WINTER, Prof. Prof. h.c.mult. Dr. Martin


Prof. Dr. Martin Winter
Prof. Dr. Martin Winter
© FZ Jülich

MEET - Münster Electrochemical Energy Technology
Raum: M.1.003
Corrensstraße 46
D-48149 Münster

Tel.: +49 251 83-36033
martin.winter@uni-muenster.de

Für Interview-Anfragen bitte direkt hier melden:
Tel.: +49 251 83-36720
meet.pr@uni-muenster.de

Sekretariat
Tel.: +49 251 83-36031
Fax: +49 251 83-36032
sylvia.zedler@uni-muenster.de

ORCID ID: 0000-0003-4176-5811

Position: Wissenschaftliche Leitung

  • Forschungsschwerpunkte

    Der Chemiker Martin Winter arbeitet und forscht seit 30 Jahren im Bereich der elektrochemischen Energiespeicherung und Energiewandlung. Sein Fokus liegt auf der Entwicklung neuer Materialien, Komponenten und Zelldesigns für Lithium-Ionen-, Lithiummetall-Batterien und alternativen Batteriesystemen.

  • Akademische Ausbildung

    • Seit 2016: Professur für „Materialwissenschaften, Energie und Elektrochemie" am Institut für Physikalische Chemie, WWU Münster
    • Seit 2015: Gründungsdirektor des Helmholtz-Institut Münster HI MS „Ionics in Energy Storage“
    • 2013-2016: Professur für „Angewandte Materialwissenschaften zur elektrochemischen Energiespeicherung und Energiewandlung" am Institut für Physikalische Chemie, WWU Münster
    • 2008-2012: Stiftungsprofessur (gesponsort durch Volkswagen, Evonik Industries und Chemetall (heute Albemarle)) für „Angewandte Materialwissenschaften zur elektrochemischen Energiespeicherung und Energiewandlung" am Institut für Physikalische Chemie, WWU Münster
    • 2007: Universitäts-Professor und Leiter des Instituts für Chemische Technologie Anorganischer Stoffe der TU Graz (Österreich)
    • 1999: Habilitation
    • 1996: Postdoktorand am Institut für Chemische Technologie Anorganischer Stoffe der TU Graz (Österreich)
    • 1995: Promotion in den Naturwissenschaften (Prof. Jürgen Besenhard), Postdoktorand im Paul Scherrer Institut, Villigen (Schweiz)
    • 1993: Studium der Chemie an der Universität Münster
  • Koordinations- und Leitungsaktivitäten

    (Auswahl)

    • Seit 06/2018: Präsident der International Meeting on Lithium Batteries (IMLB)
    • Seit 12/2017: Koordinator des Projekts Nanobat (BMBF)
    • Seit 10/2017: Berufung in den Expertenrat Elektromobilität NRW
    • Seit 09/2017: Koordinator der Deutsch-Taiwanesische Batteriekooperation (BMBF und MoST, Taiwan)
    • Seit 05/2017 Koordinator des Projekts „GrEEn” – Grüne Batterien (NRW und Niedersachsen)
    • Seit 03/2017: Vorsitzender des Boards der „International Battery Materials Association“ (IBA)
    • Seit 06/2016: Leiter des Wissenschaftlichen Beirats für Batterieforschung des BMBF, Sprecher der deutschen Batterieforschung auf internationaler und nationaler Ebene
    • Seit 01/2016: Koordinator des Projekts „BenchBatt“ (BMBF)
    • Seit 01/2015: Gründungsdirektor des Helmholtz-Instituts Münster (HI MS) „Ionenleiter in der Energiespeicherung" , einem Institutsbereich des Instituts für Energie- und Klimaforschung (IEK) des Forschungszentrum Jülich
    • Seit 10/2015: Sprecher der Projektallianz „Batterie 2020“ (BMBF)
    • Seit 10/2014: Vorstandsmitglied der „Battery Division der Electrochemical Society“ (ECS)
    • Seit 03/2014: Vorstandsmitglied des Kompetenznetzwerks Lithium-Ionen-Batterien
    • Seit 05/2013: Leiter des wissenschaftlichen Beirats des Batterieforum Deutschland
    • Seit 02/2012: Koordinator des Projekts „Insider“ (BMBF)
    • Seit 06/2011: Co-Koordinator des Schwerpunktprogramms „WeNDeLIB" der Deutschen Forschungsgemeinschaft (DFG)
    • Seit 05/2010: Mitglied der Nationalen Plattform Elektromobilität (NPE), Beratung der Bundeskanzlerin und der deutschen Bundesregierung in Batterietechnologie
    • 2009 – 2013: Sprecher der Innovationsallianz LIB2015 des BMBF
    • 2009 – 2011 Sprecher des Kompetenzverbunds-Nord „Elektrochemie & Elektromobilität” (BMBF)
    • 12/2008 Koordinator der Taskforce „Batterietechnologie” im Rahmen des nationalen Entwicklungsplans Elektromobilität; verantwortlich für die Planung der deutschen Forschungs- und Entwicklungsstrategie für elektrische Antriebe
    • 2008 – 2013 Chair Elect, Chair and Immediate Past Chair der Division 3 „Electrochemical Energy Conversion and Storage” der „International Society of Electrochemistry“ (ISE)
    • 2007 – 2010 Vorstandsmitglied der Gesellschaft Deutscher Chemiker, Fachgruppe Elektrochemie

     

  • Mitgliedschaften

    • Deutsche Akademie der Technikwissenschaften (acatech)
    • International Society of Electrochemistry (ISE)
    • The Electrochemical Society (ECS)
    • Deutsche Bunsen-Gesellschaft für Physikalische Chemie (DBG)
    • Materials Research Society (MRS)
    • Gesellschaft Deutscher Chemiker (GDCh)
    • Deutscher Hochschulverband (DHV)
    • Universitätsgesellschaft Münster
    • Nordrhein-Westfälische Akademie der Wissenschaften und der Künste

     

  • Auszeichnungen

    (Auswahl)

    • 2024: NAATBatt Lifetime Achievement Award
    • 2023: Ernennung zum MRS Fellow durch die Materials Research Society (MRS)
    • 2022: Henry B. Linford Award der Electrochemical Society (ECS)
    • 2021: Korrespondierendes Mitglied der Slovenian Academy of Engineering
    • 2021: Einheitsbotschafter des Landes Nordrhein-Westfalen
    • 2020: Alessandro Volta Medaille der Electrochemical Society (ECS)
    • 2018: Bundesverdienstkreuz 1. Klasse
    • 2017: Ehrenprofessur der National Taiwan Tech University of Science and Technology (NTUST)
    • 2016: Braunschweiger Forschungspreis
    • 2015: Carl Wagner Memorial Award der Electrochemical Society (ECS)
    • 2015: Battery Division Research Award der ECS
    • 2015: Fellow der International Society of Electrochemistry (ISE)
    • 2015: Technology Award der International Battery Materials Association (IBA)
    • 2013: Fellow der ECS
    • 2012: MEET Batterieforschungszentrum (anerkannt als ein “Ort des Fortschritts”) durch das Land Nordrhein-Westfalen
    • 2003: Kardinal Theodor Innitzer-Förderpreis im Bereich Naturwissenschaften, Österreich
    • 2002: Battery Division Technology Award of ECS
    • 2002: Josef-Krainer-Würdigungspreis für Chemische Technologie, Österreich
    • 2001: Research Award der IBA
    • 1997: Dissertationspreis der Fachgruppe „Angewandte Elektrochemie“ der Gesellschaft Deutscher Chemiker (GDCh) für die beste Doktorarbeit in den Jahren 1995-1997
    • 1995: Ehrenurkunde der Westfälischen Wilhelms-Universität Münster für ein herausragendes Promotionsexamen
 
  • Publikationen

    Forschungsartikel (Zeitschriften)
    • , , , , , , , , und . . „Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability.Batteries & Supercaps, Nr. Early View: e2023005. doi: 10.1002/batt.202300580.
    • , , , , , , , , , , und . . „Lithium-ion battery cell formation: status and future directions towards a knowledge-based process design.Energy and Environmental Science, Nr. 17 (8): 26862733. doi: 10.1039/D3EE03559J.
    • , , , , , , , , , , und . . „The InnoRec Process: A Comparative Study of Three Mainstream Routes for Spent Lithium-ions Battery Recycling Based on the Same Feedstock.Sustainability, Nr. 16 (9) 3876. doi: 10.3390/su16093876.
    • , , , und . . „Additive bei Hochvolt-Anwendungen in Lithium-Ionen-Batterien - Aufklärung von Verhalten und Mechanismen mit Hilfe Flüssigchromatographie-Massenspektrometrie.chrom+food FORUM, Nr. 04
    • , , , , , , , , , , , , und . . „Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes.Advanced Energy Materials, Nr. 14: 2400840. doi: 10.1002/aenm.202400840.
    • , , , , , , , und . . „Influence of Vinylene Carbonate and Fluoroethylene Carbonate on Open Circuit and Floating SoC Calendar Aging of Lithium-Ion Batteries.Batteries, Nr. 10 (8) 275. doi: 10.3390/batteries10080275.
    • , , , , und . . „Chromatography in battery recycling.G.I.T Laboratory Journal Europe, Nr. 03: 1520.
    • , , , , und . . „Introduction to solid-state battery research.G.I.T Laboratory Journal Europe, Nr. 4: 2126.
    • , , , , und . . „Einführung in die Feststoffbatterieforschung.G.I.T Laborfachzeitschrift, Nr. 5: 3235.
    • , , , , , , , , und . . „Analyzing the effect of electrolyte quantity on the aging of lithium-ion batteries.Advanced Science, Nr. 11 (39) 2405897. doi: 10.1002/advs.202405897.
    • , , und . . „Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?Journal of Solid State Electrochemistry, Nr. 4 doi: 10.1007/s10008-023-05792-4.
    • , , , , , , , , und . . „Radical Polymer-based Positive Electrodes for Dual-Ion Batteries: Enhancing Performance with γ-Butyrolactone-based Electrolytes.ChemSusChem, Nr. 17 e202400626. doi: 10.1002/cssc.202400626.
    • , , , , , , , , und . . „Toward High Specific Energy and Long Cycle Life Li/Mn-Rich Layered Oxide || Graphite Lithium-Ion Batteries via Optimization of Voltage Window.Advanced Energy and Sustainability Research, Nr. 5 (8) 2400129. doi: 10.1002/aesr.202400129.
    • , , , , , , , und . . „Enabling Aqueous Processing of Ni-Rich Layered Oxide Cathodes via Systematic Modification of Biopolymer (Polysaccharide)-Based Binders.Advanced Energy and Sustainability Research, Nr. online first 2400117. doi: 10.1002/aesr.202400117.
    • , , , , , , , und . . „Ultrahigh Ni-Rich (90%) Layered Oxide-Based Cathode Active Materials: The Advantages of Tungsten (W) Incorporation in the Precursor Cathode Active Material.SMALL SCIENCE, Nr. online first 2400135. doi: 10.1002/smsc.202400135.
    • , , und . . „Impact of Different Amounts of Lithium Plating on the Thermal Safety of Lithium Ion Cells.Journal of The Electrochemical Society, Nr. 171 (7): 070538070538. doi: 10.1149/1945-7111/ad637a.
    • , , , , , , , , , , , , und . . „Sulfonyl diimidazole to stabilize fluoroethylene carbonate-based SEI in high-voltage Li ion cells with a SiOx containing negative electrode.Energy Storage Materials, Nr. 72: 103735103735. doi: 10.1016/j.ensm.2024.103735.
    • , , , , und . . „Determination of polysulfide anions and molecular sulfur via coupling HPLC with ICP-MS.Journal of Analytical Atomic Spectrometry, Nr. 39: 24802487. doi: 10.1039/d4ja00231h.
    • , , , , , , , , und . . „Non-aqueous battery electrolytes: high-throughput experimentation and machine learning-aided optimization of ionic conductivity.Journal of Materials Chemistry A, Nr. 12 (30): 1912319136. doi: 10.1039/d3ta06249j.
    • , , , , und . . „Novel quantification method for lithium ion battery electrolyte solvents in aqueous recycling samples using SPE/GC-FID.Advanced Energy and Sustainability Research, Nr. xxx doi: 10.1002/aesr.202400311.
    • , , , , , , , , , und . . „Systematic “Apple-to-Apple” Comparison of Single-Crystal and Polycrystalline Ni-Rich Cathode Active Materials: From Comparable Synthesis to Comparable Electrochemical Conditions.Small structures, Nr. 7 2400119. doi: 10.1002/sstr.202400119.
    • . . „Fluoroethylene Carbonate: Bis(2,2,2,) Trifluoroethyl Carbonate as High Performance Electrolyte Solvent Blend for High Voltage Application in NMC811|| Silicon Oxide-Graphite Lithium Ion Cells.Small Methods, Nr. online first 2400063. doi: 10.1002/sstr.202400063.
    • . . „Tunable LiZn-Intermetallic Coating Thickness on Lithium Metal and Its Effect on Morphology and Performance in Lithium Metal Batteries.Advanced Materials Interfaces, Nr. 2300836 doi: 10.1002/admi.202300836.
    Poster
    • , , , , , und . . „Wet Mechanical Treatment of Spent Lithium Ion Batteries – Analytical Insights into Contaminated Process Water.“ präsentiert auf der Advanced Battery Power, Münster
    • , , , , , , und . . „Pre-lithiation of Si electrodes using physical vapor deposition.“ präsentiert auf der Advanced Battery Power, Münster
    • , , , , , , und . . „Effect of Lithium Vapor Deposition on the Performance of High Capacity Silicon Electrodes.“ präsentiert auf der Advanced Automotive Battery Conference (AABC Europe), Strasbourg
    • , , , , , , und . . „Vacuum thermal evaporation in battery research: insights and case studies.“ präsentiert auf der 22nd International Meeting on Lithium Batteries (22nd IMLB), Hongkong
    • , , , , und . . „SPE/GC-FID: Developing a Quantitative Method for Analyzing LIB Electrolyte Residues in Industrial Wastewaters.“ präsentiert auf der BACCARA Power Day 2024, Münster
    • , , , , und . . „Development of a surface cleaning method for ToF-SIMS analysis of Battery Materials.“ präsentiert auf der IMSIS 2024, Münster
    • , , , , und . . „ETV-ICP-OES as a versatile technique for the elemental analysis of lithium ion batteries.“ präsentiert auf der Advanced Battery Power Conference , Münster
    Übersichtsartikel (Buchbeiträge)
    • , , , und . . „Lithium batteries - Secondary systems – Lithium-ion battery | Pre-lithiation in lithium ion batteries – An overview.“ In Encyclopedia of Electrochemical Power Sources, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, herausgegeben von Jürgen Garche. Amsterdam: Elsevier. doi: 10.1016/B978-0-323-96022-9.00298-X.

    Artikel in Fachzeitschriften, Zeitungen oder Magazinen
    Forschungsartikel (Zeitschriften)
    • , , , , , , und . . „Accessing the primary SEI on lithium metal – A method for low concentrated compound analysis.ChemSusChem, Nr. 16 (9) e202201912. doi: 10.1002/cssc.202201912.
    • , , , , , , , , , und . . „Effective SEI Formation via Phosphazene-Based Electrolyte Additives for Stabilizing Silicon-Based Lithium-Ion Batteries.Advanced Energy Materials, Nr. 13 (26) doi: 10.1002/aenm.202203503.
    • , , , , , , , , und . . „Immobilizing Poly(vinylphenothiazine) in Ketjenblack-Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material.Advanced Functional Materials, Nr. 33 (9) 2210512. doi: 10.1002/adfm.202210512.
    • , , , , , , , , , , , und . . „Molecular-Cling-Effect of Fluoroethylene Carbonate Characterized via Ethoxy(pentafluoro)cyclotriphosphazene on SiOx/C Anode Materials – A New Perspective for Formerly Sub-Sufficient SEI Forming Additive Compounds.Small, Nr. 19 (44) 2302486. doi: 10.1002/smll.202302486.
    • , , , und . . „State-of-charge of individual active material particles in lithium ion batteries: a perspective of analytical techniques and their capabilities.Physical Chemistry Chemical Physics, Nr. 25: 2427824286. doi: 10.1039/D3CP02932H .
    • , , , , , , , , , und . . „High-Voltage Instability of Vinylene Carbonate (VC): Impact of Formed Poly-VC on Interphases and Toxicity.Advanced Science, Nr. 11 (1) 2305282. doi: 10.1002/advs.202305282.
    • , , , , , , , und . . „The Influence of Polyethylene Oxide Degradation in Polymer-Based Electrolytes for NMC and Lithium Metal Batteries.Advanced Energy and Sustainability Research, Nr. 4 (12) 2300153. doi: 10.1002/aesr.202300153.
    • , , , , und . . „Chromatographie im Batterierecycling - Auf dem Weg zur nachhaltigen Energiewirtschaft.G.I.T Laborfachzeitschrift, Nr. 11/12: 3033.
    • , , , , , und . . „Determining the Origin of Lithium Inventory Loss in NMC622|| Graphite Lithium Ion Cells Using an LiPF6-Based Electrolyte.Journal of The Electrochemical Society, Nr. 170 (1) 010530. doi: 10.1149/1945-7111/acb401.
    • , , , , , , , , und . . „Experimental Considerations of the Chemical Prelithiation Process via Lithium Arene Complex Solutions on the Example of Si-Based Anodes for Lithium-Ion Batteries.Advanced Energy and Sustainability Research, Nr. 5 doi: 10.1002/aesr.202300177.
    • , , und . . „Perspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes.Journal of Electrochemical Science and Technology, Nr. 13 (5) doi: 10.5599/jese.1724 .
    • , , , , , und . . „Transient Self-Discharge after Formation in Lithium-Ion Cells: Impact of State-of-Charge and Anode Overhang.Journal of The Electrochemical Society, Nr. 170 (8): 080524. doi: 10.1149/1945-7111/acf164.
    • , , , , , und . . „Revealing the Impact of Different Iron-Based Precursors on the ‘Catalytic’ Graphitization for Synthesis of Anode Materials for Lithium Ion Batteries.ChemElectroChem, Nr. 10 (5) e202201073. doi: 10.1002/celc.202201073.
    • , , , , , , , , , und . . „Failure mechanism of LiNi0.6Co0.2Mn0.2O2 cathodes in aqueous/non-aqueous hybrid electrolyte.Journal of Materials Chemistry A, Nr. 11 (7): 36633672. doi: 10.1039/d2ta08650f.
    • , , , , , , , , , und . . „Coordinating Anions “to the Rescue” of the Lithium Ion Mobility in Ternary Solid Polymer Electrolytes Plasticized With Ionic Liquids.Advanced Energy Materials, Nr. 13 (1) 2202789. doi: 10.1002/aenm.202202789.
    • , , , , , und . . „Building Bridges: Unifying Design and Development Aspects for Advancing Non-Aqueous Redox-Flow Batteries.Batteries, Nr. 9 (1) 4. doi: 10.3390/batteries9010004.
    • , , , , , , , , , , , , und . . „On the direct correlation between the copper current collector surface area and ‘dead Li’ formation in zero-excess Li metal batteries.Journal of Materials Chemistry A, Nr. 11 (14): 77247734. doi: 10.1039/d3ta00097d.
    • , , , , , , , , und . . „Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries.iScience, Nr. 26 (9) 107517. doi: 10.1016/j.isci.2023.107517.
    • , , , , , , , , und . . „Al‐doped ZnO‐Coated LiNi1/3Mn1/3Co1/3O2 Powder Electrodes: The Effect of a Coating Layer on The Structural and Chemical Stability of The Electrode / Electrolyte Interface.Advanced Materials Interfaces, Nr. 11 (2) doi: 10.1002/admi.202300668.
    • , , , , , und . . „Suppressing gas evolution in Li4Ti5O12 -based pouch cells by high temperature formation.Journal of Power Sources, Nr. 575 doi: 10.1016/j.jpowsour.2023.233207.
    • , , , , , , , und . „Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries.Journal of Materials Chemistry A, Nr. 11 (33): 1782817840. doi: 10.1039/D3TA04060G.
    • , , , , , , , , , , , , , und . . „Impact of exposing lithium metal to monocrystalline vertical silicon nanowires for lithium-ion microbatteries.Communications Materials, Nr. 4 (1) 58. doi: 10.1038/s43246-023-00385-0.
    Nicht-wissenschaftliche Beiträge (Zeitschriften)
    • , , , und . . „Front Cover - Method Development for the Investigation of Mn2+/3+, Cu2+, Co2+ and Ni2+ with Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma – Mass Spectrometry.Electrophoresis, Nr. 41 (1-2) doi: 10.1002/elps.202370011.
    • , , , , , , und . . „Front Cover - Accessing the primary SEI on lithium metal – A method for low concentrated compound analysis.ChemSusChem, Nr. 16 (9) e202300496. doi: 10.1002/cssc.202300496.
    • , , , , , und . . „Back Cover - Defining Aging Marker Molecules of 1,3-Propane Sultone for Targeted Identification in Spent LiNi0.6Co0.2Mn0.2O2||AG Cells.Energy Technology, Nr. 11 (5) 2370054. doi: 10.1002/ente.202370054.
    • , , , , , , , , , und . . „Cover Page - Effective SEI Formation via Phosphazene-Based Electrolyte Additives for Stabilizing Silicon-Based Lithium-Ion Batteries.Advanced Energy Materials, Nr. 13 (26) doi: 10.1002/aenm.202370113.
    • , , , , , , , , , , , und . . „Cover Page - Molecular-Cling-Effect of Fluoroethylene Carbonate Characterized via Ethoxy(pentafluoro)cyclotriphosphazene on SiOx/C Anode Materials – A New Perspective for Formerly Sub-Sufficient SEI Forming Additive Compounds.Small, Nr. 19 (44) doi: 10.1002/smll.202370362.
    Konferenzbeiträge
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , und . . „Formation and Suppression of Toxic Organofluorophosphates in Lithium Ion Batteries: Making the High-Voltage Additive Lithium Difluorophosphate Viable for Commercial Applications.“ Beitrag präsentiert auf der 243rd ECS Meeting, Boston doi: 10.1149/MA2023-012645mtgabs.
    • , , , , , und . . „Analysis of the Decomposition of Sulfur-Based Electrolyte Additives in Spent LiNi0.6Co0.2Mn0.2O2||AG Cells.“ Beitrag präsentiert auf der 243rd ECS Meeting , Boston doi: 10.1149/MA2023-012649mtgabs.
    • , , , , , , , , , , , und . . „Rethinking the Role of Formerly Sub-Sufficient Industrial/Synthesized SEI Additive Compounds - a New Perspective.“ Beitrag präsentiert auf der 243rd ECS Meeting, Boston doi: 10.1149/MA2023-0172753mtgabs.
    • . . „Pre-Lithiation of Silicon-Based Anode Materials: Concepts and Realization.“ Beitrag präsentiert auf der 244th ECS Meeting, Gothenburg doi: 10.1149/MA2023-022149mtgabs.
    • , , , , , , , , und . . „Quantifying the Inactivation of Battery Electrode Material Particles.“ Beitrag präsentiert auf der 244th ECS Meeting October, Göteburg doi: 10.1149/MA2023-022206mtgabs.
    • , , , und . . „Identification and Quantification of Lithium Ion Battery Electrolyte Residues in Blackmass Via Headspace-GC-MS/FID.“ Beitrag präsentiert auf der 244th ECS Meeting October, Göteburg doi: 10.1149/MA2023-02653058mtgabs.
    Poster
    • , , , , , und . . „Comprehensive thermal analysis of surface films formed on lithium ion battery negative electrodes.“ präsentiert auf der Advanced Battery Power , Aachen
    • , , , , und . . „Investigating the Electrolyte-volume-dependent Aging of Lithium-ion Batteries by means of Instrumental Analytical Techniques.“ präsentiert auf der Advanced Battery Power, Aachen
    • , , , , und . . „Method development for direct elemental analysis of lithium ion battery materials by means of ETV-ICP-OES.“ präsentiert auf der 7th PhD Seminar of the German Working Group for Analytical Spectroscopy (DAAS) in the GDCh Division of Analytical Chemistry, Berlin
    • , , , , , und . . „Comprehensive Characterization of Process Water in Lithium-Ion Battery Recycling - an Analytial Guide.“ präsentiert auf der ABAA - 14th International Conference on Advanced Lithium Batteries for Automobile Applications, Ho-Chi-Minh-City
    • , , , , , , , und . . „The Mechanism of Lithium Deposition in Open-Porous 3D Copper Micro-Foam Electrodes for Zero-Excess Lithium Metal Batteries (ZELMBs).“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , , , und . . „The influence of LiNO3 on the electrochemical performance of anode-free LMBs with carbonate-based electrolytes.“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , und . . „Defining Aging Marker Molecules: Targeted Identification of Electrolyte Additives for Advanced Reverse-Engineering.“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , , und . . „Lithium ion battery electrolyte degradation of NMC622||AG and NMC811||AG+SiOx cells using chromatographic analytical techniques.“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , und . . „Aging Behavior of Sulfur-Containing Electrolyte Additives: Advanced Reverse-Engineering for Post-Mortem Analysis of Lithium-Ion Batteries.“ präsentiert auf der Baccara Power Day, Münster
    • , , und . . „Investigating the phytoremediation potential of brown mustard for soils contaminated with Li-ion battery materials.“ präsentiert auf der Baccara Power Day, Münster
    • . . „Lithium Metal Thin Films Obtained by Vacuum Thermal Evaporation and Calendering.“ präsentiert auf der European Advanced Automotive Battery Conference (13th AABC Europe 2023), Mainz
    • , , , , , und . . „Defining Aging Marker Molecules of Sultone-based Electrolyte Additives for Targeted Identification in Spent Lithium Ion Batteries.“ präsentiert auf der Advanced Battery Power, Aachen

