulfide liquids and silicate melts at highly reduced conditions.’ Geochimica et Cosmochimica Acta 286: 248–268. doi: 10.1016/j.gca.2020.07.002.
- . . ‘The fate of sulfur and chalcophile elements during crystallization of the lunar magma ocean.’ Journal of Geophysical Research: Planets 125. doi: 10.1029/2019JE006328.
- . . ‘An experimental assessment of the chalcophile behavior of F, Cl, Br and I: Implications for the fate of halogens during planetary accretion and the formation of magmatic ore deposits.’ Geochimica et Cosmochimica Acta 273: 275–290. doi: 10.1016/j.gca.2020.01.006.
- . . ‘Addressing matrix effects for 193 nm excimer LA-ICP-MS analyses of Fe-rich sulfides and a new predictive model.’ Journal Of Analytic Atomic Spectrometry 35: 498–509. doi: 10.1039/C9JA00391F.
- . . ‘Metal-silicate partitioning systematics of siderophile elements at reducing conditions: A new experimental database.’ Icarus 335: 113391. doi: 10.1016/j.icarus.2019.113391.
- . . ‘An experimental assessment of the potential of sulfide saturation of the source regions of eucrites and angrites: Implications for asteroidal models of core formation, late accretion and volatile element depletions.’ Geochimica et Cosmochimica Acta 269: 39–62. doi: 10.1016/j.gca.2019.10.006.
- . . ‘A possible high-temperature origin of the Moon and its geochemical consequences.’ Earth and Planetary Science Letters 538: 116222. doi: 10.1016/j.epsl.2020.116222.
- . . ‘Trace element partitioning between sulfide-, metal- and silicate melts at highly reduced conditions: Insights into the distribution of volatile elements during core formation in reduced bodies.’ Icarus 335: 113408. doi: 10.1016/j.icarus.2019.113408.
- . . ‘Significant depletion of volatile elements in the mantle of asteroid Vesta due to core formation.’ Icarus 317: 669–681. doi: 10.1016/j.icarus.2018.08.020.
- . . ‘LA-ICP-MS analyses of Fe-rich alloys: quantification of matrix effects for 193 nm excimer laser systems.’ Journal of Analytic Atomic Spectrometry 34: 222–231. doi: 10.1039/C8JA00291F.
- . . ‘Calibration of a multi-anvil high-pressure apparatus to simulate planetary interior conditions.’ EPJ techniques and instrumentation 5.
- . . ‘A synthesis of geochemical constraints on the inventory of light elements in the core of Mars.’ Icarus 315: 69–78. doi: 10.1016/j.icarus.2018.06.023.
- . . ‘Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements.’ Geochimica et Cosmochimica Acta 231: 130–156. doi: 10.1016/j.gca.2018.04.008.
- . . ‘Depletion of potassium and sodium in mantles of Mars, Moon and Vesta by core formation.’ Scientific Reports 8: 7053. doi: 10.1038/s41598-018-25505-6.
- . . ‘The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.’ Scientific Reports 7: 14552. doi: 10.1038/s41598-017-15203-0.
- . . ‘The effect of melt composition on metal-silicate partitioning of siderophile elements and constraints on core formation in the angrite parent body.’ Geochimica et Cosmochimica Acta 212: 62–83.
- . . ‘Experimental constraints on the solidification of a nominally dry lunar magma ocean.’ Earth and Planetary Science Letters 471: 104–116. doi: 10.1016/j.epsl.2017.04.045.
- . . ‘Carbon as the dominant light element in the lunar core.’ American Mineralogist 102: 92–97. doi: 10.2138/am-2017-5727.
- . . ‘Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean.’ Nature Geoscience 10: 14–18. doi: 10.1038/ngeo2845.
- . . ‘Analyses of Robotic Traverses and Sample Sites in the Schrödinger basin for the HERACLES Human-Assisted Sample Return Mission Concept.’ Advances in Space Research 58: 1050–1065. doi: 10.1016/j.asr.2016.05.041.
- . . ‘New geochemical models of core formation in the Moon from metal–silicate partitioning of 15 siderophile elements.’ Earth and Planetary Science Letters 441: 1–9. doi: 10.1016/j.epsl.2016.02.028.
- . . ‘Constraints on core formation in Vesta from metal–silicate partitioning of siderophile elements.’ Geochimica et Cosmochimica Acta 177: 48–61. doi: 10.1016/j.gca.2016.01.002.
Dr. Edgar Sikko Steenstra
Professur für Petrologie (Prof. Klemme)