    Artikel in Fachzeitschriften, Zeitungen oder Magazinen
    Forschungsartikel (Zeitschriften)
    • . . „Insights in utilizing NiCo2O4/Co3O4 nanowires as anode material in Li-ion batteries.Batteries & Supercaps, Nr. 6 (3) e202200465. doi: 10.1002/batt.202200465.
    • , , , , und . . „Organofluorophosphates as Oxidative Degradation Products in High-Voltage Lithium Ion Batteries with NMC or LNMO Cathodes.Journal of The Electrochemical Society, Nr. 169 (11) 110534. doi: 10.1149/1945-7111/aca2e8.
    • , , , , , , , , , und . . „Insights into Electrolytic Pre-Lithiation: A Thorough Analysis Using Silicon Thin Film Anodes“.Small, Nr. 19 (8) 2206092. doi: 10.1002/smll.202206092.
    • . . „On the Practical Applicability of the Li Metal-Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries.Advanced Energy Materials, Nr. 13 (3) 2203256. doi: 10.1002/aenm.202203256.
    • , , , , , , , und . . „Lithium Difluorophosphate Electrolyte Additive: a Boon for good High Voltage Li Ion Batteries, but a Bane for high Thermal Stability and low Toxicity: Towards a Synergistic Dual-Additive Approach with Fluoroethylene Carbonate to Circumvent this Dilemma.ChemSusChem, Nr. 16 (6) e202202189. doi: 10.1002/cssc.202202189.
    • , , , und . . „Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique.Chemistry of Materials, Nr. 34 (23): 10272. doi: 10.1021/acs.chemmater.2c02376.
    • , , , und . . „Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique.Chemistry of Materials, Nr. 34 (23): 10272. doi: 10.1021/acs.chemmater.2c02376.
    • , , , und . . „Different Efforts but Similar Insights in Battery R&D: Electrochemical Impedance Spectroscopy vs Galvanostatic (Constant Current) Technique.Chemistry of Materials, Nr. 34 (23): 1027210278. doi: 10.1021/acs.chemmater.2c02376.
    • , , , , , , und . . „Evaluating the Polymer Backbone – Vinylene versus Styrene – of Anisyl‐substituted Phenothiazines as Battery Electrode Materials.Batteries & Supercaps, Nr. 6 (2): e202200. doi: 10.1002/batt.202200464.
    • , , , , , , und . . „Insights into the Impact of Activators on the ‘Catalytic’ Graphitization to Design Anode Materials for Lithium Ion Batteries.ChemElectroChem, Nr. 9 (21) e202200819. doi: 10.1002/celc.202200819.
    • , , , , , , , , , , , , und . . „Simultaneous Formation of Interphases on both Positive and Negative Electrodes in High-Voltage Aqueous Lithium-Ion Batteries.Small, Nr. 18 (5) 2104986. doi: 10.1002/smll.202104986.
    • , , , , , , , , , , , , , , und . . „“Water-in-Eutectogel” Electrolytes for Quasi-Solid-State Aqueous Lithium-Ion Batteries.Advanced Energy Materials, Nr. 12 (23) 2200401. doi: 10.1002/aenm.202200401.
    • , , , , und . . „Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A US case study.Journal of Energy Storage, Nr. 46 doi: 10.1016/j.est.2021.103891.
    • , , , , , und . . „Defining Aging Marker Molecules of 1,3-Propane Sultone for Targeted Identification in Spent LiNi0.6Co0.2Mn0.2O2||AG Cells.Energy Technology, Nr. 11 (5) 2200189. doi: 10.1002/ente.202200189.
    • , , , und . . „Untersuchung der Ladungszustandsverteilung auf Partikelebene - Einzelpartikelanalytik von Lithium-Ionen-Batterien.G.I.T Laborfachzeitschrift, Nr. 4: 3841.
    • , , , , , und . . „Recovery of Graphite and Cathode Active Materials from Spent Lithium-Ion Batteries by Applying Two Pretreatment Methods and Flotation Combined with a Rapid Analysis Technique.Metals, Nr. 12 (4) (Thermal Conditioning of Metals and EoL-Products for Improved Recycling Efficiency): 677. doi: 10.3390/met12040677.
    • , , , , und . . „Den Lösemittelmolekülen auf der Spur - Gasanalytik isotopenmarkierter Batterie-Elektrolyte.G.I.T Laborfachzeitschrift, Nr. 4: 3437.
    • , , und . . „The Battery Component Readiness Level (BC-RL) framework: A technology-specific development framework.Journal of Power Sources Advances, Nr. 14 100089. doi: 10.1016/j.powera.2022.100089.
    • , , , , , , , und . . „Direct Investigation of the Interparticle-based State-of-Charge Distribution of Polycrystalline Lithium Transition Metal Oxides in Lithium Ion Batteries by Classification Single Particle Inductively Coupled Plasma Optical Emission Spectroscopy.Journal of Power Sources, Nr. 527: 231204. doi: 10.1016/j.jpowsour.2022.231204.
    • , , , , , , , , , und . . „Comprehensive Characterization of Shredded Lithium-Ion Battery Recycling Material.Chemistry - A European Journal, Nr. 28 (22): e202200485. doi: 10.1002/chem.202200485.
    • , , , , , , , , , , , , , und . . „Identification of Soluble Degradation Products in Lithium - Sulfur and Lithium - Metal Sulfide Batteries.Separations, Nr. 9 (3) (Topical Collection: State of the Art in Analysis of Energies): 57. doi: 10.3390/separations9030057.
    • , , , und . . „Implementation of Orbitrap Mass Spectrometry for Improved GC-MS Target Analysis in Lithium Ion Battery Electrolytes.MethodsX, Nr. 9: 101621. doi: 10.1016/j.mex.2022.101621.
    • , , , , , , und . . „Recycling of Lithium-Ion Batteries – Current State of the Art, Circular Economy and Next Generation Recycling.Advanced Energy Materials, Nr. 12 (17) (Special Issue: Advanced Battery Materials ‐ Battery2030+): 2102917. doi: 10.1002/aenm.202102917.
    • , , und . . „Visualization of Degradation Mechanisms of Negative Electrodes Based on Silicon Nanoparticles in Lithium-Ion Batteries via Quasi In Situ Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy.Journal of Physical Chemistry C, Nr. 126 (27): 1101611025. doi: 10.1021/acs.jpcc.2c03294.
    • , , , , und . . „Comparative X-ray Photoelectron Spectroscopy Study of the SEI and CEI in Three Different Lithium Ion Cell Formats.Journal of The Electrochemical Society, Nr. 169 (3): 30533. doi: 10.1149/1945-7111/ac5c08.
    • . . „A Method to Determine Fast Charging Procedures by Operando Overvoltage Analysis.Journal of The Electrochemical Society, Nr. 169: 070525. doi: 10.1149/1945-7111/ac81f7.
    • , , , , , , , , , , und . . „Enabling Long-Cycling Life of Si-on-Graphite Composite Anodes via Fabrication of a Multifunctional Polymeric Artificial Solid-Electrolyte-Interphase Protective Layer.ACS applied materials & interfaces, Nr. 14 (34): 3882438834. doi: 10.1021/acsami.2c10175.
    • , , , , , , , , , , und . . „Aging-Driven Composition and Distribution Changes of Electrolyte and Graphite Anode in 18650-Type Li-Ion Batteries.Advanced Energy Materials, Nr. 12 (45) 2201652. doi: 10.1002/aenm.202201652.
    • , , , und . . „Method Development for the Investigation of Mn2+/3+, Cu2+, Co2+ and Ni2+ with Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma – Mass Spectrometry.Electrophoresis, Nr. 44 (1-2): 8995. doi: 10.1002/elps.202200139.
    • , , , , , und . . „Strategies for formulation optimization of composite positive electrodes for lithium ion batteries based on layered oxide, spinel, and olivine-type active materials.Journal of Power Sources, Nr. 551 232179. doi: 10.1016/j.jpowsour.2022.232179.
    • , , , , , , und . . „State-of-Charge Distribution of Single-Crystalline NMC532 Cathodes in Lithium-Ion Batteries: A Critical Look at the Mesoscale.ChemSusChem, Nr. 15 (21) e202201169. doi: 10.1002/cssc.202201169.
    • , , , , , , , und . . „Optimization of graphite/silicon-based composite electrodes for lithium ion batteries regarding the interdependencies of active and inactive materials.Journal of Power Sources, Nr. 552 232252. doi: 10.1016/j.jpowsour.2022.232252.
    • , , , , , und . . „Making Aqueously Processed LiNi0.5Mn0.3Co0.2O2‑Based Electrodes Competitive in Performance: Tailoring Distribution and Interconnection of Active and Inactive Electrode Materials through Paste Surfactants.ACS Applied Energy Materials, Nr. 5 (11): 1315513160. doi: 10.1021/acsaem.2c02755.
    • , , , , , , , und . . „Enabling Aqueous Processing of Ni‐Rich Layered Oxide Cathode Materials by Addition of Lithium Sulphate.ChemSusChem, Nr. 15 (23) e202202161. doi: 10.1002/cssc.202202161.
    • , , , , , , , , , , und . . „Revealing the Role, Mechanism, and Impact of AlF3 Coatings on the Interphase of Silicon Thin Film Anodes.Advanced Energy Materials, Nr. 12 (41) 2201859. doi: 10.1002/aenm.202201859.
    • , , , , , , , und . . „Practical Implementation of Magnetite-Based Conversion-Type Negative Electrodes via Electrochemical Prelithiation.ACS applied materials & interfaces, Nr. 14 (30): 3466534677. doi: 10.1021/acsami.2c06328.
    • , , , , , , und . . „Comparative Study on Chitosans as Green Binder Materials for LiMn2O4 Positive Electrodes in Lithium Ion Batteries.ChemElectroChem, Nr. xxx e202200600. doi: 10.1002/celc.202200600.
    • , , , , , , und . . „Opportunities and Challenges of Li2C4O4 as Pre-Lithiation Additive for the Positive Electrode in NMC622||Silicon/Graphite Lithium Ion Cells.Advanced Science, Nr. 9 (24) 2201742. doi: 10.1002/advs.202201742.
    • , , , , , und . . „Negative Sulfur-Based Electrodes and their Application in Battery Cells: Dual-Ion Batteries as an Example.Journal of Solid State Electrochemistry, Nr. 26: 20772088. doi: 10.1007/s10008-022-05215-w.
    • , , , , , , , , , , , , und . . „Effective stabilization of NCM622 cathodes in aqueous/non-aqueous hybrid electrolytes by adding a phosphazene derivate as co-solvent.Journal of Power Sources, Nr. 541 231670. doi: 10.2139/ssrn.4076090.
    • , , , , , , , , , und . . „Suppressing Electrode Crosstalk and Prolonging Cycle Life in High-Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes.ChemElectroChem, Nr. 9 (13) e202200469. doi: 10.1002/celc.202200469.
    • , , , , , , , , , , und . . „Advanced Dual-Ion Batteries with High-Capacity Negative Electrodes Incorporating Black Phosphorus.Advanced Science, Nr. 9 (20): 2201116. doi: 10.1002/advs.202201116.
    • , , , , , , , und . . „Improved Capacity Retention for a Disordered Rocksalt Cathode via Solvate Ionic Liquid Electrolytes.Batteries & Supercaps, Nr. 5 (7): e202200075. doi: 10.1002/batt.202200075.
    • , , , , , und . . „Investigation of Lithium Polyacrylate Binders for Aqueous Processing of Ni-rich Lithium Layered Oxide Cathodes for Lithium Ion Batteries.ChemSusChem, Nr. 15 (11): e202200401. doi: 10.1002/cssc.202200401.
    • , , , , , , , , , und . . „Pre-lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells.Advanced Functional Materials, Nr. 32 (22): 2201455. doi: 10.1002/adfm.202201455.
    • , , , , , , und . . „Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries.Batteries & Supercaps, Nr. 5 (6): e202200045. doi: 10.1002/batt.202200045.
    • , , , , , , , , , und . . „Dendrite-Free Zinc Deposition Induced by Zinc Phytate Coating for Long-life Aqueous Zinc Batteries.Batteries & Supercaps, Nr. 5 (6): e202100376. doi: 10.1002/batt.202100376.
    • , , , , , , und . . „Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries.Advanced Energy Materials, Nr. 12 (8): 2103045. doi: 10.1002/aenm.202103045.
    • , , , , , , , und . . „Synergistic Effects of Surface Coating and Bulk Doping in Ni-rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High-Energy Lithium Ion Batteries.ChemSusChem, Nr. 15 (4): e202102220. doi: 10.1002/cssc.202102220.
    Übersichtsartikel (Zeitschriften)
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+.Advanced Energy Materials, Nr. 12 (17): 2102785. doi: 10.1002/aenm.202102785.
    Nicht-wissenschaftliche Beiträge (Zeitschriften)
    • , , , , , , , , , , und . . „Inside Cover - Aging-Driven Composition and Distribution Changes of Electrolyte and Graphite Anode in 18650-Type Li-Ion Batteries.Advanced Energy Materials, Nr. 12 (45) 2201652. doi: 10.1002/aenm.202270189.
    • . . „Revealing the Role, Mechanism, and Impact of AlF3 Coatings on the Interphase of Silicon Thin Film Anodes (Adv. Energy Mater. 41/2022).Advanced Energy Materials, Nr. 12 2270169. doi: 10.1002/aenm.202270169.
    • , , , , , , , , , und . . „Cover Picture "Suppressing Electrode Crosstalk and Prolonging Cycle Life in High-Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes".ChemElectroChem, Nr. 9 (13) e202200579. doi: 10.1002/celc.202200579.
    • , , , , , , , , , und . . „Pre-Lithiation of Silicon Anodes by Thermal Evaporation of Lithium for Boosting the Energy Density of Lithium Ion Cells (Adv. Funct. Mater. 22/2022).Advanced Functional Materials, Nr. 32 (22) 2270127. doi: 10.1002/adfm.202270127.
    • , , , , , , und . . „Front Cover Picture, “Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries (Batteries & Supercaps 06/2022)”.Batteries & Supercaps, Nr. 5 (6) e202200207. doi: 10.1002/batt.202200207.
    • , , , , , , und . . „Cover Profile, “Impact of Degree of Graphitization, Surface Properties and Particle Size Distribution on Electrochemical Performance of Carbon Anodes for Potassium-Ion Batteries”.Batteries & Supercaps, Nr. 5 (6) e202200206. doi: 10.1002/batt.202200206.
    • , , , , , , und . . „Cover Picture "Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries (Adv. Energy Mater. 8/2022)".Advanced Energy Materials, Nr. 12 (8): 2270029. doi: 10.1002/aenm.202270029.
    • , , , , , , , und . . „Cover Picture "Front Cover: Synergistic Effects of Surface Coating and Bulk Doping in Ni-Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High-Energy Lithium Ion Batteries (ChemSusChem 4/2022)".ChemSusChem, Nr. 15 (4): e202200079. doi: 10.1002/cssc.202200079.
    • , , , , , , , und . . „Cover Profile "Synergistic Effects of Surface Coating and Bulk Doping in Ni-Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High-Energy Lithium-Ion Batteries".ChemSusChem, Nr. 15 (4): e202200078. doi: 10.1002/cssc.202200078.
    Poster
    • , , , , und . . „ASSESSING LITHIUM MIGRATION IN LITHIUM ION BATTERIES AT DIFFERENT STATES OF CHARGE BY COMBINING ISOTOPE DILUTION ANALYSIS WITH PLASMA-BASED TECHNIQUES.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „INVESTIGATION OF THE C-RATE DEPENDENT GASSING DURING FORMATION OF LITHIUM-ION BATTERIES UTILIZING GAS CHROMATOGRAPHY - BARRIER DISCHARGE IONIZATION DETECTOR.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „THE INFLUENCE OF ADDITIVES ON PRIMARY SEI-DEVELOPMENT ON LITHIUM METAL – AN ACCUMULATION STUDY.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „SPATIALLY RESOLVED POST-MORTEM ANALYSIS OF LITHIUM DISTRIBUTION AND TRANSITION METAL DEPOSITIONS ON CYCLED ELECTRODES VIA LASER ABLATION-ICP-OES / -MS METHODS.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „INVESTIGATION OF THE MESOSCALE STATE-OF-CHARGE DISTRIBUTION IN LITHIUM ION BATTERY CATHODE MATERIALS BY MEANS OF SINGLE-PARTICLE INDUCTIVELY COUPLED PLASMA-BASED ANALYTICAL TECHNIQUES.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , und . . „Studies on the reactivity of ceramic-coated separators toward lithium-ion battery electrolytes.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , und . . „ELEMENTAL ANALYSIS OF LATERAL AND DEPTH ANALYSIS OF LIBS – INVESTIGATING THE LITHIUM DISTRIBUTION FOR PRE−LITHIATED GRAPHITE ANODES.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , und . . „New Approaches to the Analysis of the SEI Formation on Lithium Metal.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , , , und . . „Analysis of Lithium Ion Battery Recycling Material – from Detailed Feedstock Characterization to Targeted Process Control.“ präsentiert auf der International Meeting on Lithium Batteries 2022, Sydney
    • , , , und . . „NOVEL STATE OF CHARGE STUDIES BY MEANS OF DEPTH-RESOLVED ISOTOPE DILUTION ANALYSIS IN THE FIELD OF LITHIUM ION BATTERIES.“ präsentiert auf der Anwendertreffen Analytische Glimmentladungsspektrometrie, Dresden
    • , , , und . . „NOVEL STATE OF CHARGE STUDIES BY MEANS OF DEPTH-RESOLVED ISOTOPE DILUTION ANALYSIS IN THE FIELD OF LITHIUM ION BATTERIES.“ präsentiert auf der 5th International Glow Discharge Spectroscopy Symposium, Oviedo
    • , , , , , und . . „SEI development study – Accumulation and identification of SEI-derived species from lithium metal anodes.“ präsentiert auf der 14. Kraftwerk Batterie Fachtagung, Virtual
    • , , und . . „Organo-fluorophosphates as aging products during formation in lithium-ion batteries.“ präsentiert auf der 14. Kraftwerk Batterie Fachtagung, Virtual
    • , , , , und . . „Investigation of homogeneity and reversibility of deposited lithium on the anode surfaces.“ präsentiert auf der 14. Kraftwerk Batterie Fachtagung, Virtual
    • , , , , und . . „N-METHYL-2-PYRROLIDONE CONTAMINATION IN LABORATORY AIR DURING THE COATING OF LITHIUM ION BATTERY ELECTRODES.“ präsentiert auf der Batterieforum Deutschland, Virtual
    • , , , , , und . . „Reidentification of Polymeric Lithium Battery Materials by Fingerprint Analysis with Pyrolysis-Gas Chromatography-Mass Spectrometry (PY-GC-MS).“ präsentiert auf der AABC Europe 2022, Mainz
    • , , , und . . „QUANTITATIVE DETERMINATION OF LITHIUM PLATING ON GRAPHITE ANODE SURFACES UTILIZING GC-BID.“ präsentiert auf der 10th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , , und . . „Single-crystal’ Ni-rich layered oxide cathodes for lithium ion batteries – a fair performance comparison between different particle sizes.“ präsentiert auf der Swiss Battery Days, Zürich
    • , , , und . . „Quasi in Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy on High-Energy and High-Power Negative Active Materials for Lithium Ion Batteries.“ präsentiert auf der IMLB 2022 - 21st International Meeting on Lithium Batteries, Sydney
    • , , , und . . „Finding the Sweet Spot: The Effect of a Smaller Operating Voltage Window on Performance and Lifetime of Silicon Nanoparticle Anodes.“ präsentiert auf der AABC Europe 2022, Mainz
    • , , und . . „Quasi In Situ Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy during Cyclic and Calendaric Aging of Silicon Nanoparticle Anodes.“ präsentiert auf der Advanced Battery Power, Münster

    Artikel
    Artikel in Fachzeitschriften, Zeitungen oder Magazinen
    Forschungsartikel (Zeitschriften)
    • , , , , , , , , und . . „Dibenzo[a,e]Cyclooctatetraene‐Functionalized Polymers as Potential Battery Electrode Materials.Macromolecular Rapid Communications, Nr. 42 (18): 2000725. doi: 10.1002/marc.202000725.
    • , , , , , , , , , , , und . . „Waste to life: Low-cost, self-standing, 2D carbon fiber green Li-ion battery anode made from end-of-life cotton textile.Electrochimica Acta, Nr. 368 137644. doi: 10.1016/j.electacta.2020.137644.
    • , , , , , , , , , , , , und . . „Stabilizing the Solid-Electrolyte Interphase with Polyacrylamide for High-Voltage Aqueous Lithium-Ion Batteries.Angewandte Chemie International Edition, Nr. 60 (42): 2281222817. doi: 10.1002/anie.202107252.
    • , , , , , , und . . „Beyond fluorine: Sustainable ternary polymer electrolytes for lithium batteries.Green Chemistry, Nr. 23 (24): 99359944. doi: 10.1039/d1gc02451e.
    • , , , , , , , , , und . . „Galvanic Couples in Ionic Liquid‐Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?Advanced Energy Materials, Nr. 2101021 doi: 10.1002/aenm.202101021.
    • , , , , , und . . „The Impact of the C-rate on Gassing during Formation of NMC622 II Graphite Lithium Ion Battery Cells.Batteries & Supercaps, Nr. 4 (6): 13441350. doi: 10.1002/batt.202100056.
    • , , , , und . . „Direct multi-element analysis of polydisperse microparticles by Classification-Single Particle ICP-OES in the field of lithium ion battery electrode materials.Analytical Chemistry, Nr. 90 (20): 7532–7539. doi: 10.1021/acs.analchem.1c01283.
    • , , , , und . . „Application of Gas Chromatography hyphenated to Atmospheric Pressure Chemical Ionization-Quadrupole-Time-of-Flight-Mass Spectrometry (GC-APCI-Q-TOF-MS) for Structure Elucidation of Degradation Products based on the Cation in Pyr14TFSI.Journal of The Electrochemical Society, Nr. 168 (2, Focus Issue on Molten Salts and Ionic Liquids II): 026501. doi: 10.1149/1945-7111/abdde7.
    • , , , , , , , , und . . „Bridging the Gap between Small Molecular π-Interactions and Their Effect on Phenothiazine-Based Redox Polymers in Organic Batteries.ACS Applied Energy Materials, Nr. 4 (8): 7622–7631. doi: 10.1021/acsaem.1c00917.
    • , , , , und . . „Comprehensive Insights into the Porosity of Lithium-Ion Battery Electrodes: A Comparative Study on Positive Electrodes Based on LiNi0.6Mn0.2Co0.2O2 (NMC622).Batteries, Nr. 7: 70. doi: 10.3390/batteries7040070.
    • , , , , , und . . „Enabling Aqueous Processing for LiNi0.5Mn1.5O4-Based Positive Electrodes in Lithium-Ion Batteries by Applying Lithium-Based Processing Additives.Advanced Energy and Sustainability Research, Nr. 1: 2100075. doi: 10.1002/aesr.202100075.
    • , , , , , und . . „Lithium Powder Synthesis and Preparation of Powder-Based Composite Electrodes for Application in Lithium Metal Batteries.Energy Technology, Nr. 2100871 doi: 10.1002/ente.202100871.
    • , , , , , , und . . „Quantification of aging mechanisms of carbon-coated and uncoated silicon thin film anodes in lithium metal and lithium ion cells.Journal of Energy Storage, Nr. 41: 102812. doi: 10.1016/J.EST.2021.102812.
    • , , , und . . „Quantitative determination of solid electrolyte interphase and cathode electrolyte interphase homogeneity in multi-layer lithium ion cells.Journal of Energy Storage, Nr. 44: 103208. doi: 10.1016/J.EST.2021.103208.
    • , , , , , , , , und . . „Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells.Journal of Energy Storage, Nr. 44: 103479. doi: 10.1016/J.EST.2021.103479.
    • , , , , und . . „Understanding the Effectiveness of Phospholane Electrolyte Additives in Lithium-Ion Batteries under High-Voltage Conditions.ChemElectroChem, Nr. 8 (5): 972982. doi: 10.1002/celc.202100107.
    • , , , , , , , und . . „Insights into the Solubility of Poly (vinylphenothiazine) in Carbonate-Based Battery Electrolytes.ACS applied materials & interfaces, Nr. 13 (10): 1244212453. doi: 10.1021/acsami.0c20012.
    • , , , , , und . . „Cation-Assisted Lithium-Ion Transport for High-Performance PEO-based Ternary Solid Polymer Electrolytes.Angewandte Chemie International Edition, Nr. 60 (21): 1191911927.
    • , , , , , , , , und . . „Compatibility of Various Electrolytes with Cation Disordered Rocksalt Cathodes in Lithium Ion Batteries.ACS Applied Energy Materials, Nr. 4 (10): 10909–10920. doi: 10.1021/acsaem.1c01879.
    • , , , und . . „Development of a fast online sample preparation for speciation analysis of lithium ion battery electrolyte decomposition products by liquid chromatography hyphenated to ion trap-time of flight-mass spectrometry and to inductively coupled plasma-sector field-mass spectrometry.Journal of Chromatography A, Nr. 1658: 462594. doi: 10.1016/j.chroma.2021.462594.
    • , , , , , , , , , , , , , , , , , , , , , , , , , , , , und . . „Strategies towards enabling lithium metal in batteries: interphases and electrodes.Energy and Environmental Science, Nr. - doi: 10.1039/D1EE00767J.
    • , , , , , , , und . . „Quantitative Manganese Dissolution Investigation in Lithium-Ion Batteries by Means of X-ray Spectrometry Techniques.Journal of Analytical Atomic Spectrometry, Nr. 36: 20562062. doi: 10.1039/D0JA00491J.
    • , , , , , , , , , , , , , , , , , , , , , , , , , und . . „The passivity of lithium electrodes in liquid electrolytes for secondary batteries.Nature Reviews Materials, Nr. 2021 doi: 10.1038/s41578-021-00345-5.
    • , , , , , und . . „The origin of gaseous decomposition products formed during SEI formation analyzed by isotope labeling in lithium ion battery electrolytes.Batteries & Supercaps, Nr. 4 (11): 17311738. doi: 10.1002/batt.202100208.
    • , , und . . „Why does aging occur in lithium ion batteries? Advancements in the quantification of transition metal species.G.I.T Laboratory Journal Europe, Nr. 10
    • , , und . . „Warum altern Lithium-Ionen-Batterien? - Entwicklungen zur Quantifizierung von Übergangsmetallspezies.G.I.T Laborfachzeitschrift, Nr. 10: 1719.
    • , , , , , , , , , , , , und . . „Understanding the Role of Commercial Separators and their Reactivity towards LiPF6 on the Failure Mechanism of High-Voltage NCM523 || Graphite Lithium Ion Cells.Advanced Energy Materials, Nr. 12 (2): 2102599. doi: 10.1002/aenm.202102599.
    • , , , , , , , , und . . „Demonstrating Apparently Inconspicuous, but Sensitive Impacts on Rollover Failure of Lithium Ion Batteries at High Voltage.ACS applied materials & interfaces, Nr. 13 (48): 5724157251. doi: 10.1021/acsami.1c17408.
    • , , , , und . . „19F MAS NMR Study on Anion Intercalation into Graphite Positive Electrodes from Binary-Mixed Highly Concentrated Electrolytes.Journal of Power Sources Advances, Nr. 12: 100075. doi: 10.1016/j.powera.2021.100075.
    • , , , , , , und . . „Lithiation Mechanism and Improved Electrochemical Performance of TiSnSb-based Negative Electrodes for Lithium-Ion Batteries.Chemistry of Materials, Nr. 33 (21): 81738182. doi: 10.1021/acs.chemmater.1c01809.
    • , , , und . . „Solvent Co-Intercalation-Induced Activation and Capacity Fade Mechanism of Few‑/Multi Layered MXenes in Lithium Ion Batteries.Small, Nr. 17 (47): 2104130. doi: 10.1002/smll.202104130.
    • , , , , , , und . . „Improved Lithium-Ion Transport Within the LiNi0.8Co0.15Al0.05O2 Secondary Cathode Particles Through a Template-Assisted Synthesis Route.ACS Sustainable Chemistry & Engineering, Nr. 9 (37): 1256012574. doi: 10.1021/acssuschemeng.1c03179.
    • , , , , , und . . „Opportunities and Limitations of Ionic-Liquid- and Organic Carbonate Solvent-Based Electrolytes for Mg-Ion-Based Dual-Ion Batteries.ChemSusChem, Nr. 14 (20): 44804498. doi: 10.1002/cssc.202101227.
    • , , , , , , , , und . . „Increasing the Lithium Ion Mobility in Poly(Phosphazene)-Based Solid Polymer Electrolytes through Tailored Cation Doping.Journal of The Electrochemical Society, Nr. 168 (7): 070559. doi: 10.1149/1945-7111/ac148d.
    • , , , , , , , , , und . . „Re-evaluating common electrolyte additives for high-voltage lithium ion batteries.Cell Reports Physical Science, Nr. 2 (8): 100521. doi: 10.1016/j.xcrp.2021.100521.
    • , , , , , und . . „Identification of LixSn Phase Transitions During Lithiation of Tin-Nanoparticle-Based Negative Electrodes from Ex Situ 119Sn MAS NMR and Operando 7Li NMR and XRD.ACS Applied Energy Materials, Nr. 4 (7): 72787287. doi: 10.1021/acsaem.1c01405.
    • , , , , , , und . . „Scalable Synthesis of MAX Phase Precursors toward Titanium-Based MXenes for Lithium-Ion Batteries.ACS applied materials & interfaces, Nr. 13 (22): 26074–26083. doi: 10.1021/acsami.1c05889.
    • , , , , , , , , , und . . „Mechanistic Insights into the Pre-Lithiation of Silicon/Graphite Negative Electrodes in ‘Dry State’ and After Electrolyte Addition Using Passivated Lithium Metal Powder.Advanced Energy Materials, Nr. 11 (25): 2100925. doi: 10.1002/aenm.202100925.
    • , , , und . . „Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries.Communications Materials, Nr. 2: 37. doi: 10.1038/s43246-021-00143-0.
    • , , , , , , , , und . . „Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells.Journal of Materials Chemistry A, Nr. 9: 75467555. doi: 10.1039/d0ta11775g.
    • , , , , und . . „A Thorough Analysis of Two Different Pre-Lithiation Techniques for Silicon/Carbon Negative Electrodes in Lithium Ion Batteries.Batteries & Supercaps, Nr. 4: 11631174. doi: 10.1002/batt.202100024.
    • , , , , , , , und . . „Solvent Co-Intercalation into Few-Layered Ti3C2Tx MXenes in Lithium Ion Batteries Induced by Acidic or Basic Post-Treatment.ACS Nano, Nr. 15 (2): 32953308. doi: 10.1021/acsnano.0c10153.
    • , , , , , , , und . . „Case study of N-carboxyanhydrides in silicon-based lithium ion cells as a guideline for systematic electrolyte additive research.Cell Reports Physical Science, Nr. 2 (2): 100327. doi: 10.1016/j.xcrp.2021.100327.
    • , , , , , , und . . „Effect of Li plating during formation of lithium ion batteries on their cycling performance and thermal safety.Journal of Power Sources, Nr. 484 doi: 10.1016/j.jpowsour.2020.229306.
    • , , , , , , , , , und . . „Understanding the Outstanding High-Voltage Performance of NCM523 || Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte.Advanced Energy Materials, Nr. 11 (14): 2003738. doi: 10.1002/aenm.202003738.
    • , , , , , und . . „Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure.Nature Energy, Nr. 2021 doi: 10.1038/s41560-020-00748-8.
    • , , , , , , , , , , , und . . „On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High-Voltage Conditions.Advanced Energy Materials, Nr. 11 (10): 2003756. doi: 10.1002/aenm.202003756.
    • , , , , , , und . . „Enabling Mg-Based Ionic Liquid Electrolytes for Hybrid Dual-Ion Capacitors.Batteries & Supercaps, Nr. 4: 504512. doi: 10.1002/batt.202000246.
    • , , , , , und . . „Finding the Sweet Spot: Li/Mn-Rich Cathode Materials with Fine-tuned Core-Shell Particle Design for High-Energy Lithium Ion Batteries.Electrochimica Acta, Nr. 366: 137413. doi: 10.1016/j.electacta.2020.137413.
    • , , , , , , , und . . „Exploiting the Degradation Mechanism of NCM523 || Graphite Lithium Ion Full-Cells Operated at High Voltage.ChemSusChem, Nr. 14: 595613. doi: 10.1002/cssc.202002113.
    • , , , , , , , , , und . . „Study of electrochemical performance and thermal property of LiNi0.5Co0.2Mn0.3O2 cathode materials coated with a novel oligomer additive for high-safety lithium-ion batteries.Chemical Engineering Journal, Nr. 405: 126727. doi: 10.1016/j.cej.2020.126727.
    • , , , , , , , , , , und . . „Si-on-Graphite fabricated by fluidized bed process for high-capacity anodes of Li-ion batteries.Chemical Engineering Journal, Nr. 407: 126603. doi: 10.1016/j.cej.2020.126603.
    Nicht-wissenschaftliche Beiträge (Zeitschriften)
    • , , , , , , , , , und . . „Cover Picture "Li‐Ion Batteries: Understanding the Outstanding High‐Voltage Performance of NCM523||Graphite Lithium Ion Cells after Elimination of Ethylene Carbonate Solvent from Conventional Electrolyte (Adv. Energy Mater. 14/2021)".Advanced Energy Materials, Nr. 11 (14): 2170053. doi: 10.1002/aenm.202170053.
    • , , , , , , , , und . . „Inside back cover “Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells”.Journal of Materials Chemistry A, Nr. 9 (12): 7991. doi: 10.1039/D1TA90066H.
    • , , , , , , , , , , , und . . „Back Cover "Graphite Lithium‐Ion Cells: On the Beneficial Impact of Li2CO3 as Electrolyte Additive in NCM523 ∥ Graphite Lithium Ion Cells Under High‐Voltage Conditions (Adv. Energy Mater. 10/2021)".Advanced Energy Materials, Nr. 11: 2170039. doi: 10.1002/aenm.202170039.
    • , , , , , , , und . . „Cover Profile "Exploiting the Degradation Mechanism of NCM523 || Graphite Lithium Ion Full-Cells Operated at High Voltage".ChemSusChem, Nr. 14: 491. doi: 10.1002/cssc.202002870.
    • , , , , , , , und . . „Front Cover "Exploiting the Degradation Mechanism of NCM523 || Graphite Lithium Ion Full-Cells Operated at High Voltage (ChemSusChem 2/2021)".ChemSusChem, Nr. 14: 487. doi: 10.1002/cssc.202002871.
    Konferenzbeiträge
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , , , und . . „Degradation phenomena of lithium metal powder electrodes in liquid electrolyte.“ Beitrag präsentiert auf der Advanced Battery Power 2021, Online
    • , , , und . . „Asymmetric Anions for enhanced Ionic Liquid-based Electrolytes in O2-Li-Batteries.“ Beitrag präsentiert auf der Advanced Battery Power - Kraftwerk Batterie 2021, Online
    • , , , , , , , , und . . „Galvanic Corrosion as a Challenge for the Application of Ionic Liquids in O2ǁLi Cell Chemistries.“ Beitrag präsentiert auf der Advanced Battery Power - Kraftwerk Batterie 2021, Online
    Poster
    • , , , , und . . „Analysis of isotope labeled lithium-ion battery electrolytes – tracing solvent molecule decomposition during first cycles.“ präsentiert auf der 13. Kraftwerk Batterie Fachtagung, Virtual
    • , , , und . . „First insights into the chemo-mechanical interplay of particle micro cracking and electronic contact loss in LIB electrode materials by SP-ICP-OES.“ präsentiert auf der 13. Kraftwerk Batterie Fachtagung, Virtual
    • , , und . . „Elemental lateral and depth analysis of LIBs – Investigating the lithium distribution of pre-lithiated graphite anodes.“ präsentiert auf der Swiss Battery Days, Virtual
    • , , , und . . „Analyzing the Reactions of Electrolyte and Cathode in Li/S and Li/Metal Sulfide Batteries.“ präsentiert auf der AABC Europe, Virtual
    • , , , und . . „Capabilities of Isotope Labeling for Mechanistic Understanding of LIB Electrolyte Decomposition.“ präsentiert auf der AABC Europe, Virtual
    • , , , und . . „Tailored 3D-Microstructured Electrode Substrates for Increased Performance in Zero-Excess Lithium Metal Batteries.“ präsentiert auf der 240th ECS Meeting, Orlando, FL doi: 10.1149/MA2021-02194mtgabs.
    Forschungsartikel (Buchbeiträge)
    • , , , und . . „Contribution of Nano-Design Approaches to Future Electrochemical Energy Storage Systems.“ In Nanomaterials for Electrochemical Energy Storage - Challenges and Opportunities (Frontiers of Nanoscience), herausgegeben von Rinaldo Raccichini and Ulderico Ulissi. Amsterdam: Elsevier. doi: 10.1016/B978-0-12-821434-3.00005-3.
    • , , , und . . „Practical Implementation of Silicon-Based Negative Electrodes in Lithium Ion Full Cells – Challenges and Solutions.“ In Lithium-ion Batteries Enabled by Silicon Anodes, herausgegeben von Chunmei Ban and Kang Xu. N/A: Selbstverlag / Eigenverlag.
    Projektberichte
    • , , und . . „Standardisierung der Totalreflexions-Röntgenfluoreszenzanalyse durch neuartige nanoskalige Kalibrierproben (TRFA-KAL) - Abschlussbericht zum Verbundvorhaben.Hannover.

    Fachbücher (Herausgegebene Bücher)
    • , , , , , , , , , , , , und . . Advanced ceramics for energy conversion and storage,, herausgegeben von Olivier Guillon. doi: 10.1016/B978-0-08-102726-4.00010-7.
    Artikel
    Artikel in Fachzeitschriften, Zeitungen oder Magazinen
    Forschungsartikel (Zeitschriften)
    • , , , , , und . . „An oxo-verdazyl radical for a symmetrical non-aqueous redox flow battery.Journal of Materials Chemistry A, Nr. 8 (42): 2228022291. doi: 10.1039/d0ta07891c.
    • , , , , , , , , und . . „Sputter coating of lithium metal electrodes with lithiophilic metals for homogeneous and reversible lithium electrodeposition and electrodissolution.Materials Today, Nr. Volume 39: 137145. doi: 10.1016/j.mattod.2020.04.002.
    • , , , und . . „GC im Kontext der Lithium-Ionen-Batterie - Über die Entwicklung einer in situ Methodik.G.I.T Laborfachzeitschrift, Nr. 12: 3638.
    • , , , , , , , , , , und . . „Phytoremediation of soil contaminated with lithium ion battery active materials – A proof of concept study.Recycling, Nr. 5 (4) (Special Issue: Recycling of Lithium Ion Batteries and Other Next Generation Materials): 26. doi: 10.3390/recycling5040026.
    • , , , , , und . . „Electropolymerisation triggered in situ surface modification of electrode interphases: Alleviating first cycle lithium loss in silicon anode lithium ion batteries.ACS Sustainable Chemistry & Engineering, Nr. 8 (34): 12788–12798. doi: 10.1021/acssuschemeng.0c02391.
    • , , , , , und . . „Quantification of Dead Lithium via In Situ Nuclear Magnetic Resonance Spectroscopy.Cell Reports Physical Science, Nr. 1 (8): 100139. doi: 10.1016/j.xcrp.2020.100139.
    • , , , , , , und . . „Analysis of carbonate decomposition during the interphase formation in isotope labeled lithium ion battery electrolytes – Extending the knowledge about electrolyte soluble species.Batteries & Supercaps, Nr. 3 (11): 11831192. doi: 10.1002/batt.202000170.
    • , , , , und . . „Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries.Electrophoresis, Nr. 41 (18-19): 15681575. doi: 10.1002/elps.202000155.
    • , , , , und . . „Investigating the oxidation state of Fe from LiFePO4-based lithium ion battery cathodes via capillary electrophoresis.Electrophoresis, Nr. 41 (18-19): 15491556. doi: 10.1002/elps.202000097.
    • , , , , , und . . „Solid Electrolyte Interphase Evolution on Lithium Metal Electrodes Followed by Scanning Electrochemical Microscopy Under Realistic Battery Cycling Current Densities.ChemElectroChem, Nr. 7: 18. doi: 10.1002/celc.202000441.
    • , , und . . „Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs.International Journal of Production Economics, Nr. 232 doi: 10.1016/j.ijpe.2020.107982.
    • , , , , , , und . . „The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, Nr. 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.
    • , , , , , , und . . „The role of the pH value in water-based pastes on the processing and performance of Ni-rich LiNi0.5Mn0.3Co0.2O2 based positive electrodes.Journal of Power Sources, Nr. 475: 228608. doi: 10.1016/j.jpowsour.2020.228608.
    • , , , , , und . . „Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure.Scientific Reports, Nr. 10 doi: 10.1038/s41598-020-61373-9.
    • , , , und . . „Flüssigchromatographie in der Lithiumionenbatterie-Analytik - Welche Rolle spielen Elektrolytzersetzungsprodukte als potenzielle Gefahrstoffe für den Anwender und im Recyclingprozess großer Batteriesysteme? Strukturaufklärung, Quantifizierung und präparative Flüssigchromatographie-Techniken zur Untersuchung von Organo(fluoro)phosphaten als Zersetzungsprodukte in Lithiumionenbatterien.LABO, Nr. 1: 2022.
    • , , , , und . . „Untersuchung der Zersetzung von Lithium-Ionen-Batterie-Elektrolyten mittels LC-MS.Analytica Pro, Nr. 2020: 2224.
    • , , , , , , , , , und . . „Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells - A comprehensive analytical study.Journal of Power Sources, Nr. 447: 227370. doi: 10.1016/j.jpowsour.2019.227370.
    • , , , , , , und . . „Fast sample preparation for organo(fluoro)phosphate quantification approaches in lithium ion battery electrolytes by means of gas chromatographic techniques.Journal of Chromatography A, Nr. 1624: 461258. doi: 10.1016/j.chroma.2020.461258.
    • , , , und . . „Protective coatings on silicon particles and their effect on energy density and specific energy in lithium ion battery cells: A model study.Journal of Energy Storage, Nr. 29 (March): 101376. doi: 10.1016/j.est.2020.101376.
    • , , , und . . „A Method for Quantitative Analysis of Gases Evolving During Formation Applied on LiNi0.6Mn0.2Co0.2O2 II Natural Graphite Lithium Ion Battery Cells Using Gas Chromatography - Barrier Discharge Ionization Detector.Journal of Chromatography A, Nr. 1622: 461122. doi: 10.1016/j.chroma.2020.461122.
    • , , , , , und . . „Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13C-labeling of electrolyte components.Angewandte Chemie, Nr. 132 (15): 61846193. doi: 10.1002/ange.202000727.
    • , , , , , , , , , , , , und . . „Non-flammable Fluorinated Phosphorus(III)-based Electrolytes for Advanced Lithium Ion Battery Performance.ChemElectroChem, Nr. 7 (6): 14991508. doi: 10.1002/celc.202000386.
    • , , , , , , , , , und . . „Solid-state lithium-sulfur battery enabled by Thio-LiSICON/Ploymer composite electrlyte and sulfuized polyacrylonitrile cathode.Advanced Functional Materials, Nr. xx
    • , , , und . . „Lithium Metal Polymer Electrolyte Batteries: Opportunities and Challenges.The Electrochemical Society Interface, Nr. 28
    • , , , , , , , , , , , , , , , und . . „Tin modification of sodium manganese hexacyanoferrate as a superior cathode material for sodium ion batteries.Electrochimica Acta, Nr. xx doi: 10.1016/j.electacta.2020.135928.
    • , , , , , und . . „Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13C-labeling of electrolyte components.Angewandte Chemie International Edition, Nr. 59 (15): 61286137. doi: 10.1002/anie.202000727.
    • , , , , und . . „Ethylene carbonate-free electrolytes for Li-ion battery: Study of the solid electrolyte interphases formed on graphite anodes.Journal of Power Sources, Nr. 451 doi: 10.1016/j.jpowsour.2020.227804.
    • , , , , und . . „Is the Cation Innocent? – An Analytical Approach on the Cationic Decomposition Behavior of N-Butyl-N-methylpyrrolidinium Bis(trifluoromethanesulfonyl)imide in Contact with Lithium Metal.Chemistry of Materials, Nr. 32 (6): 23892398. doi: 10.1021/acs.chemmater.9b04827.
    • , , , , und . . „Quantitative Spatially Resolved Post-Mortem Analysis of Lithium Distribution and Transition Metal Depositions on Cycled Electrodes via a Laser Ablation-Inductively Coupled Plasma-Optical Emission Spectrometry Method.RSC Advances, Nr. 10: 70837091. doi: 10.1039/C9RA09464D.
    • , , , , und . . „Mn2+ or Mn3+? Investigating transition metal dissolution of manganese species in lithium ion battery electrolytes by capillary electrophoresis.Electrophoresis, Nr. 41 (9): 697704. doi: 10.1002/elps.201900443.
    • , , , , , , und . . „Development of a Lithium Ion Cell Enabling In Situ Analyses of the Electrolyte Using Gas Chromatographic Techniques.Electrochimica Acta, Nr. 338: 135894. doi: 10.1016/j.electacta.2020.135894.
    • , , , , , , und . . „Preferential occupation of Na in P3-type layered cathode material for sodium ion batteries.Nano Energy, Nr. xx doi: 10.1016/j.nanoen.2020.104535.
    • , , , , , , , , , , , , , , , , , , und . . „Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries.ACS Energy Letters, Nr. 5
    • , , , , , und . . „Impact of the Crystalline Li15Si4 Phase on the Self Discharge Mechanism of Silicon Negative Electrodes in Organic Electrolytes.ACS applied materials & interfaces, Nr. 12 (50): 5590355912. doi: 10.1021/acsami.0c16742.
    • , , , , , und . . „Approaching Electrochemical Limits of MgxClyz+ Complex-Based Electrolytes for Mg Batteries by Tailoring the Solution Structure.Journal of The Electrochemical Society, Nr. 167 (16): 160505. doi: 10.1149/1945-7111/abc7e4.
    • , , , , , , , , , , , , und . . „Hexafluorophosphate-Bis(trifluoromethanesulfonyl)imide anion co-intercalation for increased performance of dual-carbon battery using mixed salt electrolyte.Journal of Power Sources, Nr. 479: 229084. doi: 10.1016/j.jpowsour.2020.229084.
    • , , , , , , , , und . . „Mechanistic Elucidation of Anion Intercalation into Graphite from Binary-Mixed Highly Concentrated Electrolytes via Complementary 19F MAS NMR and XRD Studies.Journal of The Electrochemical Society, Nr. 167: 140526. doi: 10.1149/1945-7111/abc437.
    • , , , , , , , , , , , , , , , und . . „Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries.Advanced Energy Materials, Nr. 10: 2001256. doi: 10.1002/aenm.202001256.
    • , , , , , , , , und . . „Identical Materials but Different Effects of Film-Forming Electrolyte Additives in Li Ion Batteries: Performance of Benchmark System as the Key.Chemistry of Materials, Nr. 32 (15): 62796284. doi: 10.1021/acs.chemmater.0c01952.
    • , , , , , , , und . . „Experimental and Computational Studies of Electrochemical Anion Intercalation into Graphite from Target-Oriented Designed Borate-based Ionic Liquid Electrolytes.Journal of Power Sources, Nr. 469: 228397. doi: 10.1016/j.jpowsour.2020.228397.
    • , , , , , , und . . „Impact of the Silicon Particle Size on the Pre-Lithiation Behavior of Silicon/Carbon Composite Materials for Lithium Ion Batteries.Journal of Power Sources, Nr. 464: 228224. doi: 10.1016/j.jpowsour.2020.228224.
    • , , , , , , , , und . . „Towards High-Performance Li-rich NCM || Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material.Journal of The Electrochemical Society, Nr. 167 (6): 060524. doi: 10.1149/1945-7111/ab8401.
    • , , , , , und . . „Li/Mn-Rich Cathode Materials with Low-Cobalt Content and Core-Shell Particle Design for High-Energy Lithium Ion Batteries.Journal of The Electrochemical Society, Nr. 167 (6): 060519. doi: 10.1149/1945-7111/ab8405.
    • , , , , , , , , und . . „Novel In Situ Gas Formation Analysis Technique using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port.Journal of The Electrochemical Society, Nr. 167 (6): 060516. doi: 10.1149/1945-7111/ab8409.
    • , , , , , , , , , und . . „A Three-Dimensional TiO2-Graphene Architecture with Superior Li Ion and Na Ion Storage Performance.Journal of Power Sources, Nr. 461: 228129. doi: 10.1016/j.jpowsour.2020.228129.
    • , , , , , und . . „Toward Green Battery Cells: Perspective on Materials and Technologies.Small Methods, Nr. 4: 2000039. doi: 10.1002/smtd.202000039.
    • , , , , , und . . „An electrochemical evaluation of nitrogen-doped carbons as anodes for lithium ion batteries.Carbon, Nr. 164: 261271. doi: 10.1016/j.carbon.2020.04.003.
    • , , , und . . „Galvanic Corrosion of Lithium‐Powder‐Based Electrodes.Advanced Energy Materials, Nr. 10 (15): 2000017. doi: 10.1002/aenm.202070065.
    • , , , , , , , , , und . . „Development of Safe and Sustainable Dual-Ion Batteries through Hybrid Aqueous/Non-Aqueous Electrolytes.Advanced Energy Materials, Nr. 10 (8): 1902709. doi: 10.1002/aenm.201902709.
    • , , , , , , , , , , , , , , und . . „Insights into P2-type layered positive electrodes for sodium batteries: From long- to short-range order.ACS Appl. Mater. Interfaces, Nr. xx doi: 10.1021/acsami.9b18109.
    • , , , und . . „Mechanochemical Synthesis of Fe-Si-Based Anode Materials for High-Energy Lithium Ion Full-Cells.ACS Applied Energy Materials, Nr. 3 (1): 743758. doi: 10.1021/acsaem.9b01926.
    • , , , und . . „Tailoring Electrolyte Additives with Synergistic Functional Moieties for Silicon Negative Electrode-Based Lithium Ion Batteries: A Case Study on Lactic Acid O-Carboxyanhydride.Chemistry of Materials, Nr. 32 (1): 173185. doi: 10.1021/acs.chemmater.9b03173.
    • , , , , , und . . „A reality check and tutorial on electrochemical characterization of battery cell materials: How to choose the appropriate cell setup.Materials Today, Nr. 32: 131146. doi: 10.1016/j.mattod.2019.07.002.
    Nicht-wissenschaftliche Beiträge (Zeitschriften)
    • , , , , , , und . . „Cover Picture - Analysis of Carbonate Decomposition During Solid Electrolyte Interphase Formation in Isotope‐Labeled Lithium Ion Battery Electrolytes: Extending the Knowledge about Electrolyte Soluble Species.Batteries & Supercaps, Nr. 3 (11): 1123. doi: 10.1002/batt.202000235.
    • , , , , und . . „Cover Page - Investigating the oxidation state of Fe from LiFePO4-based lithium ion battery cathodes via capillary electrophoresis.Electrophoresis, Nr. 41 (18-19) doi: 10.1002/elps.202070102.
    • , , , , und . . „Cover Page - Accessing copper oxidation states of dissolved negative electrode current collectors in lithium ion batteries.Electrophoresis, Nr. 41 (18-19) doi: 10.1002/elps.202070102.
    • , , , , und . . „Cover Page - Mn2+ or Mn3+? Investigating transition metal dissolution of manganese species in lithium ion battery electrolytes by capillary electrophoresis.Electrophoresis, Nr. 41 (9) doi: 10.1002/elps.202070042.
    • , , , , und . . „Cover Page - Concept for the Analysis of the Electrolyte Composition Within the Cell Manufacturing Process: From Sealing to Sample Preparation.Energy Technology, Nr. 8 (Special Issue: Advances in Battery Cell Production): 2070023. doi: 10.1002/ente.202070023.
    • , , , , , , , , , , , , , , , und . . „Inside Front Cover "Aqueous Dual-Ion Batteries: Enabling Natural Graphite in High-Voltage Aqueous Graphite || Zn Metal Dual-Ion Batteries (Adv. Energy Mater. 41/2020)".Advanced Energy Materials, Nr. 10 (41): 2070169. doi: 10.1002/aenm.202070169.
    • , , , und . . „Production of Nickel-Rich Layered Cathode Materials for High-Energy Lithium Ion Batteries via a Couette-Taylor-Flow-Reactor.Material Matters, Nr. 15 (2): 5357.
    • , , , , , und . . „Inside Front Cover "Toward Green Battery Cells: Perspective on Materials and Technologies (Small Methods 7/2020)".Small Methods, Nr. 4 (7): 2070023. doi: 10.1002/smtd.202070023.
    • , , , , , , , , , und . . „Inside Front Cover "Dual-Ion Batteries: Development of Safe and Sustainable Dual-Ion Batteries Through Hybrid Aqueous/Nonaqueous Electrolytes (Adv. Energy Mater. 8/2020)".Advanced Energy Materials, Nr. 10 (8): 2070033. doi: 10.1002/aenm.202070033.
    • , , , und . . „Supplementary Cover Art "Tailoring Electrolyte Additives with Synergistic Functional Moieties for Silicon Negative Electrode-Based Lithium Ion Batteries: A Case Study on Lactic Acid O-Carboxyanhydride".Chemistry of Materials, Nr. 32 (1): 173185.
    Konferenzbeiträge
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , , und . . „Electrolytes and Metallic Anodes: About an Old Argument That Marks the Fundamental Understanding of Modern Metal Anodes in Advanced Battery Systems.“ Beitrag präsentiert auf der Pacific Rim Meeting on Electrochemical and Solid State Science (PRiMe), Honolulu, Hawaii (online) doi: 10.1149/MA2020-024671mtgabs.
    Poster
    • , , , , und . . „Gas and Liquid Chromatographic Techniques in Lithium Ion Battery Electrolyte Analysis - A Chromatographic Curriculum Vitae.“ präsentiert auf der 30. Doktorandenseminar des AK Separation Science, Duisburg
    • , , , und . . „Investigating Electronical Contact Loss Between LIB Cathode Particles by ICP-OES.“ präsentiert auf der AABC Europe, Wiesbaden
    • , , , , , , und . . „Development of a Lithium Ion Cell Enabling In Situ Analyses of the Electrolyte by Gas Chromatography-Mass Spectrometry.“ präsentiert auf der AABC Europe, Wiesbaden
    • , , , , und . . „Gas Phase Analyses of 13C-Labeled Lithium Ion Battery Electrolytes by Means of GC-MS.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , und . . „Aging of lithium ion battery electrolyte – Accessing potentially toxic organophosphorus compounds using GC-MS and GC-ICP-SF-MS.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , , und . . „Quantification of Organo(fluoro)phosphates by means of HPLC-ICP-MS from field tested electric vehicles.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , und . . „First Insights into Tracing the Lithium Ion Movement During the Formation Process of Lithium Ion Batteries.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , und . . „Identifying transition metal deposition patterns on aged graphite anodes by means of LA-ICP-MS imaging.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , und . . „Investigation of Transition Metal Species in Lithium Ion Batteries by Means of CE/ICP-MS.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , und . . „Identification of Decomposition Products in Pyrrolidinium-based Ionic Liquid Electrolytes in Lithium Ion Batteries by means of GC/APCI-Q-TOF.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , und . . „Investigation of the catalytic effect of manganese (II) on lithium ion battery electrolytes via ion chromatography hyphenated to mass spectrometry.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , , , und . . „Investigations of Isotope Labeled Lithium Ion Battery Electrolytes via GC-MS-based Techniques.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , , und . . „Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13C-labeling and LC-HRMS2.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , , und . . „Determining the Influence of Pre-Lithiation Techniques on the Lithium Distribution in Graphitic Electrodes for Lithium Ion Batteries.“ präsentiert auf der 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster
    • , , , , , , , , , und . . „Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells – comprehensive analytical study.“ präsentiert auf der 12. Kraftwerk Batterie Fachtagung, Münster
    • , , , und . . „Removal of Hexafluorophosphate for a Faster and Interference Free Analysis of Lithium Ion Battery Decomposition Products.“ präsentiert auf der 12. Kraftwerk Batterie Fachtagung, Münster
    • , , , und . . „Operando Analyses of Gaseous Decomposition Products during SEI Formation.“ präsentiert auf der 12. Kraftwerk Batterie Fachtagung, Münster
    • , , , und . . „Insights into electrochemical decomposition of lithium ion battery electrolytes via 13C labeling of ethylene carbonate.“ präsentiert auf der 12. Kraftwerk Batterie Fachtagung, Münster
    • , , , und . . „Investigation of Electronical Contact Loss in Lithium Ion Battery Cathodes by ICP-OES.“ präsentiert auf der 12. Kraftwerk Batterie Fachtagung, Münster
    • , , und . . „Study of transition metal dissolution and subsequent deposition in lithium ion batteries by means of surface sensitive techniques.“ präsentiert auf der 12. Kraftwerk Batterie Fachtagung, Münster
    Projektberichte
    • , und . . „Beschleunigung der Elektrolytaufnahme durch optimierte Befüllungs- und Wettingprozesse (Cell-Fi) - Abschlussbericht zum Verbundvorhaben.Hannover.

    Artikel in Fachzeitschriften, Zeitungen oder Magazinen
    Forschungsartikel (Zeitschriften)
    • , , , und . . „Investigation of Various Layered Lithium Ion Battery Cathode Materials by Plasma- and X-ray-Based Element Analytical Techniques.Analytical and Bioanalytical Chemistry, Nr. 411 (1): 277285. doi: 10.1007/s00216-018-1441-8.
    • , , , , , und . . „Reaction Product Analysis of the Most Active “Inactive” Material in Lithium-Ion Batteries—The Electrolyte. II: Battery Operation and Additive Impact.Chemistry of Materials, Nr. 24: 99779983. doi: 10.1021/acs.chemmater.9b04135.
    • , , , und . . „Reaction Product Analyses of the Most Active “Inactive” Material in Lithium-Ion Batteries—The Electrolyte. I: Thermal Stress and Marker Molecules.Chemistry of Materials, Nr. 24: 99709976. doi: 10.1021/acs.chemmater.9b04133.
    • , , , und . . „Do Increased Ni Contents in LiNixMnyCozO2 (NMC) Electrodes Decrease Structural and Thermal Stability of Li Ion Batteries? A Thorough Look by Consideration of the Li+ Extraction Ratio.ACS Appl. Energy Mater, Nr. 2019 doi: 10.1021/acsaem.9b01440.
    • , , , , , , und . . „The role of electrolyte additives on the interfacial chemistry and thermal reactivity of Si-Anode based Li-ion battery.ACS Applied Energy Materials, Nr. xx doi: 10.1021/acsaem.9b01094.
    • , , , , , , , und . . „Tetrahydrothiophene 1-oxide as highly effective co-solvent for propylene carbonate-based electrolytes.Journal of Power Sources, Nr. x doi: 10.1016/j.jpowsour.2019.226881.
    • , , , , , , und . . „Preparative hydrophilic interaction liquid chromatography of acidic organofluorophosphates formed in lithium ion battery electrolytes.Journal of Chromatography A, Nr. 1603: 438441. doi: 10.1016/j.chroma.2019.07.008.
    • , , , , , , , , und . . „LiPF6 stabilizer and transition metal cation scavenger: a bi-functional bipyridine-based ligand for lithium ion batteries application.Chemistry of Materials, Nr. 2019 doi: 10.1021/acs.chemmater.9b00555.
    • , , , , und . . „Thermal profiling of lithium ion battery electrodes at different states of charge and aging conditions.Journal of Power Sources, Nr. 433: 226709. doi: 10.1016/j.jpowsour.2019.226709.
    • , , , , , , und . . „Lithium-Powder Based Electrodes Modified with ZnI2 for Enhanced Electrochemical Performance of Lithium-Metal Batteries.Journal of The Electrochemical Society, Nr. 166 (8): A1400A1407. doi: 10.1149/2.0401908jes.
    • , , , und . . „Deciphering the Lithium Ion Movement in Lithium Ion Batteries: Determination of the Isotopic Abundances of 6Li and 7Li.RSC Advances, Nr. 9 (Editors' Collection: Lithium-ion batteries and beyond - materials, processes and recycling): 1205512062. doi: 10.1039/C9RA02312G.
    • , , , und . . „Chromatographic Techniques in the Research Area of Lithium Ion Batteries: Current State-of-the-Art.Separations, Nr. 6 (2) (Special Issue: Analytic Techniques for Lithium Ion Batteries Analysis): 26. doi: 10.3390/separations6020026.
    • , , , , , , , und . . „Influence of separator material on infiltration rate and wetting behaviour of lithium ion batteries.Energy Technology, Nr. 8 (Special Issue: Advances in Battery Cell Production): 1900078. doi: 10.1002/ente.201900078.
    • , , , und . . „A new hydrophilic interaction liquid chromatography - inductively coupled plasma-sector field-mass spectrometer (HILIC-ICP-SF-MS) method for the quantification of organo(fluoro)phosphates as decomposition products of lithium ion battery electrolytes.RSC Advances, Nr. 9: 1141311419. doi: 10.1039/C9RA01291E.
    • , , , , , , , und . im Druck. „General hybrid asymmetric capacitor model: validation with a commercial lithium ion capacitor.Journal of Power Sources, Nr. 2019
    • , , , , , , und . . „Towards water based ultra-thick Li ion battery electrodes – A binder approach.Journal of Power Sources, Nr. 423: 183191. doi: 10.1016/j.jpowsour.2019.03.020.
    • , , , , und . . „Analysis of acidic organo(fluoro)phosphates as decomposition product of lithium ion battery electrolytes via derivatization Gas Chromatography-Mass Spectrometry.Journal of Chromatography A, Nr. 1592: 188191. doi: 10.1016/j.chroma.2019.02.022.
    • , , , , und . . „Further insights into structural diversity of phosphorus-based decomposition products in lithium ion battery electrolytes via liquid chromatographic techniques hyphenated to ion trap - time of flight mass spectrometry.Analytical Chemistry, Nr. 91 (6): 39803988. doi: 10.1021/acs.analchem.8b05229.
    • , , , , und . . „Concept for the Analysis of the Electrolyte Composition Within the Cell Manufacturing Process: From Sealing to Sample Preparation.Energy Technology, Nr. 8 (Special Issue: Advances in Battery Cell Production): 1801081. doi: 10.1002/ente.201801081.
    • , , , , und . . „Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries.Journal of Materials Chemistry A, Nr. 188 doi: 10.1039/c8ta08391f.
    • , , , , , und . . „Adaptation and Improvement of an Elemental Mapping Method for Lithium Ion Battery Electrodes and Separators by Means of Laser Ablation- Inductively Coupled Plasma-Mass Spectrometry.Analytical and Bioanalytical Chemistry, Nr. 411 (Special Issue: Elemental and Molecular Imaging by Laser Ablation ICP-MS): 581589. doi: 10.1007/s00216-018-1351-9.
    • , , , , , und . . „Possible Carbon-Carbon Bond Formation During Decomposition? Characterization and Identification of New Decomposition Products in Lithium Ion Battery Electrolytes by Means of SPME-GC-MS.Electrochimica Acta, Nr. 295: 401409. doi: 10.1016/j.electacta.2018.08.159.
    • , und . . „Fluor und Lithium: Ideale Partner für Elektrolyte in wiederaufladbaren Hochleistungsbatterien.Angewandte Chemie, Nr. 131: 1612416147. doi: 10.1002/ange.201901381.
    • , , , und . . „Butyronitrile-Based Electrolytes for Fast Charging of Lithium-Ion Batteries.Energies, Nr. xx doi: 10.3390/en12152869.
    • , , , , , und . . „Phenothiazine-functionalized poly(norbornene)s as high-rate cathode-materials for organic batteries.ChemSusChem, Nr. xx doi: 10.1002/cssc.201903168.
    • , , , , , und . . „Dioxolanone-Anchored Poly(allyl ether)-Based Cross-Linked Dual-Salt Polymer Electrolytes for High- Voltage Lithium Metal Batteries.ACS applied materials & interfaces, Nr. 12 (1): 567579. doi: 10.1021/acsami.9b16348.
    • , , , , , , und . . „Poly(vinylphenoxazine) as fast-charging cathode material for organic batteries.ACS Sustainable Chemistry & Engineering, Nr. 2020 (8): 238247. doi: 10.1021/acssuschemeng.9b05253.
    • , , , , , und . . „Porous Graphene-like Carbon from Fast Catalytic Decomposition of Biomass for Energy Storage Applications.ACS Omega, Nr. 4 (25): 2144621458. doi: 10.1021/acsomega.9b03142.
    • , , , , und . . „In situ 7Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations.Physical Chemistry Chemical Physics, Nr. 21: 2608426094. doi: 10.1039/C9CP05334D.
    • , , , , und . . „An Approach for Pre-lithiation of Li1+xNi0.5Mn1.5O4 Cathodes Mitigating Active Lithium Loss.Journal of The Electrochemical Society, Nr. 166 (15): A3531–A3538. doi: 10.1149/2.1221914jes.
    • , , , , , , , und . . „Understanding the Impact of Calcination Time of High Voltage Spinel Li1+xNi0.5Mn1.5O4 on Structure and Electrochemical Behavior.Electrochimica Acta, Nr. 325: 134901. doi: 10.1016/j.electacta.2019.134901.
    • , , , , , und . . „Correlation of Structure and Performance of Hard Carbons as Anodes for Sodium Ion Batteries.Chemistry of Materials, Nr. 31 (18): 72887299. doi: 10.1021/acs.chemmater.9b01768.
    • , , , , , , , , , , , , , und . . „Improving the Cycling Performance of High-Voltage NMC111 || Graphite Lithium Ion Cells by an Effective Urea-based Electrolyte Additive.Journal of The Electrochemical Society, Nr. 166 (13): A2910–A2920. doi: 10.1149/2.0691913jes.
    • , , , , , und . . „Enabling High Performance Potassium-Based Dual-Graphite Battery Cells by Highly Concentrated Electrolytes.Batteries & Supercaps, Nr. 2: 9921006. doi: 10.1002/batt.201900106.
    • , , , , , und . . „Designing Graphite‐Based Positive Electrodes and Their Properties in Dual‐Ion Batteries Using Particle Size Adjusted Active Materials.Energy Technology, Nr. 7: 1900528. doi: 10.1002/ente.201900528.
    • , , , , , , , , , , , und . . „High Capacity Utilization of Li Metal Anodes by Application of Celgard® Separator-Reinforced Ternary Polymer Electrolyte.Journal of The Electrochemical Society, Nr. 166 (10): A2142–A2150. doi: 10.1149/2.1131910jes.
    • , , , , , , und . . „The Power of Stoichiometry: Conditioning and Speciation of MgCl2/AlCl3 in Tetraethylene Glycol Dimethyl Ether-Based Electrolytes.ACS applied materials & interfaces, Nr. 11 (27): 2405724066. doi: 10.1021/acsami.9b05307.
    • , , , , , , , und . . „Improved Interfaces of Mechanically Modified Lithium Electrodes with Solid Polymer Electrolytes.Advanced Materials Interfaces, Nr. 1900518 doi: 10.1002/admi.201900518.
    • , , , , , , , , und . . „Surface-Modified Tin Nanoparticles and their Electrochemical Performance in Lithium Ion Battery Cells.ACS Applied Nano Materials, Nr. 2 (6): 35773589. doi: 10.1021/acsanm.9b00544.
    • , , , , und . . „Unraveling Charge/Discharge and Capacity Fading Mechanisms in Dual-Graphite Battery Cells using an Electron Inventory Model.Energy Storage Materials, Nr. 21: 414426. doi: 10.1016/j.ensm.2019.05.031.
    • , und . . „Boosting Aqueous Batteries by Conversion-Intercalation Graphite Cathode Chemistry (Preview).Joule, Nr. 3 (5): 11841187. doi: 10.1016/j.joule.2019.04.007.
    • , , , , , , , , und . . „Surface Modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium Ion Batteries.ACS applied materials & interfaces, Nr. 11: 1840418414. doi: 10.1021/acsami.9b02889.
    • , , , , , , , und . . „Cross-Talk Between Transition Metal Cathode and Li Metal Anode: Unraveling its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium.Advanced Energy Materials, Nr. 9: 1900574. doi: 10.1002/aenm.201900574.
    • , , , , und . . „Reversible Anion Storage in a Metal-Organic Framework for Dual-Ion Battery Systems.Journal of The Electrochemical Society, Nr. 166 (3): A5474–A5482. doi: 10.1149/2.0681903jes.
    • , , , und . . „Synthesis and Comparative Investigation of Silicon Transition Metal Silicide Composite Anodes for Lithium Ion Batteries.Zeitschrift für anorganische und allgemeine Chemie, Nr. 645: 248256. doi: 10.1002/zaac.201800436.
    • , , , , , und . . „Theoretical vs. Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems.Advanced Energy Materials, Nr. 9: 1803170. doi: 10.1002/aenm.201803170.
    Nicht-wissenschaftliche Beiträge (Zeitschriften)
    • , , , , , und . . „Cover Profile "Enabling High Performance Potassium-Based Dual-Graphite Battery Cells by Highly Concentrated Electrolytes".Batteries & Supercaps, Nr. 2 (12): 967–967. doi: 10.1002/batt.201900180.
    • , , , , , und . . „Front Cover Picture "Enabling High Performance Potassium-Based Dual-Graphite Battery Cells by Highly Concentrated Electrolytes".Batteries & Supercaps, Nr. 2 (12): 963–963. doi: 10.1002/batt.201900181.
    • , , , , , , , und . . „Inside Back Cover "Lithium Metal Batteries: Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium (Adv. Energy Mater. 21/2019)".Advanced Energy Materials, Nr. 9 (21): 1970078. doi: 10.1002/aenm.201970078.
    Konferenzbeiträge
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , und . . „Organofluorophosphates As Electrochemical Aging Products in Lithium Ion Battery Electrolytes.“ Beitrag präsentiert auf der 241st ECS Meeting, Vancouver doi: 10.1149/MA2022-012390mtgabs.
    • , , , , , und . . „First insights into the safety properties of lithium metal batteries.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , und . . „Factors influencing the thermal stability of lithium ion batteries - from active materials to state-of-charge and degradation.“ Beitrag präsentiert auf der AABC Europe 2019, Strasbourg
    • , , und . . „Cementation Reaction of Lithium Powder Electrodes for Improving the Electrochemical Performances of Lithium-Metal Batteries.“ Beitrag präsentiert auf der Electrochemical Conference on Energy & the Environment, Glasgow, Scotland
    • , , , und . . „Investigations on the Aging-Related Lithium Loss in Lithium Ion Batteries by Using 6Li-Isotopically-Enriched Cathode Material and Post-Mortem Analysis by Means of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.“ In Bd.MA2019-04 0450 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/10/0450.
    • , , und . . „In Situ NMR Study on Lib Electrolytes -Tracing the Network of Reactions in a Battery-.“ In Bd.MA2019-04 81 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/2/81.
    • , , und . . „Aging of Lithium Ion Battery Electrolytes – Novel Analysis Techniques for Elucidation of Potentially Hazardous Decomposition Products.“ In Bd.MA2019-04 130 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/2/130.
    • , , und . . „Investigation of Aging Effects in Layered Lithium Transition Metal Oxides Using X-Ray and Plasma-Based Techniques.“ In Bd.MA2019-04 127 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/2/127.
    • , , , , und . . „Insights into Electrolyte Decomposition Phenomena Utilizing Solid Phase Microextraction - Gas Chromatography - Mass Spectrometry in Combination with an in Situ Lithium Ion Cell.“ In Bd.MA2019-04 113 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/2/113.
    • , , und . . „First Insights for the Investigation of the Electrical Contact Among the Particles of Lithium Ion Battery Cathode Materials.“ In Bd.MA2019-04 129 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/2/129.
    • , , , und . . „Elemental Analysis of Aging Effects in Lithium Ion Batteries By Means of Laser Ablation-Inductively Coupled Mass Spectrometry.“ In Bd.MA2019-04 140 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/2/140.
    • , , , , und . . „Novel Perceptions of Lithium Ion Batteries: Isotopic Labeling for Insights into Lithium Losses and Solid Electrolyte Interphase Formation By Means of Plasma-Based Techniques.“ In Bd.MA2019-04 176 aus ECS Meeting Abstracts doi: 10.1149/MA2019-04/3/176.
    • , , , , , und . . „Chemical modification of lithium-powder electrodes for higher capacity utilisation in lithium-metal batteries.“ Beitrag präsentiert auf der Advanced Battery Power 2019, Aachen, Germany
    • , , , , und . . „π-π-Interactions in Redox Polymers – Enabling High Cycling Stabilities for Polymeric Cathode-Active Materials in Li/Organic Batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie 2019, Aachen
    • , , , , und . . „Lithium-Metal Foil Surface Modification: Investigations of Scanning Electrochemical Microscopy (SECM).“ Beitrag präsentiert auf der 11. Kraftwerk Batterie Fachtagung, Aachen, Deutschland
    • , , , und . „Ionic Liquid-based Electrolytes for a Safer Future of Lithium/Oxygen Batteries.“ Beitrag präsentiert auf der 11. Kraftwerk Batterie Fachtagung, Aachen, Deutschland
    • , , , , , , , und . . „Magnesium and Lithium Metal Anodes: Future Battery Technologies Side-by-Side?“ Beitrag präsentiert auf der Advanced Lithium Batteries for Automobile Applications ABAA 12, Ulm, Germany
    • , , , , , , , , und . . „Lithium: Protection, Modification and the Use in Different Battery Systems.“ Beitrag präsentiert auf der Workshop "Lithium Metal Anodes: Processing and Integration in (Solid-State) Batteries", Dresden, Germany
    • , , , , und . . „In Situ NMR Analysis of Lithium Metal Surface Deposits from Electrolytes with Varying Salt Concentrations.“ Beitrag präsentiert auf der Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage, Glasgow, Scotland
    • , , , , , und . . „Dissolution/Re-Deposition Processes in Poly(vinylphenothiazine)-Based Li−Organic Batteries.“ Beitrag präsentiert auf der Organic Battery Days 2019, Jena, Germany
    • , , , , , und . . „Method for Improved Interfaces of Micro-Patterned Lithium Metal Anodes and Solid Polymer Electrolytes.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen, Deutschland
    • , , , , , , , und . . „Component Development Towards Ultra-Fast Chargeable Lithium Ion Battery using High Voltage Materials.“ Beitrag präsentiert auf der AABC Europe, Strasbourg, France
    • , , , , und . . „Influence of different electrolyte compositions on silicon/graphite anodes and LiNi0.6Co0.2Mn0.2O2 cathodes in lithium ion cells.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin
    Poster
    • , , , und . . „Surface Analysis of Pre-Lithiated Electrodes by Means of Glow Discharge-Sector Field-Mass Spectrometry (GD-SF-MS).“ präsentiert auf der Anwendertreffen Analytische Glimmentladungsspektrometrie, Freiberg
    • , , , , , und . . „The Influence of Sample Preparation and Orientation in Total Reflection X-Ray Fluorescence Analysis – An Example from Lithium Ion Battery Research.“ präsentiert auf der CANAS 2019, Freiberg
    • , , , und . . „LC-MS hyphenation techniques in the field of lithium ion battery electrolytes – Quantification of phosphorus decomposition products.“ präsentiert auf der 48TH International Symposium on High-Performance Liquid Phase Separations and Related Techniques, Mailand
    • , , , und . . „LC-MS hyphenation techniques in the field of lithium ion battery electrolytes – Structure elucidation of phosphorous decomposition products.“ präsentiert auf der 48TH International Symposium on High-Performance Liquid Phase Separations and Related Techniques, Mailand
    • , , , und . . „Quantification of phosphorus decomposition products in the field of lithium ion battery electrolytes by means of LC-MS.“ präsentiert auf der Forschung in der Chemischen Industrie, 8. FoChIn, Münster
    • , , , , und . . „Structure elucidation of phosphorus decomposition products in the field of lithium ion battery electrolytes by means of LC-MS.“ präsentiert auf der Forschung in der Chemischen Industrie, 8. FoChIn, Münster
    • , , , und . . „Investigations on the Aging‑Related Lithium Loss in Lithium Ion Batteries by Using 6Li-Isotopically-Enriched Cathode Material and Post-Mortem Analysis by Means of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.“ präsentiert auf der The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow
    • , , , , und . . „Systematic Optimization of the Electrolyte Composition – Towards High Temperature Lithium Ion Batteries.“ präsentiert auf der 11. Kraftwerk Batterie Fachtagung, Aachen
    • , , und . . „Quantification of potentially toxic Phosporus-based decomposition products in Lithium Ion battery electrolytes.“ präsentiert auf der 11. Kraftwerk Batterie Fachtagung, Aachen
    • , , , und . . „Elemental Analysis of Aging Effects in Lithium Ion Batteries By Means of Laser Ablation-Inductively Coupled Mass Spectrometry.“ präsentiert auf der The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow
    • , , , und . . „Aging of Lithium Ion Battery Electrolytes – Novel Analysis Techniques for Elucidation of Potentially Hazardous Decomposition Products.“ präsentiert auf der The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow
    • , , , , und . . „First Insights for the Investigation of the Electrical Contact Among the Particles of Lithium Ion Battery Cathode Materials.“ präsentiert auf der The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow
    • , , und . . „Investigation of Aging Effects in Layered Lithium Transition Metal Oxides Using X‑Ray and Plasma-Based Techniques Presentati.“ präsentiert auf der The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow
    • , , , und . . „Quantification of Electrolyte Decomposition Products Evolved from Lithium Ion Batteries by GC-BID.“ präsentiert auf der ANAKON 2019, Münster
    • , , und . . „Glow Discharge Mass Spectrometry – A Versatile Tool for Analyzing Lithium Ion Battery Materials.“ präsentiert auf der ANAKON 2019, Münster
    • , , und . . „Investigation of Transition Metal Dissolution Mechanisms in Lithium Ion Batteries by Means of Capillary Electrophoresis.“ präsentiert auf der ANAKON 2019, Münster
    • , , , und . . „Development of a Counter Gradient HPLC-ICP-MS Method for Quantification of Filed-tested Electric Vehicle Battery Electrolytes.“ präsentiert auf der ANAKON 2019, Münster
    • , , , , und . . „Development of a lithium ion cell for in situ investigations of electrolytes utilizing solid phase microextraction - gas chromatography - mass spectrometry.“ präsentiert auf der ANAKON 2019, Münster
    • , , , , und . . „Consecutive Investigation of Electrolyte Constituents in Lithium Ion Batteries under Conditions of Thermal Runaway.“ präsentiert auf der ANAKON 2019, Münster
    • , , , und . . „Analysis of acidic organo(fluoro)phosphates as decomposition product of lithium ion batteries via HILIC-ICP-SF-MS and derivatization GC-MS.“ präsentiert auf der ANAKON 2019, Münster
    • , , , , und . . „Novel Perceptions of Lithium Ion Batteries: Isotopic Labeling for Insights into Lithium Losses and Solid Electrolyte Interphase Formation by Means of Plasma‑based Techniques.“ präsentiert auf der ANAKON 2019, Münster
    • , , , und . . „Particle Investigation of Lithium Ion Battery Cathode Materials.“ präsentiert auf der ANAKON 2019, Münster
    • , , , , und . . „Thermal Profiling of LIB Electrodes by Evolved Gas Analysis and Analytical Pyrolysis.“ präsentiert auf der ANAKON 2019, Münster
    • , , , , , und . . „Application of Glow Discharge Mass Spectrometry for Analyzing Si/C-Composite Anodes for Lithium Ion Batteries – Determining the Infuence of the State of Charge and Dry Film Thickness.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , , , , , , , , , und . . „Simulation der Dosierung und Benetzung des Befüllprozesses von Li-Ionen-Zellen.“ präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , , , , , , und . . „Beschleunigung der Elektrolytaufnahme durch optimierte Befüllungs- und Wettingprozesse.“ präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , und . . „Deciphering the Lithium Ion Movement in Lithium Ion Batteries: Determination of the Isotopic Abundances of 6Li and 7Li.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , , und . . „Total Reflection X-ray Fluorescence of Lithium Ion Battery Electrolytes from Field-Tested Electric Vehicles.“ präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , und . . „New Insights into Lithium Losses and Solid Electrolyte Interphase Formation of Lithium Ion Batteries via Isotopic Labeling by Means of Plasma-based Techniques.“ präsentiert auf der Batterieforum Deutschland, Berlin
    • , , und . . „Revealing the Network of Reactions in Lithium Ion Batteries.“ präsentiert auf der AABC Europe, Strassbourg
    • , , und . . „Speciation of phosphorus-based decomposition products in lithium ion battery electrolytes by HPLC-ICP-SF-MS.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , , und . . „Particle Analysis of Lithium Ion Battery Materials.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , , und . . „Barrier Ionization Discharge (BID) Detector A Powerful GC-Detector to Quantify Permanent Gases and Light Hydrocarbons, Evolved from Lithium Ion Batteries.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , und . . „Investigation of transition metal species in lithium ion battery electrolytes by means of CE/ICP-MS – A new approach to reveal the dissolution mechanism of transition metals from cathode materials.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , , und . . „Development of a LC ICP MS with a Counter Gradient Method for Quantification of Decomposition Products of Lithium Ion Battery Electrolytes.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , und . . „Application of Laser Ablation-Inductively Couples Plasma-Mass Spectrometry for Investigation of Li, Mn, Co and Ni Deposition Patterns on Carbonaceous Anodes in Lithium Ion Batteries.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , , , , und . . „Adaptation and Improvement of an Elemental Mapping Method for Lithium Ion Battery Electrodes via of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry 2019, Pau
    • , , , und . . „Recycling and Characterization of Active Materials from Spent Li-Ion Batteries.“ präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , , und . . „Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: Influence of the cell inner pressure distribution on the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1[Ni1/3Mn1/3Co1/3]O2 cathode.“ präsentiert auf der Batterieforum Deutschland, Berlin
    Forschungsartikel (Buchbeiträge)
    • , , und . . „NMR as a powerful tool to study lithium ion battery electrolytes.“ In Annual Reports on NMR Spectroscopy , Bd.97 , herausgegeben von Webb Graham A.. Amsterdam: Elsevier. doi: 10.1016/bs.arnmr.2018.12.003.

    Artikel in Fachzeitschriften, Zeitungen oder Magazinen
    Forschungsartikel (Zeitschriften)
    • , , , , , , und . . „Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries.Journal of Power Sources, Nr. 409: 148158. doi: 10.1016/j.jpowsour.2018.08.077.
    • , , , , , und . . „Unlocking Full Discharge Capacities of Poly(vinylphenothiazine) as Battery Cathode Material by Decreasing Polymer Mobility Through Cross-Linking.Advanced Energy Materials, Nr. 8 (33): 1802151. doi: 10.1002/aenm.201802151.
    • , , , , , , und . . „Cation-Dependent Electrochemistry of Polysulfides in Lithium and Magnesium Electrolyte Solutions.Journal of Physical Chemistry C, Nr. 122 (38): 2177021783. doi: 10.1021/acs.jpcc.8b06560.
    • , , , , , , und . . „Grafted polyrotaxanes as highly conductive electrolytes for lithium metal batteries.Journal of Power Sources, Nr. xx doi: 10.1016/j.jpowsour.2018.08.077.
    • , , , , , , und . . „Electrolyte solvents for high voltage lithium ion batteries: ion correlation and specific anion effects in adiponitrile.Phys.Chem.Chem.Phy.,, Nr. 25701 doi: 10.1002/aenm.201802151.
    • , , , und . . „Analysis of Organophosphates in Lithium Ion Battery Electrolytes by HILIC-ESI-MS.LC GC Europe, Nr. 30 (12): 691692.
    • , , , , , und . . „New Insights into Electrochemical Anion Intercalation into Carbonaceous Materials for Dual-Ion Batteries: Impact of Graphitization Degree.Carbon, Nr. 131: 201212. doi: 10.1016/j.carbon.2018.01.099.
    • , , , , , , , , und . . „Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt after dissolution and migration from the Li1[Ni1/3Mn1/3Co1/3]O2 and LiMn1.5 Ni0.5O4 cathode.Journal of Power Souces, Nr. 380: 194201. doi: 10.1016/j.jpowsour.2018.01.088.
    • , und . . „The role of cations on the performance of lithium ion batteries: A quantitative analytical approach.Accounts of Chemical Research, Nr. 52 (2) (Energy Storage: Complexities Among Materials and Interfaces at Multiple Length Scales): 265272. doi: 10.1021/acs.accounts.7b00523.
    • , , , , , , und . . „Exploring the Effect of Increased Energy Density on the Environmental Impacts of Traction Batteries: A Comparison of Energy Optimized Lithium-Ion and Lithium-Sulfur Batteries for Mobility Applications.Energies, Nr. 11: 150. doi: 10.3390/en11010150.
    • , , , , und . . „Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges.Batteries, Nr. 4 (1): 442. doi: 10.3390/batteries4010004.
    • , , , , , , und . . „Thermal Analysis of LiNi0.4Co0.2Mn0.4O2/Mesocarbon Microbeads Cells and Electrodes: State-of-Charge and State-of-Health Influences on Reaction Kinetics.Journal of The Electrochemical Society, Nr. 165: A104A117. doi: 10.1149/2.0361802jes.
    • , , , , , , , und . . „A Step Towards Understanding the Beneficial Influence of a LIPON-Based Artificial SEI on Silicon Thin Film Anodes in Lithium-Ion Batteries.Nanoscale, Nr. 10: 21282137. doi: 10.1039/C7NR06568J.
    • , , , , , und . . „Hydrothermal-derived carbon as stabilizing matrix for an improved cycling performance of silicon-based anodes for lithium ion full cells.Beilstein Journal of Nanotechnology, Nr. 9: 2381–2395. doi: 10.3762/bjnano.9.223.
    • , , , , , und . . „Toward High Power Batteries: Pre-lithiated Carbon Nanospheres as High Rate Anode Material for Lithium Ion Batteries.ACS Applied Energy Materials, Nr. 1 (8): 43214331. doi: 10.1021/acsaem.8b00945.
    • , , , , und . . „Pentafluorophenyl isocyanate as effective electrolyte additive for improved performance of silicon-based lithium ion full cells.ACS applied materials & interfaces, Nr. 10 (33): 28187–28198. doi: 10.1021/acsami.8b07683.
    • , , , , , , und . . „Comparative study of Sn-doped Li[Ni0.6Mn0.2Co0.2-xSnx]O2 cathode active materials (x= 0-0.5) for lithium ion batteries regarding electrochemical performance and structural stability.Journal of Power Sources, Nr. 397: 6878. doi: 10.1016/j.jpowsour.2018.06.072.
    • , , , , , und . . „A Route Towards Understanding the Kinetic Processes of Bis(trifluoromethanesulfonyl) Imide Anion Intercalation into Graphite for Dual-Ion Batteries.Electrochimica Acta, Nr. 284: 669680. doi: 10.1016/j.electacta.2018.07.181.
    • , , , und . . „Total Reflection X-Ray Fluorescence in the Field of Lithium Ion Batteries – Elemental Detection in Lithium containing Electrolytes using Nanoliter Droplets.Spectrochimica Acta Part B: Atomic Spectroscopy, Nr. 149 (Special Issue: 17th International Conference on Total Reflection X-Ray Fluorescence Analysis and Related Methods (TXRF2017)): 118123. doi: 10.1016/j.sab.2018.07.027.
    • , , und . . „Supramolecular Self-Assembly of Methylated Rotaxanes for Solid Polymer Electrolyte Application.ACS Macro Letters, Nr. 7 doi: 10.1021/acsmacrolett.8b00406.
    • , , , , , , und . . „Performance tuning of lithium ion battery cells with area-oversized graphite based negative electrodes.Journal of Power Sources, Nr. 396: 519526. doi: 10.1016/j.jpowsour.2018.06.043.
    • , , und . . „Evaluation of different plasma conditions and resolutions for understanding elemental organophosphorus analysis via GC-ICP-SF-MS.Journal of Analytical Atomic Spectrometry, Nr. 33: 10411048. doi: 10.1039/C8JA00092A.
    • , , , und . . „Ion Chromatography with Post-column Reaction and Serial Conductivity and Spectrophotometric Detection Method Development for Quantification of Transition Metal Dissolution in Lithium Ion Battery Electrolytes.Chromatographia, Nr. 81 (7): 9951002. doi: 10.1007/s10337-018-3540-2.
    • , , , , , , , , , , , und . . „Triphenylphosphine Oxide as Highly Effective Electrolyte Additive for Graphite/NMC811 Lithium Ion Cells.Chemistry of Materials, Nr. 30 (8): 27262741. doi: 10.1021/acs.chemmater.8b00413.
    • , , , , , und . . „Towards High-Performance Dual-Graphite Batteries using Highly Concentrated Organic Electrolytes.Electrochimica Acta, Nr. 260: 514–525. doi: 10.1016/j.electacta.2017.12.099.
    • , und . . „Recycling of Lithium Ion Batteries - Reapplication of the Recovered Materials as Lithium Ion Battery Materials.G.I.T Laboratory Journal Europe, Nr. 2 (22): 3233.
    • , , , , , und . . „Enabling Bis(fluorosulfonyl) Imide-Based Ionic Liquid Electrolytes for Application in Dual-Ion Batteries.Journal of Power Sources, Nr. 373: 193–202. doi: 10.1016/j.jpowsour.2017.11.010.
    • , , , , , , und . . „Development of new pyrazole-based lithium salts for battery applications – Do established basic design concepts really work?Electrochimica Acta, Nr. 286: 313323. doi: 10.1016/j.electacta.2018.08.055.
    • , , , , , und . . „Perspective on Performance, Cost and Technical Challenges for Practical Dual-Ion Batteries.Joule, Nr. 2 (12): 25282550. doi: 10.1016/j.joule.2018.09.003.
    • , , , , und . . „Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries – II. Full Cell Cycling and Postmortem Analyses.Energy Technology, Nr. xx doi: 10.1002/ente.201800133.
    • , , , , , und . . „Safety Performance of 5 Ah Lithium Ion Battery Cells Containing the Flame Retardant Electrolyte Additve (Phenoxy) Pentafluorocyclotriphosphazene.Energy Technology, Nr. xx doi: 10.1002/ente.201800131.
    • , , , und . . „Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries – I. Safety, Chemical and Electrochemical Stabilities.Energy Technology, Nr. xx doi: 10.1002/ente.201800132.
    • , , , , , und . . „Mechanism of Charge/Discharge of Poly(vinylphenothiazine)-Based Li–Organic Batteries.Chemistry of Materials, Nr. 30 (18): 63076317. doi: 10.1021/acs.chemmater.8b02015.
    • , , , , , , und . . „Fe-catalyzed graphitic carbon materials from biomass resources as anodes for lithium ion batteries.ChemSusChem, Nr. 11: 27762787. doi: 10.1002/cssc.201800831.
    • , , , , und . . „Performance and cost of materials for lithium-based rechargeable automotive batteries.Nature Energy, Nr. 3 (4): 267278. doi: 10.1038/s41560-018-0107-2.
    • , , , , und . . „New Insights into Pre-Lithiation Kinetics of Graphite Anodes via Nuclear Magnetic Resonance Spectroscopy.Journal of Power Sources, Nr. 378: 522–526. doi: 10.1016/j.jpowsour.2017.12.069.
    • , , , , , , und . . „Carbons from Biomass Precursors as Anode Materials for Lithium Ion Batteries: New Insights into Carbonization and Graphitization Behavior and into their Correlation to Electrochemical Performance.Carbon, Nr. 128: 147163. doi: 10.1016/j.carbon.2017.11.065.
    Nicht-wissenschaftliche Beiträge (Zeitschriften)
    • , , , , und . . „Issue Cover "Pre-Lithiation Strategies for Rechargeable Energy Storage Technologies: Concepts, Promises and Challenges".Batteries, Nr. 4 (1)
    Konferenzbeiträge
    Forschungsartikel in Sammelbänden (Konferenzen)
    • , , und . . „Recycling of graphite and reutilization as anode material in lithium ion battery cells.“ In Global Battery Raw Materials Symposium 2018, herausgegeben von Cambridge Innovation Institute Cambridge EnerTech. Newcastle upon Tyne: Cambridge Scholars Publishing.
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , , und . . „Enhanced Cycle Life in Solid –State Lithium Metal Batteries Using Modified Lithium Electrodes.“ Beitrag präsentiert auf der Electrochemistry 2018, Ulm, Deutschland
    • , , , , , und . . „Mg Polysulfides – A Systematical Study of Their Stabilization and Electrochemical Behavior.“ Beitrag präsentiert auf der 2nd International Symposium on Magnesium Batteries, Ulm, Germany
    • , , , , , und . „π-π-Interactions in Redox Polymers – Enabling Polymeric Cathode-active Materials with Ultra-high Cycling Stability.“ Beitrag präsentiert auf der Electrochemistry 2018, Ulm, Germany
    • , , , , und . . „Ultra-Thick Electrodes based on Aqueous Processing.“ Beitrag präsentiert auf der International Battery Production Conference, Braunschweig
    • , , , , , , und . . „Electrochemical investigations of in situ alloyed Li-metal surfaces by using a LiTFSI/MgTFSI2-containing Polymer Electrolyte.“ Beitrag präsentiert auf der 16th Ulm ElectroChemical Talks (UECT), Ulm, Deutschland
    • , , , , , , und . . „Magnesium/Sulfur Batteries: The Differences Between Mg and Li Polysulfides.“ Beitrag präsentiert auf der Batterieforum Deutschland 2018, Berlin, Deutschland
    • , , und . . „Effective suppression of irreversible Li metal deposits at high charging rates or low temperatures influenced by SEI properties in lithium ion batteries.“ Beitrag präsentiert auf der AABC Europe 2018, Mainz
    • , , , , , , und . . „Preparation and electrochemical investigation of lithium powder electrodes.“ Beitrag präsentiert auf der Kraftwerk Batterie 2018, Münster
    • , , und . . „In Situ NMR Measurements of Lib Electrolytes - Revealing the Network of Reactions in a Battery.“ Beitrag präsentiert auf der ECS and SMEQ Joint International Meeting 2018, Cancun doi: 10.1149/MA2018-02/6/452.
    • , , , , und . . „Aqueous processing of nickel-rich NMC - Li-Ion performance as a function of binder pH value.“ Beitrag präsentiert auf der IMLB, Kyoto
    • , , , , , und . . „Understanding Mg/S Batteries: The Different Electrochemistry of Li and Mg Polysulfide Solutions.“ Beitrag präsentiert auf der IMLB 2018, Kyoto, Japan
    • , , , und . . „Noval and green binder system for silicon composite electrodes.“ Beitrag präsentiert auf der IBPC 2018 – International Battery Production Conference, Braunschweig
    • , , , und . . „Varying amount of active material and binder in silicon composite electrodes.“ Beitrag präsentiert auf der 16th UECT: Ulm ElectroChemical Talks 2018, Ulm
    • , , , , und . . „Scale effects in lithium ion cells: An impedance based investigation.“ Beitrag präsentiert auf der 16th UECT: Ulm ElectroChemical Talks 2018, Ulm
    • , , , , und . . „Evaluation of Pyr1,4TFSI as a (Co-)Solvent for Mg-Based Cell Systems.“ Beitrag präsentiert auf der 2nd International Symposium on Magnesium Batteries, Ulm, Germany
    • , , , , , und . . „Approaching long-term cycling performance for redox polymers as cathode-active materials in dual-ion batteries.“ Beitrag präsentiert auf der FoChIn - Forschung in der Chemischen Industrie, Münster
    • , , und . . „Investigation of lithium metal surface deposition phenomena by 7Li-NMR.“ Beitrag präsentiert auf der Kraftwerk Batterie 2018, Münster
    • , , , , , und . . „Approaching long-term cycling performance for redox polymers as cathode-active materials in dual-ion batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie 2018, Münster
    Poster
    • , , , und . . „Investigation of Transition Metal-Based Cathode Materials – Speciation of Dissolved Mn2+/Mn3+ by Means of Capillary Electrophoresis.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „A LASER ABLATION ICP-OES METHOD FOR THE INVESTIGATION OF LITHIUM AND TRANSITION METAL DEPOSITIONS FROM LITHIUM ION BATTERY ELECTRODES.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „UTILIZATION OF A BARRIER IONIZATION DISCHARGE DETECTOR TO INVESTIGATE PERMANENT GASES EMERGING IN LITHIUM ION BATTERIES.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „SPECIATION OF POTENTIAL TOXIC DECOMPOSITION PRODUCTS IN LITHIUM ION BATTERY ELECTROLYTES BY COMBINATION OF HPLC-ION TRAP TIME OF FLIGHT-MS AND HPLC-ICP-MS.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „QUANTIFICATION OF DISSOLVED MN2+/3+ IN LITHIUM ION BATTERY ELECTROLYTES BY MEANS OF CE/ICP-MS – A NEW APPROACH FOR THE INVESTIGATION OF TRANSITION METAL DISSOLUTION FROM CATHODE MATERIALS.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „DETERMINING THE MIGRATION OF LITHIUM IN AGED LITHIUM ION BATTERIES BY PERFORMING AN ISOTOPE DILUTION ANALYSIS COMBINED WITH DIFFERENT PLASMA-BASED TECHNIQUES.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „DECIPHERING THE LITHIUM ION MOVEMENT IN LITHIUM ION BATTERIES: DETERMINATION OF THE ISOTOPIC ABUNDANCES OF 6Li AND 7Li VIA HIGH RESOLUTION ICP OES FOR AGING ANALYSES.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „MATRIX-MATCHED STANDARDS FOR GLOW DISCHARGE SECTOR FIELD-MASS SPECTROMETRY FOR THE ANALYSIS OF LITHIUM ION BATTERY ELECTRODES.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „INVESTIGATING ELECTRICAL CONTACT LOSS WITHIN LITHIUM ION BATTERY ELECTRODES BY MEANS OF SINGLE PARTICLE ANALYSIS WITH ICP-OES AND -MS.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , , und . . „Visualizing elemental deposition patterns on graphite anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry study on factors influencing the deposition of lithium, nickel, manganese and cobalt.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , und . . „ANALYSIS OF ORGANOPHOSPHORUS AGING PRODUCTS IN LITHIUM ION BATTERY ELECTROLYTES VIA GC-ICP-SF-MS AND GC-EI-MS.“ präsentiert auf der 9th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Application of Total Reflection X-Ray Fluorescence for the Investigation of Transition Metal Dissolution in the Field of Lithium Ion Batteries.“ präsentiert auf der European Conference on X-Ray Spectrometry: EXRS2018, Ljubljana
    • , , , , und . . „Combining Direct Solid Depth Profiling with Isotope Dilution Analysis by Means of Glow Discharge Mass Spectrometry - A Powerful Tool for Aging Analyses of Lithium Ion Batteries.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster
    • , , , , , , und . . „Characterization of aging products in lithium ion battery electrolytes by means of solid phase microextraction - gas chromatography - mass spectrometry.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Visualizing elemental deposition patterns on carbonaceous anodes from lithium ion batteries.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster
    • , , , und . . „Electrochemical Investigations of Recycled Active Materials from Spent Li-Ion Batteries.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster
    • , , und . . „Analysis of Lithium Ion Battery electrolyte - Structural elucidation of aging products by HPLC-MSn.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster
    • , , , und . . „INVESTIGATION OF ENVIRONMENTAL FRIENDLY BINDER MATERIALS FOR LI ION BATTERIES BY MEANS OF PYROLYSIS-GC/MS.“ präsentiert auf der 10. Kraftwerk Batterie Fachtagung, Münster
    • , , und . . „ELUCIDATING THE IMPACT OF PULSE DURATION AND FREQUENCY OF PULSED GD-SF-MS METHOD DEVELOPMENT OF LITHIUM ION BATTERY COMPONENTS.“ präsentiert auf der 4th International Glow Discharge Spectroscopy Symposium (IGDSS2018), Berlin
    • , , , , und . . „Total Reflection X-ray Fluorescence in the Analysis of Lithium Ion Battery Materials.“ präsentiert auf der CANAS & ESAS 2018, Berlin
    • , , , , und . . „Depth-Resolved Isotope Dilution Analysis by Means of Glow Discharge Mass Spectrometry – a Versatile Technique for the Direct Solid Analysis of Lithium Ion Battery Components.“ präsentiert auf der CANAS & ESAS 2018, Berlin
    Buchbeiträge
    Forschungsartikel (Buchbeiträge)
    • , , , und . . „Hydrometallurgical Processing and Thermal Treatment of Active Materials.“ In Recycling of Lithium-Ion Batteries, herausgegeben von A Kwade und J Diekmann. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-319-70572-9_13.
    • , , und . . „Background.“ In Recycling of Lithium-Ion Batteries, herausgegeben von A Kwade und J Diekmann. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-319-70572-9_1.
    • , , , , und . . „Electrolyte Extraction—Sub and Supercritical CO2.“ In Recycling of Lithium-Ion Batteries, herausgegeben von A Kwade und J Diekmann. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-319-70572-9_10.
    • , , , , , , , und . . „Potential Dangers During the Handling of Lithium-Ion Batteries.“ In Recycling of Lithium-Ion Batteries, herausgegeben von A Kwade und J Diekmann. Düsseldorf: Springer VDI Verlag. doi: 10.1007/978-3-319-70572-9_3.
    Übersichtsartikel (Buchbeiträge)
    • , , , und . . „Book Chapter - Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.“ In Modeling Electrochemical Energy Storage at the Atomic Scale , herausgegeben von Martin Korth. Berlin: Springer Nature. doi: 10.1007/978-3-030-00593-1_2.

    Artikel in Fachzeitschriften, Zeitungen oder Magazinen
    Forschungsartikel (Zeitschriften)
    • , , , , , , , , , und . . „Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π–π interactions.Energy and Environmental Science, Nr. 10: 23342341. doi: 10.1039/c7ee01473b.
    • , , , und . . „Running out of Lithium? A Route to Differentiate between Capacity Losses and Active Lithium Losses in Lithium-Ion Batteries.Physical Chemistry Chemical Physics, Nr. 19: 2590525918. doi: 10.1039/C7CP05405J.
    • , , , , , , , , , , , und . . „Aging of ceramic coated graphitic negative and NCA positive electrodes in commercial lithium-ion battery cells – An ex-situ study of different states of health for identification and quantification of aging influencing parameters.Journal of Energy Storage, Nr. 13: 304312. doi: 10.1016/j.est.2017.07.026.
    • , , und . . „Capillary Electrophoresis as Analysis Technique for Battery Electrolytes: (i) Monitoring Stability of Anions in Ionic Liquids and (ii) Determination of Organophosphate-Based Decomposition Products in LiPF6-Based Lithium Ion Battery Electrolytes.Separations, Nr. 4 (3) (Special Issue Ionic Liquid for Separation): 26. doi: 10.3390/separations4030026.
    • , , , , , , , und . . „Highly effective solid electrolyte interphase (SEI)-forming electrolyte additive enabling high voltage lithium ion batteries.Chemistry of Materials, Nr. 2017 doi: 10.1021/acs.chemmater.7b01977.
    • , , , , und . . „Matrix-Matched Standards for the Quantification of Elemental Lithium Ion Battery Degradation Products Deposited on Carbonaceous Negative Electrodes using Pulsed-Glow Discharge-Sector Field-Mass Spectrometry.Journal of Analytical Atomic Spectrometry, Nr. 32: 18621867. doi: 10.1039/C7JA00129K.
    • , , , , , , , und . . „A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries.Journal of The Electrochemical Society, Nr. 164 (12): A2479–A2486. doi: 10.1149/2.0961712jes.
    • , , und . . „Reactions of the Additive 1,3-Propane Sultone with Electrolyte Compounds Investigated by Capillary Electrophoresis and High-Resolution Mass Spectrometry.Electrochimica Acta, Nr. 251: 573580. doi: 10.1016/j.electacta.2017.08.092.
    • , , , , , , und . . „Modified Imidazolium-Based Ionic Liquids With Improved Chemical Stability Against Lithium Metal.Chemistryselect, Nr. 2 (21): 6052–6056. doi: 10.1002/slct.201701599.
    • , , , , , und . . „Quantification of ionic organo(fluoro)phosphates in decomposed lithium battery electrolytes.RSC Advances, Nr. 7: 3931439324. doi: 10.1039/c7ra07486g.
    • , , , , und . . „Alternative Electrochemical Energy Storage: Potassium-Based Dual-Graphite Batteries.Energy & Environmental Science, Nr. 10: 20902094. doi: 10.1039/C7EE01535F.
    • , , , , , und . . „Influence of the Cation in Lithium and Magnesium Polysulphide Solutions in Dependence of the Solvent Chemistry.Physical Chemistry Chemical Physics, Nr. 19 (18): 1115211162. doi: 10.1039/C7CP01238A.
    • , , , , , , , , und . . „Local structural changes of nano-crystalline ZnFe2O4 during lithiation and de-lithiation studied by X-ray absorption spectroscopy.Electrochimica Acta, Nr. 246: 699–706. doi: 10.1016/j.electacta.2017.06.098.
    • , , , , und . . „Post-Mortem Investigations of Fluorinated Flame Retardants for Lithium Ion Battery Electrolytes by Gas Chromatography with Chemical Ionization.Electrochimica Acta, Nr. 246: 10421051. doi: 10.1016/j.electacta.2017.06.125.
    • , , , , , und . . „Determining oxidative stability of battery electrolytes: Validity of common electrochemical stability window (ESW) data and alternative strategies.Physical Chemistry Chemical Physics, Nr. 2017 doi: 10.1039/C7CP03072J.
    • , , , , , , und . . „Improving cycle life of layered lithium transition metal oxide (LiMO2) based positive electrodes for Li ion batteries by smart selection of the electrochemical charge conditions.Journal of Power Sources, Nr. 359: 458467. doi: 10.1016/j.jpowsour.2017.05.092.
    • , , , , und . . „Quantitative Investigation of the Decomposition of Organic Lithium Ion Battery Electrolytes with LC-MS/MS.RSC Advances, Nr. 7: 2785327862. doi: 10.1039/C7RA03839A.
    • , , , , , , , , und . . „Influence of LiPF6 on the Aluminum Current Collector Dissolution in High Voltage Lithium Ion Batteries after Long-Term Charge/Discharge Experiments.Journal of The Electrochemical Society, Nr. 2017 doi: 10.1149/2.0671707jes.
    • , , , , , , , und . . „A Step Towards High Energy Silicon-Based Thin Film Lithium Ion Batteries.ACS Nano, Nr. 11 (5): 47314744. doi: 10.1021/acsnano.7b00922.
    • , , , , und . . „Lithium loss in the solid electrolyte interphase: lithium quantification of aged lithium ion battery graphite electrodes by means of laser ablation inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectroscopy.Journal of Power Sources, Nr. 356: 4755. doi: 10.1016/j.jpowsour.2017.04.078.
    • , , , , , , und . . „Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells.Electrochimica Acta, Nr. xxx doi: 10.1016/j.electacta.2017.03.092.
    • , , , , , , und . . „Trimethylsiloxy based metal complexes as electrolyte additives for high voltage application in lithium ion cells.Electrochimica Acta, Nr. 2017 doi: 10.1016/j.electacta.2017.03.092.
    • , , , , , , und . . „Supercritical Carbon Dioxide Extraction of Electrolyte from Spent Lithium Ion Batteries and its Characterization by Gas Chromatography with Chemical Ionization.Journal of Power Sources, Nr. 352: 56–63. doi: 10.1016/j.jpowsour.2017.03.114.
    • , und . . „Recycling von Lithium Ionen Batterien - Wiederverwendung der recycelten Komponenten als Lithium Ionen Batterie Materialien.G.I.T Laborfachzeitschrift, Nr. 4: 5659.
    • , , , , , , , , , , , , und . . „Investigation of Nano-Sized Cu(II)O As a High Capacity Conversion Material for Li Metal Cells and Lithium Ion Full Cells.Journal of Materials Chemistry A, Nr. xxx doi: 10.1039/C6TA10944F.
    • , und . . „The Role of Sub- and Supercritical CO2 as “Processing Solvent” for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.Molecules, Nr. 22 (3) (Special Issue Green Chemistry): 403. doi: 10.3390/molecules22030403.
    • , , , , , , , , , , , , und . . „Phosphorus additives for improving high voltage stability and safety of lithium ion batteries.Journal of Fluorine Chemistry, Nr. 198: 2433. doi: 10.1016/j.jfluchem.2017.02.005.
    • , , und . . „Battery Cell for In Situ NMR Measurements of Liquid Electrolytes.Physical Chemistry Chemical Physics, Nr. 19: 49624966. doi: 10.1039/C6CP08653E.
    • , , und . . „Determination and Quantification of Cations in Ionic Liquids by Capillary Electrophoresis-Mass Spectrometry.Journal of Chromatography A, Nr. 1485: 131141. doi: 10.1016/j.chroma.2017.01.034.
    • , , , , , , und . . „Changing Established Belief on Capacity Fade Mechanisms: Thorough Investigation of LiNi1/3Co1/3Mn1/3O2 under High Voltage Conditions.The Journal of Physical Chemistry C, Nr. 121 (3): 1521–1529. doi: 10.1021/acs.jpcc.6b11746.
    • , , , , , , , , und . . „Correlation of aging and thermal stability of commercial 18650-type lithium ion batteries.Journal of Power Sources, Nr. 342: 382–392. doi: 10.1016/j.jpowsour.2016.12.041.
    • , , , , , und . . „Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis.Journal of Power Sources, Nr. 342: 8897. doi: 10.1016/j.jpowsour.2016.12.040.
    • , , , und . . „Determination of Lithium and Transition Metals in Li1Ni1/3Co1/3Mn1/3O2 (NCM) Cathode Material for Lithium-Ion Batteries by Capillary Electrophoresis.Electrophoresis, Nr. 38 (3-4): 540–546. doi: 10.1002/elps.201600445.
    • , , , , und . . „Capillary Electrophoresis with Contactless Conductivity Detection for the Quantification of Fluoride in Lithium Ion Battery Electrolytes and in Ionic Liquids - A Comparison to the Results Gained with a Fluoride Ion-Selective Electrode.Electrophoresis, Nr. 38 (3-4): 533–539. doi: 10.1002/elps.201600361.
    • , , , und . . „Alterungsprodukte in Batterie-Elektrolyten.Nachrichten aus der Chemie, Nr. 65 (1): 3941. doi: 10.1002/nadc.20174056743.
    • , , und . . „Where is the Lithium? Quantitative Determination of the Lithium Distribution in Lithium Ion Battery Cells: Investigations on the Influence of the Temperature, the C-Rate and the Cell Type.Journal of Power Sources, Nr. 346: 6370. doi: 10.1016/j.jpowsour.2017.02.028.
    • , , , , und . . „Ethyl Methyl Sulfone-Based Electrolytes for Lithium Ion Battery Applications.Energies, Nr. 10 (9): 1312. doi: 10.3390/en10091312.
    • , , , , , , , , und . . „Shutdown potential adjustment of modified carbine adducts as additives for lithium ion battery electrolytes.Journal of Power Sources, Nr. 367: 7279. doi: 10.1016/j.jpowsour.2017.09.023.
    • , , , , , , , und . . „Fast Screening Method to Characterize Lithium Ion Battery Electrolytes by Means of Solid Phase Microextraction - Gas Chromatography - Mass Spectrometry.RSC Advances, Nr. 7: 4698946998. doi: 10.1039/C7RA08599K.
    • , , , , und . . „In Situ Dilatometric Study of the Binder Influence on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into Graphite.Electrochimica Acta, Nr. 257: 423435. doi: 10.1016/j.electacta.2017.10.042.
    • , und . . „Elemental Analysis of Lithium Ion Batteries.Journal of Analytical Atomic Spectrometry, Nr. 32 (10): 1824. doi: 10.1039/C7JA00073A.
    • , , , , , , und . . „Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate.Journal of Power Sources, Nr. 372: 276285. doi: 10.1016/j.jpowsour.2017.10.058.
    • , , , , , , und . . „Investigating the lithium ion battery electrolyte additive tris(2,2,2-trifluoroethyl)phosphite by GC-FID.RSC Advances, Nr. 7: 5304853055. doi: 10.1039/C7RA09476K.
    • , , , , , , , und . . „Towards Quantification of Toxicity of Lithium Ion Battery Electrolytes - Development and validation of a liquid-liquid extraction GC-MS method for the determination of organic carbonates in cell culture materials.Analytical and Bioanalytical Chemistry, Nr. 409 (26): 61236131. doi: 10.1007/s00216-017-0549-6.
    • , und . . „Al2O3, SiO2 and TiO2 as Coatings for Safer LiNi0.8Co0.15Al0.05O2 Cathodes: Electrochemical Performance and Thermal Analysis by Accelerating Rate Calorimetry.Journal of The Electrochemical Society, Nr. 164 (9): A2190A2198. doi: 10.1149/2.0071712jes.
    • , , , , , , , und . . „Al2O3 coating on anode surface in lithium ion batteries: Impact on low temperature cycling and safety behavior.Journal of Power Sources, Nr. 363: 7077. doi: 10.1016/j.jpowsour.2017.07.062.
    • , , , , , , , und . . „Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries.Advanced Materials Interfaces, Nr. 1700166 doi: 10.1002/admi.201700166.
    • , , , und . . „Lithium-Ion, Lithium Metal and Alternative Rechargeable Battery Technologies: The Odyssey for High Energy Density.Journal of Solid State Electrochemistry, Nr. 21 (7): 19391964. doi: 10.1007/s10008-017-3610-7.
    • , , , , , , und . . „Learning from electrochemical data: Evaluation and classification of LiMO2 type based positive electrodes for Li ion batteries by using a novel electrochemical analysis methodology.Energy Technology, Nr. xxx doi: 10.1002/ente.201700068.
    • , , , , , , und . . „Anodic Behavior of the Aluminum Current Collector in Imide Based Electrolytes - Influence of the Solvent, the Operating Temperature and the Native Oxide Layer Thickness.ChemSusChem, Nr. 10 (4): 804814. doi: 10.1002/cssc.201601636.
    • , , , , , und . . „Sodium-Based vs. Lithium-Based Dual-Ion Cells: Electrochemical Study of Anion Intercalation/De-Intercalation into/from Graphite and Metal Plating/Dissolution Behavior.Electrochimica Acta, Nr. 228: 18–27. doi: 10.1016/j.electacta.2017.01.034.
    • , , , , , , , und . . „Evaluation of allylboronic acid pinacol ester as effective shutdown overcharge additive for lithium ion cells.Journal of The Electrochemical Society, Nr. 164 (2): A168–A172. doi: 10.1149/2.0711702jes.
    • , , , , , , , , und . „Innovative, Non-Corrosive LiTFSI Cyanoester-Based Electrolyte for Safer 4 V Lithium-Ion Batteries.ChemElectroChem, Nr. 4 (2) doi: 10.1002/celc.201600610.
    • , , , , , und . . „Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance.ChemPhysChem, Nr. 18: 156163. doi: 10.1002/cphc.201601095.
    Nicht-wissenschaftliche Beiträge (Zeitschriften)
    • , , , , und . . „Inside Back Cover "Alternative Electrochemical Energy Storage: Potassium-Based Dual-Graphite Batteries".Energy & Environmental Science, Nr. 10: 2269. doi: 10.1039/C7EE90058A.
    • , und . . „Cover Page - Elemental Analysis of Lithium Ion Batteries.Journal of Analytical Atomic Spectrometry, Nr. 32 (10): 18331847. doi: 10.1039/C7JA90049J.
    • , , , und . . „Cover Page - Determination of Lithium and Transition Metals in Li1Ni1/3Co1/3Mn1/3O2 (NCM) Cathode Material for Lithium-Ion Batteries by Capillary Electrophoresis.Electrophoresis, Nr. 38 (3-4) doi: 10.1002/elps.201770021.
    • , , , , und . . „Cover Page - Capillary Electrophoresis with Contactless Conductivity Detection for the Quantification of Fluoride in Lithium Ion Battery Electrolytes and in Ionic Liquids - A Comparison to the Results Gained with a Fluoride Ion-Selective Electrode.Electrophoresis, Nr. 38 (3-4) doi: 10.1002/elps.201770021.
    • , , , , , und . . „Elektromobilität – Was uns jetzt und künftig antreibt: Batterie-, Brennstoffzellen- und Hybridantrieb.BINE Informationsdienst: Themeninfo, Nr. I/2017
    Konferenzbeiträge
    Forschungsartikel in Sammelbänden (Konferenzen)
    • , , , , und . . „Flammable, toxic and not performant enough: Is there a chance to get rid of liquid organic electrolytes?“ In Battery Chemistries for Automotive Applications 2017, herausgegeben von Cambridge Innovation Institute Cambridge EnerTech. Newcastle upon Tyne: Cambridge Scholars Publishing.
    • , , , , und . . „Comparative study of additives improving the safety-and electrochemical performance of lithium ion batteries.“ Beitrag präsentiert auf der Lithium Battery Discussions, Arcachon, France
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , , , und . . „Influence of the cation in Li and Mg polysulfide solutions in dependence of the solvent chemistry.“ Beitrag präsentiert auf der 6th Workshop »Lithium-Sulfur-Batteries«, Dresden
    • , , , , und . . „Comparative study of additives improving the safety-and electrochemical performance of lithium ion batteries.“ Beitrag präsentiert auf der Lithium Battery Discussions, Arcachon, France
    • , , , , und . . „MgMeAnS – Magnesium/sulfur batteries as promising next generation battery system.“ Beitrag präsentiert auf der German-Israel Battery School 2017, Hadera, Israel
    • , , , , , , und . . „Lithium metal surface modification with silicon-based material in the solid polymer electrolyte system.“ Beitrag präsentiert auf der 649. WE-Heraeus-Seminar: In-operando characterization of energy materials, Bad Honnef, Germany
    • , , und . „RECONSIDERING INTERACTIONS IN REDOX POLYMERS.“ Beitrag präsentiert auf der Organic Battery Days 2017, Uppsala, Schweden
    • , , , , , und . . „Insights into Lithium Polysulfide Behavior in Different Solvents for Lithium-Sulfur Batteries.“ Beitrag präsentiert auf der FoChIn - Forschung in der Chemischen Industrie, Muenster, Deutschland
    • , , , , und . . „Improving the electrochemical performance of lithiummetal systems by lithium surface modification.“ Beitrag präsentiert auf der Advanced Battery Power Conference 2017, Aachen
    • , , , , , , und . . „Comparing the thermal stability of fresh and aged lithium ion cells with Ni-rich cathode materials based on Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni0.8Co0.1Mn0.1)O2.“ Beitrag präsentiert auf der AABC Europe 2017, Mainz
    • , , , , , und . . „Optimization of slurry homogeneity via charge modification during aqueous NMC electrode processing.“ Beitrag präsentiert auf der Advanced Automotive & Industrial Battery Conference, Mainz
    • , , , , und . . „Determination of the state of safety (SOS) of lithium ion cells in dependency of the state of health (SOH) and state of charge (SOC).“ Beitrag präsentiert auf der Batterieforum 2017, Berlin
    Poster
    • , , , und . . „IDENTIFICATION AND QUANTIFICATION OF MN2+ AND MN3+ IN LITHIUM ION BATTERY ELECTROLYTES BY MEANS OF CAPILLARY ELECTROPHORESIS AND ULTRAVIOLET-VISIBLE LIGHT-DETECTION.“ präsentiert auf der 23rd International Symposium on Separation Sciences (ISSS 2017), Wien
    • , , , , , , und . . „FAST SCREENING METHOD TO CHARACTERIZE LITHIUM ION BATTERY ELECTROLYTES BY MEANS OF SOLID PHASE MICROEXTRACTION - GAS CHROMATOGRAPHY - MASS SPECTROMETRY.“ präsentiert auf der 23rd International Symposium on Separation Sciences (ISSS 2017), Wien
    • , , , , , und . . „Matrix-Matched Standard Calibration Approach in Glow Discharge Sector Field-Mass Spectrometry (SF GD MS) for Lithium Ion Battery Electrodes.“ präsentiert auf der Anwendertreffen Analytische Glimmentladungsspektrometrie, Bremen
    • , , , und . . „Short-Circuit Determination by Spatially Resolved Analysis of the Quantitative Lithium Distribution on Cycled Lithium Ion Battery Electrodes via Laser Ablation - Inductively Coupled Plasma - Optical Emission Spectrometry (LA-ICP-OES).“ präsentiert auf der Forschung in der Chemischen Industrie, 6. FoChIn, Münster
    • , , , , und . . „Investigation of Lithium-Ion Battery Electrolytes by Gas Chromatography - Barrier Ionization Discharge Detector.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    • , , , und . . „Analysis of transition metals in lithium ion batteries by ion chromatography.“ präsentiert auf der ANAKON 2017, Tübingen
    • , , , und . . „Speciation Analysis of Lithium Ion Battery Electrolyte Decomposition Products by the Combination of Different Chromatographic Techniques Coupled to ICP-MS.“ präsentiert auf der ANAKON 2017, Tübingen
    • , , , , und . . „Laser Ablation ICP-OES and ICP-MS Methods for the Investigation of Lithium Ion Battery Electrodes.“ präsentiert auf der ANAKON 2017, Tübingen
    • , , und . . „Quantification by means of NMR Spectroscopy using Heteronuclear Standards - A Highly Accurate and Precise Method Applied on Lithium Ion Battery Electrolytes.“ präsentiert auf der ANAKON 2017, Tübingen
    • , , , , und . . „Transition Metal Dissolution Investigation of Various NCM Cathode Materials by Means of Total Reflection X Ray Fluorescence.“ präsentiert auf der AABC Europe, Mainz
    • , , und . . „Decomposition Reaction of the Additive 1,3-Propane Sultone.“ präsentiert auf der AABC Europe, Mainz
    • , , , und . . „Short-Circuit Determination by Spatially Resolved Analysis of the Quantitative Lithium Distribution on Cycled Lithium Ion Battery Electrodes via Laser Ablation - Inductively Coupled Plasma - Optical Emission Spectrometry (LA-ICP-OES).“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    • , , , , und . . „COMPLEMENTARY SPECIATION ANALYSIS OF ORGANOPHOSPHATES AS AGING PRODUCT OF LITHIUM ION BATTERY ELECTROLYTES BY MEANS OF GC-ICP-SF-MS AND 2D-IC-ICP-MS.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    • , , , , und . . „Analysis of organophosphates as aging products of lithium ion battery electrolytes by LC-ICP-SF-MS.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    • , , , und . . „Method Development for Trace Elemental Analysis of Manganese in Lithium Ion Battery Electrolytes by Means of Inductively Coupled Plasma-Sector Field-Mass Spectrometry (ICP SF MS).“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    • , , , , und . . „Calibration Approaches in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and Sector Field Glow Discharge-Mass Spectrometry (SF-GD-MS).“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton
    Forschungsartikel (Buchbeiträge)
    • , , und . . „Energy Density, Lifetime and Safety: Not Only an Issue of Lithium Ion Batteries.“ In Energie: Herausforderungen der Energiewende : Vorträge auf der DPG-Frühjahrstagung in Münster 2017 : Münster, 27. bis 29. März 2017, herausgegeben von H Bruhns. N/A: unbekannt / n.a. / unknown.

    Artikel
    Forschungsartikel (Zeitschriften)
    • , , , , und . . „In operando X-shaped cell online electrochemical mass spectrometry (OEMS): New online analysis enables insight into lab scale lithium ion batteries during operation.Journal of Electroanalytical Chemistry, Nr. 772: 5257. doi: 10.1016/j.jelechem.2016.04.023.
    • , , , , , , , , , , , und . . „Lifetime limit of tris(trimethylsilyl) phosphite as electrolyte additive for high voltage lithium ion batteries.RSC Advances, Nr. 6: 3834238349. doi: 10.1039/C6RA06555D.
    • , , , , , , , , , , und . . „3D Porous Li-rich cathode material with in situ modified surface for high performance lithium ion batteries with reduced voltage decay.J. Mater. Chem. A., Nr. xxxx
    • , und . . „Lithium-Ionen-Technologie und was danach kommen könnte.Chemie in unserer Zeit, Nr. xxx doi: 10.1002/ciuz.201600745.
    • , , , , , , , , und . . „Hierarchical Ternary MoO2/MoS2/Heteroatom-Doped Carbon Hybrid Material for High-Performance Lithium-Ion Storage.ChemElectroChem, Nr. xxxx doi: 10.1002/celc.201600062.
    • , , , , , , , und . . „Nanostructured ZnFe2O4 as Anode Material for Lithium Ion Batteries: Ionic Liquid-Assisted Synthesis and Performance Evaluation with Special Emphasis on Comparative Metal Dissolution.Acta Chimica Slovenica, Nr. 63 (3): 470483. doi: 10.17344/acsi.2016.2243.
    • , , , , , , , , , und . . „Influence of the Fluorination Degree of Organophosphates on Flammability and Electrochemical Performance in Lithium Ion Batteries: Studies on Fluorinated Compounds Deriving from Triethyl Phosphate.Journal of The Electrochemical Society, Nr. 163 (5): A751A757. doi: 10.1149/2.1031605jes.
    • , , , , , , , und . . „Investigations on the C-rate and temperature dependence of manganese dissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries.Journal of The Electrochemical Society, Nr. 163 (6): A831–A837. doi: 10.1149/2.0191606jes.
    • , , , , , , und . . „Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal.ChemSusChem, Nr. 10 (5): 876–883. doi: 10.1002/cssc.201601496.
    • , , , , , und . . „Delayed Thermal Runaway Investigation on Commercial 2.6 Ah NCM-LCO based 18650 lithium ion cells with Accelerating Rate Calorimetry.ECS Transactions, Nr. 74 (1): 8594. doi: 10.1149/07401.0085ecst.
    • , , und . . „Influence of Battery Cell Components and Water on the Thermal and Chemical Stability of LiPF6 Based Lithium Ion Battery Electrolytes.Electrochimica Acta, Nr. 222: 1267–1271. doi: 10.1016/j.electacta.2016.11.100.
    • , , , , , , und . . „Graphite Recycling from Spent Lithium Ion Batteries.ChemSusChem, Nr. 9 (24): 3473–3484. doi: 10.1002/cssc.201601062.
    • , , , , , , , und . . „Learning from Overpotentials in Lithium Ion Batteries: A Case Study on the LiNi1/3Co1/3Mn1/3O2 (NCM) Cathode.Journal of The Electrochemical Society, Nr. 163 (14): A2943–A2950. doi: 10.1149/2.0461614jes.
    • , , , , und . . „Atomistic insights into deep eutectic electrolytes: the influence of urea on the electrolyte salt LiTFSI in view of electrochemical applications.Physical Chemistry Chemical Physics, Nr. 41: 2840328408. doi: 10.1039/C6CP04217A.
    • , , , und . . „Investigation of the decomposition of organic solvent-based Lithium Ion Battery electrolytes with LC-MS.Spectroscopy Europe, Nr. 28 (5): 2124.
    • , , , und . . „Qualitative Investigation of the Decomposition of Organic Solvent Based Lithium Ion Battery Electrolytes with LC-IT-TOF-MS.Analytical Chemistry, Nr. 88 (22): 11160–11168. doi: 10.1021/acs.analchem.6b03379.
    • , , , , , , , , und . . „Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes.Journal of Power Sources, Nr. 335: 4555. doi: 10.1016/j.jpowsour.2016.09.071.
    • , , , und . . „Bicontinuous gyroid nickel network derived from a block copolymer template for three-dimensional MnO₂ electrodes as nanostructured, dimensionally-stabilized lithium-ion battery anodes.Energy Technology, Nr. 2016 doi: 10.1002/ente.201600459.
    • , , , , , , und . . „Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells.Journal of Power Sources, Nr. 332: 6071. doi: 10.1016/j.jpowsour.2016.09.100.
    • , , und . . „Mechanistic Insights into Lithium Ion Battery Electrolyte Degradation – A Quantitative NMR Study.Physical Chemistry Chemical Physics, Nr. 18: 2659526601. doi: 10.1039/C6CP05276B.
    • , , , , , und . . „Comparison of Different Synthesis Methods for LiNi0.5Mn1.5O4—Influence on Battery Cycling Performance, Degradation, and Aging.Energy Technology, Nr. 12 (4): 16311640. doi: 10.1002/ente.201600383.
    • , , , , , und . . „Capillary suspensions as beneficial formulation concept for high energy density Li-ion battery electrodes.Journal of Power Sources, Nr. 328: 114123. doi: 10.1016/j.jpowsour.2016.07.102.
    • , , , , , und . . „Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique.Journal of Power Sources, Nr. 239: 364371. doi: 10.1016/j.jpowsour.2016.08.099.
    • , , , , und . . „FLUORIDE-SELECTIVE ELECTRODE (FSE) FOR QUANTIFICATION OF FLUORIDE IN LITHIUM-ION BATTERY (LIB) ELECTROLYTES.Analytical Methods, Nr. 8: 69326940. doi: 10.1039/C6AY02264B.
    • , , , , , , , , und . . „Influence of Electrolyte Additives on the Cathode Electrolyte Interphase (CEI) Formation on LiNi1/3Mn1/3Co1/3O2 in Half Cells with Li Metal Counter Electrode.Journal of Power Sources, Nr. 329: 3140. doi: 10.1016/j.jpowsour.2016.08.023.
    • , und . . „Lithium-Ionen-Technologie und was danach kommen könnte.Chemie in unserer Zeit, Nr. 50 (3): 172186. doi: 10.1002/ciuz.201600745.
    • , , , , , , , , und . . „Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode.Scientific Reports, Nr. 6 doi: 10.1038/srep30109.
    • , , , und . . „Structure Determination of Organic Aging Products in Lithium-Ion Battery Electrolytes with Gas Chromatography Chemical Ionization Mass Spectrometry (GC-CI-MS).RSC Advances, Nr. 6: 5725357260. doi: 10.1039/C6RA09323J.
    • , , , , und . . „Nanoporous polymer foams derived from high molecular PS-b-P4VP(PDP)x for template-directed synthesis approaches.RSC Advances, Nr. 6: 5299853003. doi: 10.1039/c6ra06735b.
    • , , , , , , , , , , , , , und . „Counterintuitive Role of Magnesium Salts as Effective Electrolyte Additives for High Voltage Lithium-Ion Batteries.Advanced Materials Interfaces, Nr. null (null) doi: 10.1002/admi.201600096.
    • , und . . „Was braucht man für eine Super-Batterie?Chemie in unserer Zeit, Nr. 50 doi: 10.1002/ciuz.201500713.
    • , , , , , und . . „Ion and Gas Chromatography Mass Spectrometry Investigations of Organophosphates in Lithium Ion Battery Electrolytes by Electrochemical Aging at Elevated Cathode Potentials.Journal of Power Sources, Nr. 306: 193199. doi: 10.1016/j.jpowsour.2015.12.025.
    • , , , , , , und . . „Qualitative and quantitative investigation of organophosphates in an electrochemically and thermally treated lithium hexafluorophosphate-based lithium ion battery electrolyte by a developed liquid chromatography-tandem quadrupole mass spectrometry method.RSC Advances, Nr. 6: 817. doi: 10.1039/C5RA23624J.
    • , , , , , , , , , , , , und . . „The Truth about 1st Cycle Coulombic Efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) Cathodes.Physical Chemistry Chemical Physics, Nr. 18: 39563965. doi: 10.1039/C5CP07718D.
    • , , , , , , , , und . . „Impact of cycling at low temperatures on the safety behavior of 18650-type lithium ion cells: Combined study of mechanical and thermal abuse testing accompanied by post-mortem analysis.J. Power Sources, Nr. 334: 111. doi: 10.1016/j.jpowsour.2016.09.120.
    • , , , , , und . . „Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency.Chemistry of Materials, Nr. 28: 72037217. doi: 10.1021/acs.chemmater.6b02895.
    • , , , , , , , , , , , und . . „High Voltage LiNi0.5Mn1.5O4/Li4Ti5O12 Lithium Ion Cells at Elevated Temperatures: Carbonate- vs. Ionic Liquid-Based Electrolytes.ACS applied materials & interfaces, Nr. 2016 doi: 10.1021/acsami.6b07687.
    • , , , und . . „New Insights into the Uptake/Release of FTFSI- Anions into Graphite by Means of in situ Powder X-Ray Diffraction.Electrochemistry Communications, Nr. 71: 5255. doi: 10.1016/j.elecom.2016.08.003.
    • , , , , , , , und . . „Investigation of a porous NiSi2/Si composite anode material used for lithium-ion batteries by X-ray absorption spectroscopy.Journal of Power Sources, Nr. 324: 830835. doi: 10.1016/j.jpowsour.2016.05.137.
    • , , , , , , , und . . „Alternative Single-Solvent Electrolytes Based on Cyanoesters for Safer Lithium-Ion Batteries.ChemSusChem, Nr. 9 (13): 17041711. doi: 10.1002/cssc.201600369.
    • , , , , , , , und . . „Does Size really Matter? New Insights into the Intercalation Behavior of Anions into a Graphite-Based Positive Electrode for Dual-Ion Batteries.Electrochimica Acta, Nr. 209: 4455. doi: 10.1016/j.electacta.2016.05.012.
    • , , , , , , , , und . „Hierarchical Ternary MoO2/MoS2/Heteroatom-Doped Carbon Hybrid Materials for High-Performance Lithium-Ion Storage.ChemElectroChem, Nr. 3: 922932. doi: 10.1002/celc.201600062.
    • , , , , , , , , und . . „Synthesis and electrochemical characterization of nano-sized Ag4Sn particles as anode material for lithium-ion batteries.Electrochimica Acta, Nr. 196: 597602. doi: 10.1016/j.electacta.2016.03.019.
    • , , , und . . „Influence of lithium-xyxlo-difluoromethane-1,1-bis(sulfonyl)imide as electrlyte additive on the reversibility of lithium metal batteries.Journal of Applied Electrochemistry, Nr. xxx: 110.
    Konferenzbeiträge
    Forschungsartikel in Sammelbänden (Konferenzen)
    • , , , und . . „FPPN (Pentafluoro(phenoxy)cyclotriphosphazene) - A Flame Retardant Additive Suitable for Lithium Ion Battery Full Cells.“ Beitrag präsentiert auf der Functional Energy Materials Conference 2016, Cavtat, Croatia
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , und . . „Magnesium-Schwefel-Batterien.“ Beitrag präsentiert auf der "Demokratie und Wissenschaft", Promovierendenforum der Heinrich Böll Stiftung, Berlin, Deutschland
    • , , und . . „From Lithium-Sulfur towards Magnesium-Sulfur Batteries.“ Beitrag präsentiert auf der "Campus", Sommerakademie der Heinrich Böll Stiftung, Bad Bevensen, Deutschland
    • , , und . . „Studies on the Magnesium Anode in Various Electrolytes.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster, Deutschland
    • , , , und . . „Electrolytes for Li-Ion Batteries: Limitations, Challenges and Opportunities.“ Beitrag präsentiert auf der 18th International Meeting on Lithium Batteries (ILMB) 2016, Chicago doi: 10.1149/MA2016-03/1/3.
    • , , , , , , , und . „Novel Imidazolium Based Ionic Liquid as Functional Electrolyte Additive in Lithium Ion Batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster, Germany
    • , , , , und . . „Opportunities and limitations of structure-property relationships towards selection of novel high-voltage electrolyte additives for lithium-ion batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster, Germany
    • , , , , und . . „Opportunities and limitations of structure-property relationships of lithium-ion battery electrolyte components using the example of selected high-voltage electrolyte additive.“ Beitrag präsentiert auf der Batterieforum Deutschland 2016, Berlin
    • , , , , und . . „Optimization of the MCP - based electrolyte formulation through a selection process based on the variation of selected electrolyte components.“ Beitrag präsentiert auf der Advanced Automotive Batterie Conference (AABC), Mainz, Germany
    • , , , , , , , , , und . . „Beneficial influence of LiPF6 hydrolysis products as efficient cathode/electrolyte interface film forming additives for high voltage lithium-ion batteries.“ Beitrag präsentiert auf der Advanced Automotive Batterie Conference (AABC), Mainz, Germany
    • , , , , , , , , , und . „Counterintuitive role of magnesium salts as electrolyte additives on the susceptible cathode/electrolyte interface for high voltage lithium-ion batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster, Germany
    • , und . . „Strengths and weaknesses of FEC as electrolyte additive for Li-S applications.“ Beitrag präsentiert auf der 5th Workshop "Lithium-Sulfur-Batteries", Dresden, Deutschland
    • , , und . . „Behavior of lithium polysulfides in different electrolytes for lithium-sulfur batteries.“ Beitrag präsentiert auf der 5th Workshop »Lithium-Sulfur-Batteries«, Dresden, Deutschland
    • , , , , , , , , und . . „Novel single solvent electrolytes based on cyanoesters.“ Beitrag präsentiert auf der IMLB, Chicago
    • , , , , und . . „Polymers with Redox-active Functional Groups as Cathode Materials in Rechargeable Batteries.“ Beitrag präsentiert auf der FoChIn - Forschung in der chemischen Industrie, Münster
    • , , , , , und . . „Immobilised 10-methylphenothiazine and thianthrene molecules as active cathode materials in rechargeable batteries.“ Beitrag präsentiert auf der Advanced Battery Power, April 26-27 2016, Münster
    • , , , , , , und . . „Novel nitrile based electrolyte formulations for lithium ion batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster
    • , , , , , , und . . „New methodology for investigation of anodic Al-dissolution of state of the art electrolytes and new electrolytes based on alternative solvents and salts.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster
    • , , und . . „Influence of overcharge conditions on Li-Ion battery cells investigated by ARC-HWS and post-mortem analysis.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster
    • , , , , und . . „Thermal stability of a layered oxide: A kinetic consideration with accelerating rate calorimetry.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster, Deutschland
    • , , , , und . . „Study of correlation between aging at low temperature and safety of commercial 18650-type lithium-ion cells.“ Beitrag präsentiert auf der Advanced Automotive & Industrial Battery Conference Europe (AABC Europe), Mainz, Deutschland
    Poster
    • , , , , und . . „Analysis of the Lithium Distribution in aged Lithium-Ion Battery Graphite Anodes by LA-ICP-MS Technique.“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „QUANTIFICATION OF ORGANOPHOSPHATES AS AGING PRODUCTS OF LITHIUM-ION BATTERY ELECTROLYTES BY MEANS OF GAS CHROMATOGRAPHY - INDUCTIVELY COUPLED PLASMA SECTOR FIELD MASS SPECTROMETRY (GC-ICP-SF-MS).“ präsentiert auf der 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „SYNTHESIS AND APPLICATION OF A MATRIX MATCHED EXTERNAL STANDARD MATERIAL TO QUANTIFY MANGANESE IN LITHIUM ION BATTERY ELECTRODES BY MEANS OF LASER ABLATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY.“ präsentiert auf der 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „COMPARISON OF THE INFLUENCES OF DIFFERENT LITHIUM ION BATTERY ADDITIVES ON THE ELECTROLYTE AGING BY SIMULTANEOUS ONLINE COUPLING OF TWO DIMENSIONAL ION CHROMATOGRAPHY TO INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY.“ präsentiert auf der 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „INVESTIGATION OF LITHIUM-ION BATTERY ELECTROLYTES BY A GAS CROMATOGRAPHY -BARRIER IONIZATION DISCHARGE DETECTOR.“ präsentiert auf der 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „ADAPTION OF GLOW-DISCHARGE SECTOR FIELD MASS SPECTROMETRY IN THE FIELD OF BATTERY RESEARCH.“ präsentiert auf der 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „SPATIALLY RESOLVED ANALYSIS OF THE LITHIUM DISTRIBUTION ON CYCLED ELECTRODES BY LASER ABLATION – INDUCTIVELY COUPLED PLASMA – OPTICAL EMISSION SPECTROMETRY (LA-ICP-OES).“ präsentiert auf der 8th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Influence of Organic Solvents, Temperature and pH Value on the Retention of Common Lithium Ion Battery Conducting Salts and Their Ionic Aging Products.“ präsentiert auf der 2nd Global IC User Meeting, Herisau
    • , , , , und . . „LITHIUM QUANTIFICATION OF AGED LITHIUM ION BATTERY GRAPHITE ELECTRODES BY MEANS OF LA-ICP-MS AND ICP-OES.“ präsentiert auf der 25. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen
    • , , , und . . „SUBKRITISCHES UND ÜBERKRITISCHES CO2 ZUR EXTRAKTION VON LITHIUM IONEN BATTERIE ELEKTROLYTEN ZUR ANSCHLIEßENDEN SPEZIESANALYTIK.“ präsentiert auf der 5. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen
    • , , , , und . . „EINFLUSS VERSCHIEDENER LITHIUM IONEN BATTERIE ADDITIVE AUF DIE ELEKTROLYTALTERUNG UNTERSUCHT MITTELS ZWEI DIMENSIONALER IONENCHROMATOGRAPHIE MIT SIMULTANER ONLINE KOPPLUNG ZU EINEM INDUKTIV GEKOPPELTEM PLASMA-MASSENSPEKTROMETER UND EINEM ELEKTROSPRAY IONISIERUNGS MASSENSPEKTROMETER.“ präsentiert auf der 5. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen
    • , , , , und . . „GLIMMENTLADUNG-SEKTROFELD-MASSENSPEKTROMETRIE IN DER ANALYTIK VON BATTERIEMATERIALIEN.“ präsentiert auf der 5. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen
    • , , , , und . . „SPEZIATION VON ORGANOPHOSPHATEN ALS ALTERUNGSPRODUKT VON LITHIUMIONENBATTERIE-ELEKTROLYTEN MITTELS GASCHROMATOGRAPHIE-ICP-SEKTORFELD-MS (GC-ICP-SF-MS).“ präsentiert auf der 5. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen
    • , , und . . „Reconsideration of Lithium-Ion Battery Electrolyte Stability – Quantification of Degradation Products by a Novel NMR Spectroscopy Method.“ präsentiert auf der Forschung in der Chemischen Industrie, 5. FoChIn, Münster
    • , , , , und . . „Unraveling the Transition Metal Dissolution of Li1Ni1/3Co1/3Mn1/3O2 by Deposition on Graphitic Anodes.“ präsentiert auf der European Conference on X-Ray Spectrometry: EXRS2016, Göteburg
    • , , , und . . „Recycling of Electrodes and Electrolyte from Li-Ion Batteries.“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , und . . „Electrochemical Investigations of Recycled Active Materials from Spent Li-Ion Batteries.“ präsentiert auf der European Advanced Automotive & Industrial Conference, Mainz
    • , , und . . „Reconsideration of Lithium-Ion Battery Electrolyte Stability – Quantification of Degradation Products by a Novel NMR Spectroscopy Method.“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , , , , , , und . . „Bridging the gap between academic research and industrial development for aging investigations.“ präsentiert auf der European Advanced Automotive & Industrial Conference, Mainz
    • , , und . . „Decomposition mechanism of ionic liquids.“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Investigations of Organic Electrolytes and their VC consumption in Lithium-Ion Batteries via HPLC/UV-VIS.“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Fluorinated Flame Retardants for Lithium-Ion Battery Electrolytes - Analytical Investigations by Gas Chromatography - Mass Spectrometry.“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Online electrochemical mass spectrometry (OEMS): New method enables insight into Lithium Ion Batteries.“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Analysis of Transition Metal Deposition of Li1Ni1/3Co1/3Mn1/3O2 on Graphitic Anodes using Total Reflection X-Ray Fluorescence (TXRF).“ präsentiert auf der 8. Kraftwerk Batterie Fachtagung, Münster
    Sonstige wissenschaftliche Veröffentlichungen
    • , , , , , , und . . Structural Changes in a Li-Rich 0.5Li2MnO3*0.5LiMn0.4Ni0.4Co0.2O2 Cathode Material for Li-Ion Batteries: A Local Perspective, doi: 10.1149/2.0211606jes.

    Forschungsartikel (Zeitschriften)
    • , , , , und . . „New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pK a value.Electrochimica Acta, Nr. 184: 410416. doi: 10.1016/j.electacta.2015.10.002.
    • , und . . „Was braucht man für eine Super-Batterie?Chemie in unserer Zeit, Nr. 50 (1): 2633. doi: 10.1002/ciuz.201500713.
    • , , , , , und . . „Synthesis and characterization of high-energy high-power spinel-layered composite cathode materials for lithium ion batteries.Advanced Energy Materials, Nr. 5 (5) doi: 10.1002/aenm.201401156.
    • , , , , , , , und . . „Aging Investigations of a Lithium-Ion Battery Electrolyte from a Field-Tested Hybrid Electric Vehicle.Journal of Power Sources, Nr. 273: 8388. doi: 10.1016/j.jpowsour.2014.09.064.
    • , , , , , , und . . „Electrochemical performance and thermal stability studies of two lithium sulfonyl methide salts in lithium-ion battery electrolytes.Journal of The Electrochemical Society, Nr. 162
    • , , , , und . „New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value.Electrochimica Acta, Nr. 184 (null): 410416. doi: 10.1016/j.electacta.2015.10.002.
    • , , , , , , und . . „Ester Modified Pyrrolidinium Based Ionic Liquids as Electrolyte Component Candidates in Rechargeable Lithium Batteries.Journal of Inorganic and General Chemistry, Nr. xxx doi: 10.1002/zaac.201500554.
    • , , , , und . . „Development of a Method for Direct Elemental Analysis of Lithium Ion Battery Degradation Products by Means of Total Reflection X-Ray Fluorescence.Spectrochimica Acta Part B: Atomic Spectroscopy, Nr. 112: 3439. doi: 10.1016/j.sab.2015.08.005.
    • , , , , und . „Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultralong-life lithium-ion battery: Positive (100) surfaces in high-voltage spinel system.Journal of Power Sources, Nr. 300: 430. doi: 10.1016/j.jpowsour.2015.09.066.
    • , , , , , und . . „Boehmite-based ceramic separator for lithium-ion batteries.Journal of Applied Electrochemistry, Nr. xxx doi: 10.1007/s10800-015-0895-z.
    • , , , , , und . . „Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries.Electrochimica Acta, Nr. xx doi: 10.1016/j.electacta.2015.09.001.
    • , , , , und . . „Study of Decomposition Products by Gas Chromatography-Mass Spectrometry and Ion Chromatography-Electrospray Ionization-Mass Spectrometry in Thermally Decomposed Lithium Hexafluorophosphate-Based Lithium Ion Battery Electrolytes.RSC Advances, Nr. 5: 8015080157. doi: 10.1039/C5RA16679A.
    • , , und . . „Investigating the Mg-Si binary system via combinatorial sputter deposition as high energy density anodes for lithium ion batteries.ACS applied materials & interfaces, Nr. 7 (36) doi: 10.1021/acsami.5b05382.
    • , , , , , , und . . „The mechanism of SEI formation on single crystal Si(100), Si(110) and Si(111) electrodes.Journal of The Electrochemical Society, Nr. 162 (12): A2281–A2288. doi: 10.1149/2.0361512jes.
    • , und . . „Chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium ion batteries: Method development, application and lessons learned.Journal of The Electrochemical Society, Nr. 162 (14 / Collection of Invited Battery Review Papers): A2500–A2508. doi: 10.1149/2.0121514jes.
    • , , , , , , und . . „Investigation of the Storage Behavior of Shredded Lithium-Ion Traction Cells from Electric Vehicles for Recycling Purposes.ChemSusChem, Nr. 8 (20): 3433–3438. doi: 10.1002/cssc.201500920.
    • , , , , und . . „Aging of Cations of Ionic Liquids Monitored by Ion Chromatography hyphenated to an Electrospray Ionization Mass Spectrometer.Electrochimica Acta, Nr. 176: 11431152. doi: 10.1016/j.electacta.2015.07.168.
    • , , , , , und . . „Synthesis of Spherical Graphite Particles and Their Application as Cathode Material in Dual-Ion Cells.ECS Transactions, Nr. 66 (11): 112. doi: 10.1149/06611.0001ecst.
    • , , , , , , und . . „Two-Dimensional Ion Chromatography for the Separation of Ionic Organophosphates Generated in Thermally Decomposed Lithium Hexafluorophosphate-Based Lithium Ion Battery Electrolytes.Journal of Chromatography A, Nr. 1409: 201209. doi: 10.1016/j.chroma.2015.07.054.
    • , , , , , , und . . „Electrochemical performance and thermal stability studies of two lithium sulfonyl methide salts in lithium-ion battery electrolytes.Journal of The Electrochemical Society, Nr. 162 (9): A1738–A1744. doi: 10.1149/2.0261509jes.
    • , , , , , und . . „Assessment of Surface Heterogeneity: A Route to Correlate and Quantify the 1st Cycle Irreversible Capacity Caused by SEI Formation to the Various Surfaces of Graphite Anodes for Lithium Ion Cells.Zeitschrift für Physikalische Chemie, Nr. 229 (9): 14511469. doi: 10.1515/zpch-2015-0584.
    • , , , , , und . . „Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents.RSC Advances, Nr. 5: 4320943217. doi: 10.1039/C5RA04451K.
    • , , , , , , und . . „Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage application of lithium-ion batteries.Physical Chemistry Chemical Physics, Nr. 17: 93529358.
    • , , , , , und . . „Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries.Journal of Power Sources, Nr. 293: 137142.
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.Physical Chemistry Chemical Physics, Nr. 17: 86708679. doi: 10.1039/C4CP05865H.
    • , , , , , , und . . „On the interaction of water-soluble binders and nano silicon particles: alternative binder towards increased cycling stability at elevated temperatures.Physical Chemistry Chemical Physics, Nr. 17 (8): 56325641. doi: 10.1039/C4CP04090B.
    • , , , , , und . . „7 Li in situ 1D NMR imaging of a lithium ion battery.Physical Chemistry Chemical Physics, Nr. 17 (6): 44584465. doi: 10.1039/C4CP05021E.
    • , , , , und . . „Chemical Stability Investigations of Polyisobutylene as New Binder for Application in Lithium Air-Batteries.Electrochimica Acta, Nr. 155: 110115. doi: 10.1016/j.electacta.2015.01.001.
    • , , , , , , , , und . . „Facile Synthesis and Lithium Storage Properties of a Porous NiSi2/Si/Carbon Composite Anode Material for Lithium-Ion Batteries.ACS applied materials & interfaces, Nr. 7 (3): 1508–1515. doi: 10.1021/am506486w.
    • , , , , , , , , und . . „Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4 Composite Cathode Electrode.Journal of The Electrochemical Society, Nr. 162 (3): A339–A343. doi: 10.1149/2.0401503jes.
    • , , , , , und . . „Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte.Journal of Chromatography A, Nr. 1394: 128136. doi: 10.1016/j.chroma.2015.03.048.
    • , , und . . „Dilatometric Study of the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide and Hexafluorophosphate Anions into Carbon-Based Positive Electrodes.ECS Transactions, Nr. 69: 921. doi: 10.1149/06922.0009ecst.
    • , und . . „Batterien für medizinische Anwendungen.Zeitschrift für Herz-, Thorax- und Gefäßchirurgie, Nr. 29 (2): 139149. doi: 10.1007/s00398-014-1129-0.
    • , , , , , , , , und . . „In situ X-ray diffraction study on the formation of α-Sn in nanocrystalline Sn-based electrodes for lithium-ion batteries.CrystEngComm, Nr. 17: 85008504. doi: 10.1039/C5CE01841B.
    • , , , , , , , und . . „Long Term Aging of Automotive Type Lithium-Ion Cells.ECS Transactions, Nr. 69 (18): 8999. doi: 10.1149/06918.0089ecst.
    • , , , , , , und . . „Thianthrene-functionalized polynorbornenes as high-voltage materials for organic cathode-based dual-ion batteries.Chemical communications, Nr. 51 (83): 1526115264. doi: 10.1039/c5cc04932f.
    • , , , , , , und . . „Thianthrene-Functionalized Polymers As High-Voltage Materials for Organic Cathode-Based Dual-Ion Batteries.Meeting Abstracts, Nr. MA2015-02 (3): 316.
    • , , , , , , und . . „Synthesis of spinel LiNi0.5Mn1.5O4 with secondary plate morphology as cathode material for lithium ion batteries.Journal of Power Sources, Nr. 293: 137142. doi: 10.1016/j.jpowsour.2015.05.056.
    • , , , , , und . . „Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries.Journal of The Electrochemical Society,, Nr. 162: A1094–A1101. doi: 10.1149/2.0011507jes.
    • , , , , , und . . „Identification of alkylated phosphates by gas chromatography-mass spectrometric investigations with different ionization principles of a thermally aged commercial lithium ion battery electrolyte.Journal of Chromatography A, Nr. 1394: 128136. doi: 10.1016/j.chroma.2015.03.048.
    • , , , , , und . „Enhanced lithium-ion transport in polyphosphazene based gel polymer electrolytes.Electrochimica Acta, Nr. 155: 371. doi: 10.1016/j.electacta.2014.12.123.
    • , , , , , , und . . „Separation and Quantification of Organic Electrolyte Components in Lithium-ion Batteries via a Developed HPLC Method.Journal of The Electrochemical Society, Nr. 162 (4): A629–A634. doi: 10.1149/2.0401504jes.
    • , , , , , , , und . „The mechanism of SEI formation on a single crystal Si(100) electrode.Journal of The Electrochemical Society, Nr. 162 (4): A607. doi: 10.1149/2.0391504jes.
    • , , , , , und . „Activated carbon, carbon blacks and graphene based nanoplatelets as active materials for electrochemical double layer capacitors: A comparative study.Journal of The Electrochemical Society, Nr. 162 (1): A51. doi: 10.1149/2.0381501jes.
    Konferenzbeiträge
    Forschungsartikel in Sammelbänden (Konferenzen)
    • , , , , , , , , , , , , , , , , , und . . „Towards high-voltage cathodes using new electrolyte approaches.“ In Large Lithium Ion Battery Technology and Application Symposium, LLIBTA 2015 and Large EC Capacitor Technology and Application Symposium, ECCAP 2015, herausgegeben von Cambridge Innovation Institute Cambridge EnerTech. Newcastle upon Tyne: Cambridge Scholars Publishing.
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der GDCh-Wissenschaftsforum Chemie 2015, Dresden, Deutschland
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der Forschung in der Chemischen Indrustrie, Münster, Deutschland
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen, Deutschland
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der GDCh JCF Frühjahrssymposium 2015, Münster, Deutschland
    • , , , , , , , und . . „Correlation of aging and the thermal stability of commercial 18650-type lithium-ion batteries based on LiNi0.5Co0.2Mn0.3O2 / C.“ Beitrag präsentiert auf der 1st International Battery Safety Workshop, München, Deutschland
    • , , , , , , und . . „Studie zur Korrelation von Alterung und Sicherheit von Lithium-Ionen Batterien anhand kommerzieller Zellen des Typs 18650 basierend auf LiNi0.5Co0.2Mn0.3O2 / C.“ Beitrag präsentiert auf der Batterieforum Deutschland 2015, Berlin, Deutschland
    • , , und . . „Electrodeposition of Silicon for the Preparation of Submicrostructured Electrodes.“ Beitrag präsentiert auf der 66th Annual Meeting of the International Society of Electrochemistry, Taipei, Taiwan
    • , , , , , und . . „Anodes for Lithium Ion Batteries Revisited: From Graphite to High-Capacity Alloying- and Conversion-Type Materials and Back Again.“ Beitrag präsentiert auf der 228th ECS Meeting, Phoenix doi: 10.1149/MA2015-02/1/104.
    • , , , , und . . „Towards Three-Dimensional Interpenetrating Current Collectors for Submicrostructured Electrodes using Block Copolymer Templates.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen
    • , , , , und . . „Block Copolymers as Templates for 3D-structured Electrodes.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , , und . . „Lab-scale evaluation of different two- and three-electrode setup cell types for lithium-ion batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen, Germany
    • , , und . . „Synthesis and Characterization of a Porous NiSi2/Si/Carbon Composite Material as Anode for Lithium-Ion Batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie 2015, Aachen, Germany
    • , , , , , , , , , und . . „New Insights into the Structure-Property Relationship of High-Voltage Electrolyte Additives for Lithium-Ion Batteries Using a pKa Value Approach.“ Beitrag präsentiert auf der Advanced Automotive Batterie Conference (AABC), Mainz
    • , , , , , , und . . „Dual-Ion Cells based on the Electrochemical Intercalation of Anions with different shapes and sizes.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin, Germany
    • , , , , , , und . . „Novel Ionic Liquid based Electrolyte System for an Application in Dual-Ion Cell Technology.“ Beitrag präsentiert auf der Kraftwerk Batterie 2015, Aachen, Germany
    • , , , , , und . . „Silicon/LiCoO2 full cells using thin film electrodes.“ Beitrag präsentiert auf der Kraftwerk Batterie 2015, Aachen, Germany
    • , , und . . „One-Step Synthesis of Novel Mesoporous Three-Dimensional GeO2 and Its Lithium Storage Properties.“ Beitrag präsentiert auf der 227th ECS Meeting, Chicago, USA
    • , , , , und . . „Spherical and size-controlled graphite particles and their physical and electrochemical characterization as active material in dual-graphite energy storage systems.“ Beitrag präsentiert auf der 227th ECS Meeting, Chicago, USA
    • , , , , , , und . . „Impact of Surface Reactions on Electrolyte Degradation for High Voltage Cathodes in Lithium-Ion Batteries.“ Beitrag präsentiert auf der Kraftwerk Batterie 2015, Aachen, Germany
    • , , , , , , und . . „Physical and Electrochemical Characterization of Bottom-Up Synthesized Spherical Graphite Particles for Application in Dual-Graphite Cells.“ Beitrag präsentiert auf der Kraftwerk Batterie 2015, Aachen, Germany
    • , , , , , , und . . „Interactions between the Conductive Additive of High-Voltage Cathodes and the Electrolyte – Intercalation of Anions and Related Effects.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin, Germany
    • , , , , und . . „Synthesis, Graphitization and Physical as well as Electrochemical Characterization of Carbon Spheres for Application in Dual-Graphite Cells.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin, Germany
    • , , , , , , , , , , und . . „Metallic salts: Novel electrolyte additives for high-voltage lithium-ion batteries.“ Beitrag präsentiert auf der Batterieforum Deutschland, Berlin
    • , , , , , , , , , , , , , , und . . „Metal salts: Novel electrolyte additives for high-voltage lithium-ion batteries.“ Beitrag präsentiert auf der Advanced Automotive Batterie Conference (AABC), Mainz
    • , , , , und . . „HELiS - High energy lithium sulphur cells and batteries.“ Beitrag präsentiert auf der Elektromobilität in NRW, Essen
    • , , , , , und . . „Impact of cycling at low temperatures on the safety behavior of 18650-type lithium-ion cells.“ Beitrag präsentiert auf der International Battery Safety Workshop, München, Deutschland
    • , , , , und . „Computational Screening of Potential Candidate Components for high voltage Electrolytes.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen
    • , , , , , und . „Alternative solvent for lithium ion batteries based on cyano esters.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen
    • , , , , , , und . . „Influence of different aging mechanisms on the abuse behavior of commercial lithium-ion 18650 type cells.“ Beitrag präsentiert auf der Kraftwerk Batterie 2015, Aachen, Deutschland
    Poster
    • , , , , , , und . . „Investigations of organic electrolytes in Lithium Ion Batteries with HPLC.“ präsentiert auf der 42nd Symposium on High Performance Liquid Phase Separations and related Techniques, Genf
    • , , , und . . „Electrochemical Investigations of Recycled Active Materials from Spent Li-Ion Batteries.“ präsentiert auf der 20th International Congress for Battery Recycling ICBR 2015, Montreux
    • , , und . . „Extraction and Evaluation of the Electrolyte during the Recycling Procedure of Lithium-Ion Batteries.“ präsentiert auf der 20th International Congress for Battery Recycling ICBR 2015, Montreux
    • , , , und . . „Extraction of Lithium-Ion Battery Electrolytes with super-critical/liquid CO2 and characterization by means of Gas Chromatography/Mass Spectrometry and Ion Chromatography.“ präsentiert auf der 17. JCF-Frühjahrssymposium, Münster
    • , , , , , , , und . . „TMS-based HF scavengers for the high-voltage application of NMC cathode material in lithium-ion batteries.“ präsentiert auf der Batterieforum Deutschland 2015, Berlin
    • , , , , , , , , und . . „Sicherheitstests an Lithium-Ionen Zellen - Nageltests und HWS-Experimente an gealterten Zellen.“ präsentiert auf der Batterieforum Deutschland 2015, Berlin
    • , , , und . . „LA-ICP-MS Applications for the investigation of ageing phenomena in lithium ion batteries.“ präsentiert auf der Nordic Conference on Plasma: Ionization Principles in Organic and Inorganic Mass Spectrometry, Longyearbyen
    • , , , , und . . „Development of a method for direct elemental analysis of battery materials by means of Total Reflection X-Ray Fluorescence (TXRF).“ präsentiert auf der CANAS 2015, Leipzig
    • , , , und . . „Entwicklung von Trocknungsstrategien für die Probenvorbereitung zur direkten Totalreflexions-Röntgenfluoreszenzanalyse (TXRF) von Batterieelektrolyten.“ präsentiert auf der CANAS 2015, Leipzig
    • , , , , und . . „On-Line Mass Spectrometry: New rapid analysis of Lithium-Ion Battery Electrolytes.“ präsentiert auf der 7. Kraftwerk Batterie Fachtagung, Aachen
    • , , , und . . „TWO DIMENSIONAL ION CHROMATOGRAPHY ELECTROSPRAY IONIZATION MASS SPECTROMETRY FOR INVESTIGATIONS OF ORGANOPHOSPHATES IN BATTERY ELECTROLYTES.“ präsentiert auf der Nordic Conference on Plasma: Ionization Principles in Organic and Inorganic Mass Spectrometry, Longyearbyen
    • , , , und . . „IDENTIFICATION OF ORGANIC AGING PRODUCTS IN LITHIUM-ION BATTERY ELECTROLYTES BY GAS CHROMATOGRAPHY CHEMICAL IONIZATION MASS SPECTROMETRY.“ präsentiert auf der Nordic Conference on Plasma: Ionization Principles in Organic and Inorganic Mass Spectrometry, Longyearbyen
    • , , , und . . „IC/ICP-MS based method for quantification of alkyl phosphates formed during the decomposition of LiPF6 based electrolytes.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2015, Münster
    • , , und . . „Laser ablation inductively coupled plasma – mass spectrometry investigations into the distribution of major and minor components in lithium ion battery electrodes.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2015, Münster
    • , , , und . . „Quantitative determination of aging related changes in the elemental distribution in lithium ion battery electrodes by means of laser ablation inductively coupled plasma – mass spectrometry.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2015, Münster
    • , , und . . „Determination of Lithium in two different Lithium-ion battery cell types by Inductively Coupled Plasma – Optical Emission Spectrometry.“ präsentiert auf der European Winter Conference on Plasma Spectrochemistry - EWCPS 2015, Münster

    Forschungsartikel (Zeitschriften)
    • , , , , , und . . „Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes.Journal of Power Sources, Nr. 245: 836840. doi: 10.1016/j.jpowsour.2013.07.030.
    • , , , , , und . . „The mechanism of interactions between CMC binder and Si single crystal facets.Langmuir, Nr. 30 doi: 10.1021/la501791q.
    • , , , , , , , und . . „Using Polyisobutylene as a Non-Fluorinated Binder for Coated Lithium Powder (CLiP) Electrodes.Electrochimica Acta, Nr. 138: 288293. doi: 10.1016/j.electacta.2014.06.128.
    • , , , , , , , und . . „Cobalt orthosilicate as a new electrode material for secondary lithium-ion batteries.Dalton Transactions, Nr. xxx doi: 10.1039/C4DT01325E.
    • , , , , , , , und . . „Dual-Graphite Cells based on the Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte.Energy & Environmental Science, Nr. 7 (10): 34123423. doi: 10.1039/C4EE01873G.
    • , , , , , , , und . . „Supercritical Carbon Dioxide Extraction of Lithium-Ion Battery Electrolytes.The Journal of Supercritical Fluids, Nr. 94: 216222. doi: 10.1016/j.supflu.2014.07.014.
    • , , , , , , , , und . . „Synthesis and electrochemical performance of surface modified nano-sized core/shell tin particles for lithium ion batteries.Nanotechnology, Nr. 25 (35): 355401. doi: 10.1088/0957-4484/25/35/355401.
    • , , , , , und . . „Investigation of N-Ethyl-2-Pyrrolidone (NEP) as Electrolyte Additive in Regard to Overcharge Protecting Characteristics.Journal of The Electrochemical Society, Nr. 161 (9): A1407–A1414. doi: 10.1149/2.1021409jes.
    • , , , , , , , und . . „In situ X-ray Diffraction Studies of Cation and Anion Intercalation into Graphitic Carbons for Electrochemical Energy Storage Applications.Zeitschrift für Anorganische und Allgemeine Chemie, Nr. 640 (10): 19962006. doi: 10.1002/zaac.201400181.
    • , , , , und . . „Effect of Impurities Caused by a Recycling Process on the Electrochemical Performance of Li[Ni0.33Co0.33Mn0.33]O2.Journal of Electroanalytical Chemistry, Nr. x doi: 10.1016/j.jelechem.2014.05.017.
    • , , und . im Druck. „Functional Materials and Analytics for High Performance Lithium Ion Batteries.Progress in Solid State Chemistry, Nr. 42: 3738.
    • , , , , , und . . „Investigations about the Use and the Degradation Mechanism of LiNi0.5Mn1.5O4 in a High Power LIC.Journal of The Electrochemical Society, Nr. 161: A1139–A1143.
    • , , , , , , , , und . . „Erratum: Electrochemical and Thermal Investigations and Al Current Collector Dissolution studies of Three Di-Lithium Salts in Comparison to LiPF6 Containing Electrolytes [J. Electrochem. Soc., 160, A535 (2013)].Journal of The Electrochemical Society, Nr. 161: X11–X11.
    • , , , , , , und . . „The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material.Electrochimica Acta, Nr. 134: 393398. doi: 10.1016/j.electacta.2014.04.091.
    • , , , , , , und . . „Silicon/Polyaniline Nanocomposites as Anode Material for Lithium Ion Batteries.Journal of The Electrochemical Society, Nr. 161 (1): A40–A45.
    • , , , , und . . „The Effect of Linear Carbonates on HF Formation in LiPF6-based Electrolytes.ECS Transactions, Nr. 15: 15. doi: 10.1149/05815.0001ecst.
    • , , , , , , und . . „Challenges of “Going Nano”: Enhanced Electrochemical Performance of Cobalt Oxide Nanoparticles by Carbothermal Reduction and In Situ Carbon Coating.ChemPhysChem, Nr. 15: 21772185. doi: 10.1002/cphc.201400092.
    • , , , , , , , , , , , , , , , , und . . „Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods.Progress in Solid State Chemistry, Nr. 42 (4): 6584. doi: 10.1016/j.progsolidstchem.2014.04.003.
    • , , , , , , und . . „On the structural integrity and electrochemical activity of 0.5LI2MnO3 0.5LiCoO2 cathode material for lithium-ion batteries.Journal of Materials Chemistry A, Nr. 2014 (2): 90999110. doi: 10.1039/C4TA01161A.
    • , , , , und . . „IC-ESI-MS Method Development and Investigation of Lithium Hexafluorophosphate-Based Organic Electrolytes and their Thermal Decomposition Products.Journal of Chromatography A, Nr. 1354: 92100. doi: 10.1016/j.chroma.2014.05.066.
    • , , , , und . . „Effect of Impurities Caused by a Recycling Process on the Electrochemical Performance of Li[Ni0.33Co0.33Mn0.33]O2.Journal of Electroanalytical Chemistry, Nr. 726: 9196. doi: 10.1016/j.jelechem.2014.05.017.
    • , , , , , , , , und . . „Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite.Electrochimica Acta, Nr. 130: 625633. doi: 10.1016/j.electacta.2014.03.070.
    • , , , , und . . „Thermal Aging of Anions in Ionic Liquids containing Lithium Salts by IC/ESI-MS.Electrochimica Acta, Nr. 130: 426430. doi: 10.1016/j.electacta.2014.03.033.
    • , , , , , , und . . „Study of the Electrochemical Behavior of Dual-Graphite Cells using Ionic Liquid-based Electrolytes.ECS Transactions, Nr. 58 (14): 1525. doi: 10.1149/05814.0015ecst.
    • , , , , , , , und . . „Study of the Electrochemical Intercalation of Different Anions from non-aqueous Electrolytes into a Graphite-based Cathode.ECS Transactions, Nr. 58 (14): 5565. doi: 10.1149/05814.0055ecst.
    • , , , , , , , , und . . „Lithium-Ion Cell Safety Experiments Under Adiabatic Conditions: Nail Penetration.ECS Transactions, Nr. 61 (27): 87103. doi: 10.1149/06127.0087ecst.
    • , , , , , , , und . . „Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium.Chemistry of Materials, Nr. 26 (19): 5683–5688. doi: 10.1021/cm5025124.
    • , , , , , , , und . . „Investigation of PF6- and TFSI- anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries.Physical Chemistry Chemical Physics, Nr. 16: 2530625313. doi: 10.1039/C4CP04113E.
    • , , , , , , , , und . . „Lithium-Ion Cell Nail Penetration Safety Experiments under Adiabatic Conditions.ECS Transactions, Nr. 61 (27): 87103. doi: 10.1149/06127.0087ecst.
    • , , , , , und . . „One-Step Synthesis of Novel Mesoporous Three-Dimensional GeO2 and Its Lithium Storage Properties.Journal of Materials Chemistry A, Nr. 2 (41): 1754517550. doi: 10.1039/c4ta03933e.
    • , , , , , , , und . „Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors.Journal of Power Sources, Nr. 266: 258. doi: 10.1016/j.jpowsour.2014.05.024.
    • , , , , und . „A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes.Advanced Materials, Nr. 27 (1): 137. doi: 10.1002/adma.201403880.
    • , , , , , , , und . . „Reversible Storage of Lithium in Three-Dimensional Macroporous Germanium.Chemistry of Materials, Nr. x doi: 10.1021/cm5025124.
    • , , , , und . „Ion chromatography electrospray ionization mass spectrometry method development and investigation of lithium hexafluorophosphate-based organic electrolytes and their thermal decomposition products.Journal of Chromatography A, Nr. 1354: 100. doi: 10.1016/j.chroma.2014.05.066.
    • , , , , , , , , , , , , , , , , und . . „Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods.Progress in Solid State Chemistry, Nr. 42: 6584. doi: 10.1016/j.progsolidstchem.2014.04.003.
    • , , , , , , , , , , , , und . . „Electrolytes for lithium and lithium ion batteries: From synthesis of novel lithium borates and ionic liquids to development of novel measurement methods.Progress in Solid State Chemistry, Nr. 42: 3956. doi: 10.1016/j.progsolidstchem.2014.04.001.
    • , , , , , , , und . . „Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries.Progress in Solid State Chemistry, Nr. 42: 202217. doi: 10.1016/j.progsolidstchem.2014.04.013.
    • , , , , , , und . . „On the structural integrity and electrochemical activity of 0.5Li2MnO3·0.5LiCoO2 cathode material for lithium-ion batteries.Journal of Materials Chemistry A, Nr. 2 (24): 90999110. doi: 10.1039/c4ta01161a.
    • , , , , und . . „Thermal Aging of Anions in Ionic Liquids containing Lithium Salts byIC/ESI-MS.Electrochimica Acta, Nr. 114 (130): 426430.
    • , , , , , , , , und . . „1,3,2-Dioxathiolane-2,2-dioxide as film-forming agent for propylenecarbonate based electrolytes for lithium-ion batteries.Electrochimica Acta, Nr. 114 (125): 101106.
    • , , , , , und . . „Thermal and electrochemical properties of PEO-LiTFSI-Pyr14TFSI-based composite cathodes, incorporating 4 V-class cathode active materials.Journal of Power Sources, Nr. 246: 846857. doi: 10.1016/j.jpowsour.2013.08.037.
    • , , , , , , und . . „Vinyl sulfones as SEI-forming additives in propylene carbonate based electrolytes for lithium-ion batteries.Electrochemistry Communications, Nr. 40: 8083. doi: 10.1016/j.elecom.2014.01.004.
    • , , , , und . . „Surface Treatment: Mechanical surface modification of lithium metal: Towards improved li metal anode performance by directed li plating.Advanced Functional Materials, Nr. 25: 825. doi: 10.1002/adfm.201402953.
    • , , , , , , , , , und . . „Carbene complexes of phosphorus(V) fluorides substituted with perfluoroalkyl-groups synthesized by oxidative addition. Cleavage of the complexes reveals a new synthetic protocol for ionic liquids.Dalton Transactions, Nr. 43: 29792987.
    Konferenzbeiträge
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , , , und . . „Na-based dual-ion system as an option for stationary energy storage.“ Beitrag präsentiert auf der 65th Annual Meeting of the International Society of Electrochemistry, Lausanne, Switzerland
    • , , , , , , und . . „Dilatometric study of bis(trifluoromethanesulfonyl) imide anion intercalation into graphite positive electrodes.“ Beitrag präsentiert auf der Kraftwerk Batterie 2014, Münster, Germany
    • , , , , , , und . . „Influence of the Anion Size on the Electrochemical Anion Intercalation into Graphite.“ Beitrag präsentiert auf der Batterieforum Deutschland 2014, Berlin, Deutschland
    • , , , , , , , , und . . „Preparation and investigation of novel ionic liquids for application in electrochemical energy storage devices.“ Beitrag präsentiert auf der GREENLION International Workshop 2014, Ulm, Germany
    • , , , , , , , und . . „Influence of the Graphite Positive Electrode Porosity on the Anion Intercalation Behavior.“ Beitrag präsentiert auf der GREENLION International Workshop 2014, Ulm, Germany
    • , , , , , , , , und . . „Bottom-up synthesis of size controlled graphite particles for application in electrochemical energy storage devices.“ Beitrag präsentiert auf der GREENLION International Workshop 2014, Ulm, Germany
    • , , , , und . . „Aging Investigations of Various Electrolytes By Means of IC/ESI-MS and CE/ESI-MS.“ In Bd.MA2014-01 93 aus ECS Meeting Abstracts doi: 10.1149/MA2014-01/1/93.
    • , , , , , , und . . „Investigations on Electrochemical Performance As Well As Thermal Stability of Two New Lithium Electrolyte Salts Compared to LiPF6.“ In Bd.MA2014-01 42 aus ECS Meeting Abstracts doi: 10.1149/MA2014-01/1/42.
    • , , , , , , und . . „A Study on the Decomposition of Lithium-Ion Battery Electrolytes from Different Field-Tested Hybrid Vehicles.“ In Bd.MA2014-01 162 aus ECS Meeting Abstracts doi: 10.1149/MA2014-01/1/162.
    • , , , , , , und . . „Electrochemical performance of Na-based dual-ion energy storage devices.“ Beitrag präsentiert auf der GdCH Electrochemistry 2014, Mainz, Germany
    • , , , , und . . „Magnesium silicide and silicon based thin film layer as new promising anode materials.“ Beitrag präsentiert auf der GdCH Electrochemistry 2014, Mainz, Germany
    • , , , , , , , und . . „Influence of the electrode binder on the cation intercalation into graphite electrodes.“ Beitrag präsentiert auf der GdCH Electrochemistry 2014, Mainz, Germany
    • , , , , , , , , und . . „Preparation and investigation of novel ionic liquids for application in electrochemical energy storage devices.“ Beitrag präsentiert auf der GdCH Electrochemistry 2014, Mainz, Germany
    • , , , , , , und . . „Aging behavior of commercial NMC cells.“ Beitrag präsentiert auf der Kraftwerk Batterie 2014, Münster, Deutschland
    • , , , , , , , , , und . . „Nageltests an kommerziellen Lithium-Ionen Zellen (Typ 18650).“ Beitrag präsentiert auf der Batterieforum Deutschland 2014, Berlin, Deutschland
    Poster
    • , , , und . . „Structure Determination of Aging Products in Lithium-Ion Battery Electrolytes with Gas Chromatography using Chemical Ionization Mass Spectrometry.“ präsentiert auf der International Mass Spectrometry Conference, Genf
    • , , , und . . „IC-ESI-MS/MS Investigation for the Organophosphates in LiPF6-based Electrolyte.“ präsentiert auf der 20th IMSC - International Mass Spectrometry Conference, Genf
    • , , , , , und . . „Identification of alkylated phosphates by GC-MS in thermal aged commercial LiPF6 based electrolyte.“ präsentiert auf der 20th IMSC - International Mass Spectrometry Conference, Genf
    • , , , , und . . „QUANTIFICATION OF PHOSPHOROUS CONTAINING DEGRADATION PRODUCTS IN LiPF6 BASED ELECTROLYTES WITH IC/ICP-MS.“ präsentiert auf der 7th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Determination of Lithium and Transition Metals in Lithium-ion battery cells by Inductively Coupled Plasma – Optical Emission Spectrometry and Inductively Coupled Plasma – Mass Spectrometry.“ präsentiert auf der 7th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , und . . „Investigation of elemental distribution in lithium ion battery components using LA-ICP-MS.“ präsentiert auf der 7th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Quantitative determination of aging related changes in the lithium distribution in LFP electrodes.“ präsentiert auf der 7th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Aging Investigations of Different Electrolytes by means of IC/ESI-MS and CE/ESI-MS.“ präsentiert auf der ECS 225th Meeting, Orlando
    • , , , und . . „Development of an IC/ICP-MS method for the quantification of phosphorous containing degradation products in LiPF6 based electrolytes.“ präsentiert auf der ISC 2014: 30th International Symposium on Chromatography, Salzburg
    • , , , , , und . . „Aging investigations of organic electrolytes in Lithium-ion Batteries with a newly developed HPLC method.“ präsentiert auf der ISC 2014: 30th International Symposium on Chromatography, Salzburg
    • , , , und . . „High Throughput Screening: unique feature of the Electrolyte laboratory for fast, automated preparation and analysis of interesting combinations of materials in lithium and lithium-ion batteries.“ präsentiert auf der 6. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Development of an HPLC method to investigate the aging behavior of organic electrolytes in Lithium ion batteries.“ präsentiert auf der 6. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Treatment and electrochemical performance of recycled graphite from spent Li-ion batteries.“ präsentiert auf der GdCH Electrochemistry 2014, Mainz

    Fachbücher (Herausgegebene Bücher)
    • D., Buchholz, und Gomes Chagas L, Wu LWinter M Passerini S, Hrsg. . Meeting Abstracts, Bd.6, Tailoring the Electrochemical Performance of P2-Na0. 45Ni0. 22Co0. 11Mn0. 66O2 as High Voltage Or High Capacity Cathode Material for Sodium-Ion Batteries, 6. Aufl. Pennington, NJ: The Electrochemical Society.
    • Placke, T, Rothermel, S., Fromm, O, Meister, P, Hüsker, J, Meyer, H-W, und Winter, MHrsg. . Meeting Abstracts, Bd.12, How do the graphite characteristics influence the anion intercalation into a graphite-based cathode in dual-ion cells?, Pennington, NJ: The Electrochemical Society.
    • , , , , , , und . . Meeting Abstracts, Bd.12, Challenges and opportunities of dual-graphite cells based on ionic liquid electrolytes,, herausgegeben von S Rothermel, G Schmülling, O Fromm, P Meister, HW Meyer, T Placke und M Winter. Pennington, NJ: The Electrochemical Society.
    Artikel
    Forschungsartikel (Zeitschriften)
    • , , , , , , , , und . „Structural Changes in Li2MnO3 Cathode Material for Li-Ion Batteries.Advanced Energy Materials, Nr. 4 doi: 10.1002/aenm.201300998.
    • , , , , und . . „Improved cycle lives of LiMn2O4 cathodes in lithium ion batteries by an alginate biopolymer from seaweed.Journal of Materials Chemistry A, Nr. 1 (48): 15229. doi: 10.1039/c3ta13514d.
    • , , , , , , , , und . „Transition-metal-doped zinc oxide nanoparticles as a new lithium-ion anode material.Chemistry of Materials, Nr. 25 (24): 4985. doi: 10.1021/cm403443t.
    • , , , , , , , , und . . „Electrochemical and Thermal Investigations and Al Current Collector Dissolution Studies of Three Di-Lithium Salts in Comparison to LiPF6 Containing Electrolytes (vol 160, pg A535, 2013).Journal of The Electrochemical Society, Nr. 160 (4): X11–X11. doi: 10.1149/2.030404jes.
    • , , , , , , und . . „Investigation of different binding agents for nanocrystalline anatase TiO2 anodes and its application in a novel, green lithium-ion battery.Journal of Power Sources, Nr. 221: 419426.
    • , , , und . . „Methacrylate based gel Polymer electrolyte for lithium-ion batteries.Journal of Power Sources, Nr. 225: 157162.
    • , , , , und . . „Natural, cheap and environmentally friendly binder for supercapacitors.Journal of Power Sources, Nr. 2013 (221): 1420.
    • , , , , und . . „Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate.Journal of Power Sources, Nr. 222: 140149.
    • , , , , , , und . . „Towards Na-ion batteries – Synthesis and Characterization of a novel high capacity Na-ion intercalation material.Chemistry of Materials, Nr. 25 (2): 142148. doi: 10.1021/cm3029615.
    • , , , und . im Druck. „Physicochemical properties of N-methoxyethyl-N-methylpyrrolidinum ionic liquids with perfluorinated anions.Electrochimica Acta, Nr. 91: 101107.
    • , , , , , , , und . im Druck. „Mechanism of the anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries.Journal of The Electrochemical Society, Nr. 160 (2): A356–A360.
    • , , , , und . . „Puzzling out the origin of the electrochemical activity of black P as negative electrode material for Lithium-ion batteries.Journal of Materials Chemistry A, Nr. 1 (17): 52935300. doi: 10.1039/C3TA10380C.
    • , , , , , , und . . „X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethansulfonyl)imide anions into graphite for dual-ion cells.Journal of Power Sources, Nr. 239: 563571.
    • , , , , , , , , und . . „Influence of relaxation time on the lifetime of commercial lithium-ion cells.Journal of Power Sources, Nr. 2013
    • , , , und . . „P2-Layered Na0.45Ni0.22Co0.11Mn0.66O2 as Intercalation Host Material for Lithium and Sodium Batteries.Electrochimica Acta, Nr. 110: 208213.
    • , , , , und . . „Influence of the carbonaceous conductive network on the electrochemical performance of ZnFe2O4 nanoparticles.Journal of Power Sources, Nr. 236: 8794. doi: 10.1016/j.jpowsour.2013.02.051.
    • , , , , , , , , und . . „Electrochemical and thermal investigations and Al current collector dissolution studies of three di-lithium salts in comparison to LiPF6 containing electrolytes.Journal of The Electrochemical Society, Nr. 160: A535.
    • , , und . . „Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy.Langmuir, Nr. 29 (51): 1581315821.
    • , , , , , , , und . . „SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry.Journal of Power Sources, Nr. 233: 110114.
    • , , , , und . . „Carbon coated lithium sulfide particles for lithium battery cathodes.Journal of Power Sources, Nr. 235: 220225.
    • , , , , und . . „Current research trends and prospects among the various materials and designs used in lithium-based batteries.Journal of Applied Electrochemistry, Nr. 43 (5): 481496. doi: 10.1007/s10800-013-0533-6.
    • , , , , , , , und . . „LiTFSI Stability in Water and Its Possible Use in Aqueous Lithium-Ion Batteries: pH Dependency, Electrochemical Window and Temperature Stability.Journal of The Electrochemical Society, Nr. 160 (10): A1694–A1700. doi: 10.1149/2.039310jes.
    • , , , , , , , und . . „Influence of Graphite Characteristics on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into a Graphite-based Cathode.Journal of The Electrochemical Society, Nr. 160 (11): A1979–A1991. doi: 10.1149/2.027311jes.
    • , , , , , , und . . „Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte.Journal of Power Sources, Nr. 242 (null): 832837. doi: 10.1016/j.jpowsour.2013.05.125.
    • , und . . „Composition and Growth Behavior of the Surface and Electrolyte Decomposition Layer of/on a Commercial Lithium Ion Battery Li Ni Mn Co O Cathode Determined by Sputter Depth Profile X-ray Photoelectron Spectroscopy.Langmuir, Nr. 29 (51): 1581315821. doi: 10.1021/la403276p.
    • , , , , , , und . . „X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells.Journal of Power Sources, Nr. 239: 563571. doi: 10.1016/j.jpowsour.2013.03.064.
    • , , , , und . . „Improved electrochemical performance of LiMO2 (M=Mn, Ni, Co)--Li2MnO3 cathode materials in ionic liquid-based electrolyte.Journal of Power Sources, Nr. 239: 490495. doi: 10.1016/j.jpowsour.2013.04.015.
    • , , , , , , , , und . . „Structural Changes in Li2MnO3 Cathode Material for Li-Ion Batteries.Advanced Energy Materials, Nr. 4 (5) doi: 10.1002/aenm.201300998.
    • , , und . . „Parametrisation of the influence of different cycling conditions on the capacity fade and the internal resistance increase for lithium nickel manganese cobalt oxide/graphite cells.Journal of Electroanalytical Chemistry, Nr. 707 (null): 110116. doi: 10.1016/j.jelechem.2013.08.032.
    • , , und . . „Interface investigations of a commercial lithium ion battery graphite anode material by sputter depth profile X-ray photoelectron spectroscopy.Langmuir, Nr. 29 (19): 58065816. doi: 10.1021/la400764r.
    • , , , , , und . . „How Do Reactions at the Anode/Electrolyte Interface Determine the Cathode Performance in Lithium-Ion Batteries?Journal of The Electrochemical Society, Nr. 160 (4): A542–A548.
    • , , , , , , und . . „Improved Rate Capability of Layered Li-Rich Cathode for Lithium Ion Battery by Electrochemical Treatment.ECS Electrochemistry Letters, Nr. 2 (8): A78–A80. doi: 10.1149/2.006308eel.
    • , , , , , und . . „In-situ X-ray Absorption Spectroscopic Study of Li-Rich 0.5 Li2MnO3* 0.5 LiMn0,4Ni0.4Co0.2O2 Cathode for Lithium Ion Battery.Journal of Power Sources, Nr. 156 (16): 68286834.
    • , , , und . . „On the cycling stability of lithium-ion capacitor containing soft carbon as anodic material.Journal of Power Sources, Nr. 238: 388394.
    • , , , , , und . . „Aging stability of Li2FeSiO4 polymorphs in LiPF6 containing organic electrolyte for lithium-ion batteries.Electrochimica Acta, Nr. 105: 542546.
    • , , , , , , , und . . „Electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anion into various graphites for dual-ion cells.ECS Transactions, Nr. 50 (24): 5968. doi: 10.1149/05024.0059ecst.
    • , , , , , und . . „Coated Lithium Powder (CliP) Electrodes for Lithium-Metal-Batteries.Advanced Energy Materials, Nr. 4 (5): 1300815. doi: 10.1002/aenm.201300815.
    • , , , , , und . . „Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO4 cathodes for lithium ion batteries.Carbon, Nr. 64: 334340. doi: 10.1016/j.carbon.2013.07.083.
    • , , , , und . . „Blends of lithium bis (oxalato) borate and lithium tetrafluoroborate: Useful substitutes for lithium difluoro (oxalato) borate in electrolytes for lithium metal based secondary batteries?Electrochimica Acta, Nr. 107: 2632. doi: 10.1016/j.electacta.2013.05.130.
    • , , , , , und . . „Coated lithium powder (CLiP) electrodes for lithium-air cells.Advanced Energy Materials, Nr. 4 (5) doi: 10.1002/aenm.201300815.
    • , , , , , und . . „Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO< sub> 4</sub> cathodes for lithium ion batteries.Carbon, Nr. 64: 334340. doi: 10.1016/j.carbon.2013.07.083.
    • , , , , , und . . „Cu3P Binary Phosphide: Synthesis via a Wet Mechanochemical Method and Electrochemical Behavior as Negative Electrode Material for Lithium-Ion Batteries.Advanced Energy Materials, Nr. 3 (2): 231238. doi: 10.1002/aenm.201200655.
    • , , , , , , , , und . . „Aging of Li2FeSiO4 Cathode Material in Fluorine containing organic Electrolytes for Lithium-Ion Batteries.Electrochmica Acta, Nr. 85: 6671. doi: 10.1016/j.electacta.2012.07.109.
    • , , , , , , und . . „Towards Na-ion batteries – Synthesis and Characterization of a novel high capacity Na-ion intercalation material.Chemistry of Materials, Nr. 25 (2): 142148. doi: 10.1021/cm3029615.
    • , , , , , und . . „How Do Reactions at the Anode/Electrolyte Interface Determine the Cathode Performance in Lithium-Ion Batteries?Journal of The Electrochemical Society, Nr. 160 (4): A542A548. doi: 10.1149/2.022304jes.
    • , , , , , und . . „Aging Stability of Li2FeSiO4 Polymorphs in LiPF6 Containing Organic Electrolyte for Lithium-Ion Batteries.Electrochmica Acta, Nr. 105: 542546. doi: 10.1016/j.electacta.2013.05.013.
    • , , , , , , , und . . „Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries.Journal of The Electrochemical Society, Nr. 160 (2): A356–A360. doi: 10.1149/2.081302jes.
    • , , , , , , , , und . . „Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6.Electrochimica Acta, Nr. 114: 658666. doi: 10.1016/j.electacta.2013.09.155.
    • , , , , , , , , und . . „Electrochemical and thermal investigations and Al current collector dissolution studies of three di-lithium salts in comparison to LiPF6 containing electrolytes.Journal of The Electrochemical Society, Nr. 160 (4): A535–A541. doi: 10.1149/2.013304jes.
    • , , , , , , und . . „Solid state NMR structural studies of the lithiation of nano-silicon: Effects of charging capacities, host-doping, and thermal treatment.Solid State Ionics, Nr. 249-250: 4148. doi: 10.1016/j.ssi.2013.07.013.
    • , , , , , , und . . „Towards Na-ion batteries – Synthesis and Characterization of a novel high capacity Na-ion intercalation material.ChemInform, Nr. 44 (19) doi: 10.1002/chin.201319014.
    • , , , , und . . „Blends of lithium bis(oxalato)borate and lithium tetrafluoroborate: Useful substitutes for lithium difluoro(oxalato)borate in electrolytes for lithium metal based secondary batteries?Electrochimica Acta, Nr. 107: 2632. doi: 10.1016/j.electacta.2013.05.130.
    • , , , und . „Phase stability of Li-ion conductive, ternary solid polymer electrolytes.Electrochimica Acta, Nr. 113: 185. doi: 10.1016/j.electacta.2013.09.052.
    • , , , , , , , , und . . „Investigations on the electrochemical performance and thermalstability of two new lithium electrolyte salts in comparison to LiPF6.Electrochimica Acta, Nr. 114: 658666.
    • , , , und . . „On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material.Journal of Power Sources, Nr. 238: 388394. doi: 10.1016/j.jpowsour.2013.04.045.
    • , , , , und . . „A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide.Energies, Nr. 6 (9): 44484464. doi: 10.3390/en6094448.
    • , , , , , , und . . „Solid state NMR structural studies of the lithiation of nano-silicon:: Effects of charging capacities, host-doping, and thermal treatment.Solid State Ionics, Nr. 249-250: 48. doi: 10.1016/j.ssi.2013.07.013.
    • , , , , und . . „Fluoroethylene carbonate as an additive for γ-butyrolactone based electrolytes.Journal of The Electrochemical Society, Nr. 160 (9): A1374. doi: 10.1149/2.009309jes.
    • , , , , und . . „Results from a novel method for corrosion studies of electroplated lithium metal based on measurements with an impedance scanning electrochemical quartz crystal microbalance.Energies, Nr. 6 (7): 3505. doi: 10.3390/en6073481.
    • , , , , , und . . „An Investigation on the Use of a Methacrylate-Based Gel Polymer Electrolyte in High Power Devices.Journal of The Electrochemical Society, Nr. 160 (10): A1753A1758. doi: 10.1149/2.067310jes.
    • , , , , , und . . „Development of gas chromatographic methods for the analyses of organic carbonate-based electrolytes.Journal of Power Sources, Nr. 245: 836840.
    • , , , , , , und . . „Investigation of thermal aging and hydrolysis mechanisms in commercial lithium ion battery electrolyte.Journal of Power Sources, Nr. 242: 837. doi: 10.1016/j.jpowsour.2013.05.125.
    • , , , , und . . „Improved electrochemical performance of LiMO2 (M-Mn, Ni, Co) - Li2MnO3 cathode materials in ionic liquid-based electrolyte.Journal of Power Sources, Nr. 239: 490495. doi: 10.1016/j.jpowsour.2013.04.015.
    • , , , , , , , und . . „Lithium difluoro(oxalato)borate: A promising salt for lithium metal based secondary batteries?Electrochimica Acta, Nr. 82: 102107.
    • , , , , und . . „Fluorosulfonyl-(trifluoromethanesulfonyl)imide ionic liquids with enhanced asymmetry.Physical Chemistry Chemical Physics, Nr. 15 (7): 256571. doi: 10.1039/c2cp43066e.
    Konferenzbeiträge
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , , , und . . „Dual-graphite cells as alternative energy storage devices.“ Beitrag präsentiert auf der Kraftwerk Batterie 2013, Aachen, Germany
    • , , , , und . . „Improved cycling behaviour on silicon/carbon-based anode materials by chemical surface modification.“ Beitrag präsentiert auf der Kraftwerk Batterie 2013, Aachen, Germany
    • , , , , und . . „Chemical surface modification and characterization of carbons for an optimized artificial solid electrolyte interface formation.“ Beitrag präsentiert auf der Kraftwerk Batterie 2013, Aachen, Germany
    • , , , , , , , und . . „Electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into various types of graphitic carbon as cathode for dual-ion cells.“ Beitrag präsentiert auf der Kraftwerk Batterie 2013, Aachen, Germany
    • , , , , und . . „Surface modification of carbons by elevated temperature gas treatments for an improved solid electrolyte interphase formation.“ Beitrag präsentiert auf der 2nd International Conference on Materials for Energy, Karlsruhe, Germany
    • , , , , , , , und . . „Influence of additives on the TFSI-anion intercalation into the graphite cathode for dual-ion cells by in-situ X-ray diffraction studies.“ Beitrag präsentiert auf der 2nd International Conference on Materials for Energy, Karlsruhe, Germany
    • , , , , , , , , und . . „In-situ X-ray diffraction studies of the TFSI- anion intercalation process into the graphite cathode for dual-ion cells.“ Beitrag präsentiert auf der 2nd International Conference on Materials for Energy, Karlsruhe, Germany
    • , , , , , , und . . „Anion intercalation into graphite from organic solvent based electrolytes with high oxidative stability.“ Beitrag präsentiert auf der 224th ECS Meeting, San Francisco, San Francisco, USA
    • , , , , , , , , und . . „Anodic dissolution suppression of the aluminum current collector in high voltage stable electrolytes containing lithium imide salts.“ Beitrag präsentiert auf der 224th ECS Meeting, San Francisco, San Francisco, USA
    • , , , , , , , und . . „X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl) imide anions into graphite.“ Beitrag präsentiert auf der 224th ECS Meeting, San Francisco, San Francisco, USA
    • , , , , und . . „In-situ Mößbauer Spectroscopy as a Non-Destructive Tool to Analyze Lithium- Ion Battery Aging.“ Beitrag präsentiert auf der XXXVIII Colloquium Spectroscopium Internationale, Tromsø, Norway
    • , , , , , , und . . „Balancing of graphite/LFP full cells with focus on the graphite anode characteristics.“ Beitrag präsentiert auf der Kraftwerk Batterie 2013, Aachen, Germany
    • , , , , , , und . . „Investigation of the stability of bis(trifluoromethanesulfonyl) imide-based electrolytes for dual-ion cells by ion chromatography.“ Beitrag präsentiert auf der Kraftwerk Batterie 2013, Aachen, Germany
    • , , , und . . „Extraction of Organic Carbonate Based Electrolytes with Supercritical Carbon Dioxide for a High Efficient Recycling of Lithium-Ion Batteries.“ In Bd.MA2013-02 1180 aus ECS Meeting Abstracts doi: 10.1149/MA2013-02/14/1180.
    • , , , , , , , , und . . „Insights of Aging Mechanisms: An Electrochemical Survey of LiMn2O4vs Li4Ti5O12 Cells & Post Mortem Analysis.“ In Bd.MA2013-01 399 aus ECS Meeting Abstracts doi: 10.1149/MA2013-01/7/399.
    • , , , und . . „Soft Carbon as anode material for Lithium-Ion Capacitor.“ Beitrag präsentiert auf der 13th Topical Meeting of the ISE, Advances in Electrochemical Materials Science and Manufacturing, Pretoria, Südafrika
    • , , , , , und . . „On the importance of the right choice of electrode and electrolyte for Lithium-Ion Capacitors.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen, Deutschland
    Poster
    • , , , , und . . „Untersuchung Thermischer Alterungsprozesse von Ionischen Flüssigkeiten mittels IC/ESI-MS.“ präsentiert auf der 7. Conference über Ionenanalytik, Berlin
    • , , , , und . . „Quantifizierung von phosphorhaltigen Zersetzungsprodukten in LiPF6-basierten Elektrolyten mittels IC/ICP-MS.“ präsentiert auf der 7. Conference über Ionenanalytik, Berlin
    • , , , und . . „Extraktion von organischen Elektrolyten zum Recyceln von Lithium-Ionen-Batterien mittels überkritischem Kohlendioxid und Bestimmung mittels IC-ESI/MS und GC-MS.“ präsentiert auf der 7. Conference über Ionenanalytik, Berlin
    • , , , und . . „Method development for the analysis of organophosphorus compounds in LiPF6-based electrolytes.“ präsentiert auf der XXXVIII Colloquium Spectroscopicum Internationale, Tromsø
    • , , und . . „Fluorine determination in energy storage materials by solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry.“ präsentiert auf der CANAS 2013, Freiberg
    • , , , und . . „The Interplay of Anode and Cathode in Lithium Ion Battery Full Cells.“ präsentiert auf der 5. Kraftwerk Batterie Fachtagung, Aachen
    Sonstige wissenschaftliche Veröffentlichungen
    • , , , , , , , , , , , und . . Understanding the influence of conductive carbon additives surface area on the rate performance of LiFePO 4 cathodes for lithium ion batteries,
    • , , , , , , und . . Improved rate capability of layered Li-rich cathode for lithium ion battery by electrochemical treatment,

    Artikel
    Forschungsartikel (Zeitschriften)
    • , , , , , , und . . „Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes.Zeitschrift für Physikalische Chemie, Nr. 226 (5-6): 391407. doi: 10.1524/zpch.2012.0222.
    • , , , , , , , und . . „Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells.Journal of The Electrochemical Society, Nr. 159 (11): A1755–A1765. doi: 10.1149/2.011211jes.
    • , , , , , , , , und . . „Influence of graphite surface modifications on the ratio of basal plane to "non-basal plane" surface area and on the anode performance in lithium ion batteries.Journal of Power Sources, Nr. 200: 8391. doi: 10.1016/j.jpowsour.2011.10.085.
    • , , , , , , und . . „Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution.Analytica Chimica Acta, Nr. 714: 121126.
    • , , , , und . . „Natural cellulose as binder for lithium battery electrodes.Journal of Power Sources, Nr. 199: 331335.
    • , , , , , und . . „7Li and 29Si solid state NMR and chemical bonding of La2Li2Si3.Solid State Sciences, Nr. 14: 367374.
    • , , , , , , , , und . . „Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries.Journal of Power Sources, Nr. 200: 8397.
    • , , , , , , , und . . „Development of ionic liquid-based lithium battery prototypes.Journal of Power Sources, Nr. 199: 239246.
    • , , , , , , , , und . . „Methyl tetrafluoro-2-(methoxy) propionate as co-solvent for propylene carbonate-based electrolytes for lithium-ion batteries.Journal of Power Sources, Nr. 205: 408413.
    • , , , , und . . „1-Fluoropropane-2-one as SEI-forming additive for lithium-ion batteries.Electrochemistry Communications, Nr. 16: 4143.
    • , , , , und . . „Structural and dynamic characterization of Li12Si7 and Li12Ge7 using solid state NMR.Solid State Nuclear Magnetic Resonance, Nr. 42: 1725.
    • , , , , , und . . „The mechanism of HF formation in LiPF6 based organic carbonate electrolytes.Electrochemistry Communications, Nr. 14: 4750.
    • , , , und . . „Thermally Induced Reactions between Lithiated Nano-Silicon Electrode and Electrolyte for Lithium-Ion Batteries.Journal of The Electrochemical Society, Nr. 159: A657–A663.
    • , , , , , und . . „Ionic mobility in ternary polymer electrolytes for lithium-ion batteries.Electrochimica Acta, Nr. 86: 330338.
    • , , , , , , und . . „Electrochemical Lithiation of Silicon Clathrate-II.Journal of The Electrochemical Society, Nr. 159: A1318–A1322.
    • , , , , , und . . „The importance of “going nano” for high power battery materials.Journal of Power Sources, Nr. 219: 217222.
    • , , , , und . . „The influence of activated carbon on the performance of lithium iron phosphate based electrodes.Electrochimica Acta, Nr. 76: 130136. doi: 10.1016/j.electacta.2012.04.152.
    • , , , und . . „On the Use for Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Capacitors.Journal of The Electrochemical Society, Nr. 159 (8): A1240–A1245.
    • , , , , , , , , , , und . . „Investigation of lithium carbide contamination in battery grade lithium metal.Journal of Power Sources, Nr. 217: 98101.
    • , , , , , , und . . „Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes.Zeitschrift für Physikalische Chemie, Nr. 226: 391407.
    • , , , , und . . „Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes.Journal of Power Sources, Nr. 214: 178184. doi: 10.1016/j.jpowsour.2012.04.054.
    • , , , , , und . . „Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR.Physical Chemistry Chemical Physics, Nr. 14: 64966508.
    • , , , und . . „Oberflächenmodifizierung von LiFePO4.Zeitschrift für anorganische und allgemeine Chemie, Nr. 638: 1611.
    • , , , , und . . „SEI-forming mechanism of 1-Fluoropropane-2-one in lithium-ion batteries.Electrochimica Acta, Nr. 81: 161165.
    • , , , , , , , , und . . „Carbene Adduct as Overcharge Protecting Agent in Lithium Ion.Journal of The Electrochemical Society, Nr. 159: A1–A4.
    • , , , , , und . . „Mixtures of ionic liquids for low temperature electrolytes.Electrochimica Acta, Nr. 82: 6974.
    • , , , , , und . . „Cu3P Binary Phosphide: Synthesis via a Wet Mechanochemical Method and Electrochemical Behavior as Negative Electrode Material for Lithium-Ion Batteries.Advanced Energy Materials, Nr. 3 (2): 231238.
    • , , , , und . . „Temperature Dependence of Electrochemical Properties of Cross-linked poly(ethylene oxide) - lithium bis(trifluoromethanesulfonyl)imide - N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide Solid Electrolytes for Lithium Batteries.Electrochimica Acta, Nr. 87: 779787.
    • , , , , , , , , und . . „Carbon coated ZnFe2O4 nanoparticles for advanced lithium-ion anodes.Advanced Energy Materials, Nr. 3 (4): 513523. doi: 10.1002/aenm.201200735.
    • , , , , , , , , und . . „Aging of Li2FeSiO4 Cathode Material in Fluorine Containing Organic Electrolytes for Lithium-Ion Batteries.Electrochimica Acta, Nr. 85: 6671.
    • , , , , , , und . . „LiBC – Synthesis, Electrochemical and Solid-State NMR Investigations.Z. Naturforsch., Nr. 67b: 12121220.
    • , , , , , und . . „Erratum: Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes.Journal of Power Sources, Nr. 219: 371.
    • , , , , , , , und . . „Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells.Journal of The Electrochemical Society, Nr. 159 (11): A1755–A1765.
    • , , , , , , , , und . . „Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica.Journal of The Electrochemical Society, Nr. 159 (11): A1849–A1855. doi: 10.1149/2.070211jes.
    • , , , , und . „SEI-forming mechanism of 1-Fluoropropane-2-one in lithium-ion batteries.Electrochimica Acta, Nr. 81 (null): 161165. doi: 10.1016/j.electacta.2012.07.091.
    • . . „High Energy Density Batteries.Tutorial Book of the Large Lithium Ion Battery Technology and Application (LLIBTA) Symposium, Nr. 1
    • , , , , , , , und . . „Investigation of lithium carbide contamination in battery grade lithium metal.Journal of Power Sources, Nr. 217: 98101. doi: 10.1016/j.jpowsour.2012.05.038.
    • , , , und . . „On the Use of Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Capacitors.Journal of The Electrochemical Society, Nr. 159 (8): A1240A1245. doi: 10.1149/2.050208jes.
    • , , , , , , und . . „Percolating Networks of TiO2 Nanorods and Carbon for High Power Lithium Insertion Electrodes.Journal of Power Sources, Nr. 206: 301309. doi: 10.1016/j.jpowsour.2011.12.051.
    • , , , , , und . . „Structural characterization of the lithium silicides Li15Si4, Li13Si4, and Li7Si3 using solid state NMR.Physical Chemistry Chemical Physics, Nr. 14 (18): 6496508. doi: 10.1039/c2cp24131e.
    • , , , , und . . „Structural and dynamic characterization of Li(12)Si(7) and Li(12)Ge(7) using solid state NMR.Solid State Nuclear Magnetic Resonance, Nr. 42: 1725. doi: 10.1016/j.ssnmr.2011.09.002.
    • , , , , , , , , und . . „Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries.Journal of Power Sources, Nr. 200: 8391. doi: 10.1016/j.jpowsour.2011.10.085.
    Konferenzbeiträge
    Forschungsartikel in Sammelbänden (Konferenzen)
    • , , , , , , , , , , , , , , , , und . . „The Challenge with Si-Based Anodes: More Than a Volume Expansion Issue.“ In Proceedings of the LLIBTA Symposium
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , und . „The influence of coating on the stability of lithium iron phosphate in aqueous electrolyte.“ Beitrag präsentiert auf der 63rd Annual Meeting of the International Society of Electrochemistry, Prague, Czech Republic
    • , , , , , , und . „Influence of relaxation time on the lifetime of commercial lithium ion cells.“ Beitrag präsentiert auf der 222th ECS Meeting, Honolulu
    • , , , , , , , und . . „Graphite surface modifications by elevated temperature gas treatments.“ Beitrag präsentiert auf der Kraftwerk Batterie 2012, Münster, Germany
    • , , , , , , und . . „Dual ion cells based on anion intercalation into graphite.“ Beitrag präsentiert auf der Kraftwerk Batterie 2012, Münster, Germany
    • , , , , und . . „Optimization and aging investigations on silicon/carbon-based anode materials for high energy lithium-ion batteries.“ Beitrag präsentiert auf der Electrochemistry 2012 (GdCH), Technische Universität München, München, Germany
    • , , , , und . . „Tailored modification of carbons with oxidizing agents for optimized electrochemical performance in lithium-ion batteries.“ Beitrag präsentiert auf der Electrochemistry 2012 (GdCH), Technische Universität München, München, Germany
    • , , , , , , , , und . . „Impact of graphite surface modifications on graphite surface properties.“ Beitrag präsentiert auf der Electrochemistry 2012 (GdCH), Technische Universität München, München, Germany
    • , , , , , , , , und . . „Electrochemical preparation and structural characterization of graphite intercalation compounds for electrochemical energy storage devices.“ Beitrag präsentiert auf der Electrochemistry 2012 (GdCH), Technische Universität München, München, Germany
    Poster
    • , , , , und . . „Investigation of the Temperature Influence on the Decomposition of LiPF6 - Electrolytes with IC-ESI-MS/MS.“ präsentiert auf der 24th International Ion Chromatography Symposium, Berlin
    • , , , , und . . „INVESTIGATIONS ON IONIC LIQUIDS BY MEANS OF IC, IC/ICP-OES AND IC/ESI-MS.“ präsentiert auf der 24th International Ion Chromatography Symposium, Berlin
    • , , , , , , und . . „Evaluation of Electrolytes with Ion and Gas Chromatography of a Supercritical CO2-Extraction during the Recycling Process of Lithium-Ion Batteries.“ präsentiert auf der 24th International Ion Chromatography Symposium, Berlin
    • , , und . . „Analysis of Lithium ion battery materials by LA-ICP-MS.“ präsentiert auf der 11th European Workshop on Laser Ablation, Gijón
    • , , , , und . . „Investigation on the Lithium and Sulfur Solubility in different Organic Solvents by ICP-OES.“ präsentiert auf der 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Stability and Impurities Investigations on Ionic Liquids with ICP-OES, IC/ICP-OES and IC/ESI-MS.“ präsentiert auf der 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Determination of Nano-SiO2 Graphite Particles and Nano-Si coated Particles after Sodium/Potassium Carbonate Digestion with ICP-OES.“ präsentiert auf der 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Identification of Decomposition Products in commercially available Lithium Ion Battery Electrolyte Systems by means of IC/ICP-OES AND IC/ESI-MS.“ präsentiert auf der 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „Surface Analysis of Lithium Ion Battery Materials by LA-ICP-MS.“ präsentiert auf der 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „ICP-OES application in lithium ion battery research.“ präsentiert auf der 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , und . . „ICP-OES Analysis of Lithium-Ion Battery Active Material after Microwave Digestion”.“ präsentiert auf der 6th Nordic Conference on Plasma Spectrochemistry, Loen
    • , , , , und . . „Expanding the possibilities of gas chromatographic investigation for lithium ion batteries.“ präsentiert auf der 4. Kraftwerk Batterie Fachtagung, Münster
    • , , , , und . . „Investigation of decomposition products in the lithium ion battery electrolyte system.“ präsentiert auf der 4. Kraftwerk Batterie Fachtagung, Münster
    • , , , , , , , und . . „Investigation of ionic liquid electrolyte stability for dual-ion cells by ion chromatography.“ präsentiert auf der Electrochemistry 2012 (GdCH), Technische Universität München, München
    Arbeitspapiere / Working Papers
    • , , und . „Abschlussbericht Forschungsvorhaben Nr. 639 I: Einfluss von Ruhezeiten auf die Lebensdauer von Lihtium-Ionen-Batterien.FVA Heft 1004. Frankfurt.

    Forschungsartikel (Zeitschriften)
    • , , , , und . . „Composite LiFePO4/AC high rate performance electrodes for Li-ion capacitors.Journal of Power Sources, Nr. 196: 41364142. doi: 10.1016/j.jpowsour.2010.11.042.
    • , , , , und . . „Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries.Electrochimica Acta, Nr. 56: 40924099. doi: 10.1016/j.electacta.2011.01.116.
    • , , , , und . . „NMR investigations on the lithiation and delithiation of nanosilicon-based anodes for Li-ion batteries.Journal of Solid State Electrochemistry, Nr. 15 (2): 349356. doi: 10.1007/s10008-010-1260-0.
    • , , , , , , und . . „Inhibition of self-aggregation in ionic liquid electrolytes for high-energy electrochemical devices.Journal of Physical Chemistry C, Nr. 115 (39): 1943119436. doi: 10.1021/jp2055969.
    • , , , , , , und . . „Ion Chromatographic Determination of Hydrolysis Products of Hexafluorophosphate Salts in Aqueous Solution.Analytica Chimica Acta, Nr. 714: 121126. doi: 10.1016/j.aca.2011.11.056.
    • , und . . „The Electrification of the Powertrain with Lithium Ion Technology.Fortschritt-Berichte VDI, 32nd International Vienna Motor Symposium 5-6 May, Nr. 12 (735-2): 8285.
    • , und . . „Lithium ion batteries as key component for energy storage in automotive and stationary applications.Proceedings Telecommunications Energy Conference (INTELEC), Nr. IEEE 33rd International
    • , , und . . „Special Issue: “Electrochemistry from Biology to Physics”.Electrochimica Acta, Nr. 56
    • , , , , , , , , , , , , , , und . . „Development of safe, green and high performance ionic liquids-based batteries.Journal of Power Sources, Nr. 196: 97199730.
    • , , und . . „On the difference in cycling behaviors of lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes.Electrochimica Acta, Nr. 56: 1042410435.
    • , , , , , , und . . „Electrochemical Characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalate)borate.Journal of Power Sources, Nr. 196: 14171424.
    • , , , , , und . . „Salt Diffusion Coefficients, Concentration Dependence of Cell Potentials, and Transference Numbers of Lithium Difluoromono(oxalato)borate-Based Solutions.Journal of Chemical and Engineering Data, Nr. 56: 47864789.
    • , , , , , , und . . „Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability.Journal of Power Sources, Nr. 196: 48214825.
    • , , , , , und . . „Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries.Journal of Power Sources, Nr. 196: 76877691.
    • , , , , , und . . „Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black.Journal of Power Sources, Nr. 196: 88368842.
    • , , , , , , , , , , , , , und . . „Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate.Journal of Power Sources, Nr. 196: 14171424.
    • , , , , , , , und . . „High flash point electrolyte for use in lithium-ion batteries.Electrochimica Acta, Nr. 56: 75307535.
    • . . „State of the Art and Future Prospects of Materials for Rechargable Lithium Batteries.Tutorial Book of the 7th International Symposium on Large Lithium Ion Battery Technology and Application (LLIBTA), Nr. 1
    • , , , und . . „New insight into electrochemical differences in cycling behaviors of a lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes.Materials Research Society Symposium Proceedings, Nr. 1313: 4353.
    • , , , , , und . . „Salt-in-Polymer Electrolytes Based on Polysiloxanes for Lithium-Ion Cells: IonicTransport and Electrochemical Stability.ECS Transactions, Nr. 33: 315.
    • , , , und . . „New Insight into Differences in Cycling Behaviors of a Lithium-ion Battery Cell Between the Ethylene Carbonate- and Propylene Carbonate-Based Electrolytes.ECS Transactions, Nr. 33: 5969.
    • , , , , , , und . . „Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2MnO0.56Ni0.16Co0.08]O2 with improved rate capability.Journal of Power Sources, Nr. 196 (10): 48214825. doi: 10.1016/j.jpowsour.2011.01.006.
    • , , , , , und . . „Investigations on cellulose-based high voltage composite cathodes for lithium ion batteries.Journal of Power Sources, Nr. 196: 76877691. doi: 10.1016/j.jpowsour.2011.04.030.
    • , , , , , und . . „New Insights to Self-Aggregation in Ionic Liquid Electrolytes for High-Energy Electrochemical Devices.Advanced Energy Materials, Nr. 1: 274281. doi: 10.1002/aenm.201000052.
    • , , , , , , und . . „Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries.Journal of Power Sources, Nr. 196 (4): 21872194. doi: 10.1016/j.jpowsour.2010.09.080.
    Konferenzbeiträge
    Forschungsartikel in Sammelbänden (Konferenzen)
    • . . „Introduction to Lithium Ion Battery Materials.“ In Tutorial Book of the 2nd AABC Europe 2011
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , und . . „Silica dry coated graphite particles for improved performance of lithium ion batteries.“ Beitrag präsentiert auf der Bunsenkolloquium - Grenzflächen in Lithium(ionen)-Batterien, Goslar, Germany
    • , , , , , , und . . „Modified graphites for improved anode performance in lithium-ion batteries.“ Beitrag präsentiert auf der Bunsenkolloquium - Grenzflächen in Lithium(ionen)-Batterien, Goslar, Germany
    Poster
    • , , , , und . . „Investigation of the decomposition products of lithium hexafluorophosphate by IC/ICP-OES and IC/ESI-MS.“ präsentiert auf der 6. Conference über Ionenanalytik, Berlin
    • , , , und . . „ICP Techniques for the Determination of Impurities in Lithium Ion Battery Starting Materials.“ präsentiert auf der GDCh-Wissenschaftsforum Chemie 2011, Bremen
    • , , , , und . . „GC-MS and Headspace Methods for Investigations of Electrolyte Systems in Lithium Ion Batteries.“ präsentiert auf der GDCh-Wissenschaftsforum Chemie 2011, Bremen
    • , , , , und . . „Speciation of Phosphorus-based Decomposition Products in a Lithium Ion Battery Electrolyte System.“ präsentiert auf der GDCh-Wissenschaftsforum Chemie 2011, Bremen
    • , , , , , und . . „Speciation of Phosphorus Decomposition Products in a Lithium Ion Battery Electrolyte System.“ präsentiert auf der TraceSpec 2011: 13th Workshop on Progress in Trace Metal Speciation for Environmental Analytical Chemistry, Pau
    • , , , , und . . „LA-ICP-MS and ICP-OES for the Determination of Impurities in Li-Ion Battery Materials.“ präsentiert auf der Bunsenkolloquium 2011, Goslar
    • , , , , , und . . „Investigations of Decomposition Products in the Lithium Ion Battery Electrolyte System via IC/ICP-OES and IC/ESI-MS.“ präsentiert auf der CANAS 2011, Leipzig
    • , , , , , und . . „Investigations of Phosphorus content in thermal aged in Lithium Ion Battery Electrolyte System via ICP-OES.“ präsentiert auf der CANAS 2011, Leipzig
    • , , , und . . „Application of ICP-OES in Lithium Ion Battery Research.“ präsentiert auf der CANAS 2011, Leipzig
    • , , , , , , und . . „Recycling von Lithium Ionen Batterien – Analyse und Methoden.“ präsentiert auf der 3. Kraftwerk Batterie Fachtagung, Aachen
    • , , , , und . . „Alterungsuntersuchungen an Lithiumhexafluorophosphat mittels analytischer Methoden.“ präsentiert auf der 3. Kraftwerk Batterie Fachtagung, Aachen
    • , , , , , und . . „Development of new GC-MS and Headspace-GC-MS methods for quality control in lithium-ion batteries.“ präsentiert auf der 44. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Dortmund
    • , , , , und . . „Combination of LA-ICP-MS and ICP-OES for the determination of impurities in lithium-ion battery starting materials.“ präsentiert auf der 44. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Dortmund
    • , , , , , , , , und . . „Enhanced performance of silica dry-coated graphite.“ präsentiert auf der 219th ECS Meeting, Montréal, Montréal
    • , , , und . . „Petroleum Coke as anode material for high power Li-Ion Batteries.“ präsentiert auf der 18th International Conference on Solid-State-Ionics, Warschau, Warschau

    Fachbücher (Herausgegebene Bücher)
    • Pöttgen, R, Winter, M, und Hammerschmidt, A, Hrsg. . Preface Zeitschrift für Kristallographie, 225. Aufl.
    Artikel
    Forschungsartikel (Zeitschriften)
    • , , , , , und . . „Surface treatment of LiFePO4 cathode material with PPy/PEG conductive layer.Journal of Solid State Electrochemistry, Nr. 14 (12): 21732178. doi: 10.1007/s10008-009-0967-2.
    • , , , , , , , , , , und . . „Application of LA-ICP-MS/LA-ICP-OES and ICP-OES for the determination of impurities in Li-Ion battery compounds.Electrochemical Society - 218th ECS Meeting Abstracts 2010, MA 2010-02, Nr. 1: 66.
    • , , , , , , , , , und . . „Computational methods for the characterization of aqueous processed cellulose-based LiFePO4/C composite electrodes.Electrochemical Society - 218th ECS Meeting Abstracts 2010, MA 2010-02, Nr. 1: 520.
    • , , , , und . . „Development of high-rate LiFePO4 cathodes for lithium-ion capacitors.Electrochemical Society - 218th ECS Meeting Abstracts 2010, MA 2010-02, Nr. 2: 1034.
    • , , , und . . „New insight into electrochemical differences in cyclic behaviors of a lithium-ion battery cell between the ethylene carbonate- and propylene carbonate-based electrolytes.Electrochemical Society - 218th ECS Meeting Abstracts 2010, MA 2010-02, Nr. 1: 576.
    • , , , , , und . . „Electrolytes with enhanced safety and electrochemical stability for application in lithium-ion batteries.Electrochemical Society - 218th ECS Meeting Abstracts 2010, MA 2010-02, Nr. 1: 591.
    • , , , , , und . . „Li+ environment and mobility in PEO-based, ternary solid polymer electrolytes containing ionic liquids.Electrochemical Society - 218th ECS Meeting Abstracts 2010, MA 2010-02, Nr. 1: 562.
    • , , , , , und . . „Li-ion anodes in air-stable and hydrophobic ionic liquid-based electrolyte for safer and greener batteries.International Journal of Energy Research, Nr. 34 (2): 97106. doi: 10.1002/er.1557.
    • , , , , , , und . . „Salt-in-polymer electrolytes based on polysiloxanes and polyphosphazenes for lithium ion cells - Ionic transport and electrochemical stability.Electrochemical Society - 218th ECS Meeting Abstracts 2010, MA 2010-02, Nr. 1: 564.
    • . . „Elektromobilität mit Lithium-Ionen-Batterien: Chancen, Herausforderungen, Grenzen.Fortschritt-Berichte VDI, Nr. , Reihe 12 Verkehrstechnik/Fahrzeugtechnik (728): 115.
    • , , , , und . . „Towards greener and cost-effective lithium ion batteries.Journal of The Electrochemical Society, Nr. 157: A320–A325.
    • , , , , , , , und . . „Lithium borates for lithium-ion battery electrolytes.ECS Transactions, Nr. 25: 1317.
    • , , , , , und . . „Alloying of electrodeposited silicon with lithium-a principal study of applicability as anode material for lithium ion batteries.Journal of Solid State Electrochemistry, Nr. 14: 22032207.
    • , , und . . „Elektromobil in die Zukunft.DF, Nr. 35: 1418.
    • . . „Materials for Lithium Ion Batteries: Introduction, State-of-the-Art and Outlook.Tutorial Book of the 6th International Symposium on Large Lithium Ion Battery Technology and Application (LLIBTA), Nr. 1
    • . . „Materials for Rechargable Lithium Batteries: State-of-the-Art and Outlook in the Future.Tutorial Book of the 1st AABC Europe 2010, Nr. 1
    • . . „Battery R&D Programs in the EU and in Germany.Proceedings of the 10th International Advanced Automotive Battery Conference (AABC), Nr. 1
    • , und . . „Prospects for High-Energy-Density Batteries with Metallic Li Anode.Proceedings of 6th International Symposium on Large Lithium Ion Battery Technology and Application (LLIBTA), Nr. 1
    • , , , , und . . „Na-CMC as possible binder for LiFePO4/C composite electrodes. The Role of the drying procedure.ECS Transactions, Nr. 25: 265270.
    • , , , , und . . „Low Cost, Environmentally Benign Binders for Lithium-Ion Batteries.Journal of The Electrochemical Society, Nr. 157 (3): A320A325. doi: 10.1149/1.3291976.
    • , , , , , , und . . „UV cross-linked, lithium-conducting ternary polymer electrolytes containing ionic liquids.Journal of Power Sources, Nr. 195 (18): 61306137. doi: 10.1016/j.jpowsour.2009.10.079.
    • , , , , , , und . . „Performance of Li-ion Battery Anodes in Air-stable and Hydrophobic Ionic Liquid-based Electrolyte.International Journal of Energy Research, Nr. 34 (2): 97106. doi: 10.1002/er.1557.
    • , , , , und . . „Melting behavior of pyrrolidinium-based ionic liquids and their binary mixtures.Journal of Physical Chemistry C, Nr. 114 (28): 1236412369. doi: 10.1021/jp103746k.
    • , , , , , , und . . „Greener and cheaper batteries containing fluorine-free binder in combination with ionic liquid based electrolytes.ECS Transactions, Nr. 25 (36): 2125. doi: 10.1149/1.3393836.
    • , , , , und . „Na-CMC as possible binder for LiFePO4/C composite electrodes: The role of the drying procedure.ECS Transactions, Nr. 25 (36): 265270. doi: 10.1149/1.3393862.
    • , , , , , und . . „Alloying of electrodeposited silicon with lithium—a principal study of applicability as anode material for lithium ion batteries.Journal of Solid State Electrochemistry, Nr. 14: 22032207. doi: 10.1007/s10008-008-0763-4.
    • , , , , , , und . . „Melting behavior and ionic conductivity in hydrophobic ionic liquids.Journal of Physical Chemistry A, Nr. 114 (4): 177682. doi: 10.1021/jp9099418.
    Abstracts in Online-Sammlungen (Konferenzen)
    • , , , , , , , , , und . . „Computational methods for the characterization of aqueous processed cellulose-based LiFePO4/C composite electrodes.“ Beitrag präsentiert auf der 218th ECS Meeting, Las Vegas, Las Vegas, USA

    Forschungsartikel (Zeitschriften)
    • , , , , , , , und . . „Improved lithium exchange at LiFePO4 cathode particles by coating with composite polypyrrole-polyethylene glycol layers.Journal of Solid State Electrochemistry, Nr. 13 (12): 18671872. doi: 10.1007/s10008-008-0756-3.
    • , , , , und . . „Condition monitoring of lithium-ion batteries for electric and hybrid electric vehicles.Elektrotechnik und Informationstechnik, Nr. 126 (5): 186193. doi: 10.1007/s00502-009-0644-2.
    • , , , , , , , und . . „Mixtures of ionic liquids in combination with graphite electrodes: The role of Li-salt.ECS Transactions, Nr. 16 (35): 4549. doi: 10.1149/1.3123126.
    • , , , , und . . „Condition monitoring of Lithium-Ion Batteries for electric and Hybrid electric vehicles (Zustandsüberwachung von Lithium-Ionen-Batterien in Elektro- und Hybridfahrzeugen).e&i Elektrotechnik und Elektronik, Nr. 126: 186193.
    • . . „Batteries for the Cars of the future (Batterien für die Autos der Zukunft).Stahl und Eisen, Nr. 129: 56.
    • , , , , , und . . „Performance of Li-ion Battery Anodes in Air-stable and Hydrophobic Ionic Liquid-based electrolyte.International Journal of Energy Research, Nr. 34: 97106.
    • , , , , , und . . „Performance of Li-ion Battery Anodes in Air-stable and Hydrophobic Ionic Liquid-based electrolyte.International Journal of Energy Research, Nr. 34: 97106.
    • , , , , , und . . „Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: I. Electrochemical characterization of the electrolyte.Journal of Power Sources, Nr. 192: 599605.
    • , , , , , und . . „Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolyte.Journal of Power Sources, Nr. 192 (2): 599605.
    • , , , und . . „Mixtures of ionic liquids in combination with graphite electrodes: the role of Li salt.ECS Transactions, Nr. 16
    • , , , , , und . . „Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes: II. Evaluation of specific capacity and cycling efficiency and stability at room temperature.Journal of Power Sources, Nr. 192 (2): 599605. doi: 10.1016/j.jpowsour.2008.12.095.
    • , , , und . . „Ternary Sn-Sb-Co alloy film as new negative electrode for lithium-ion cells.Journal of Power Sources, Nr. 188 (2): 552557. doi: 10.1016/j.jpowsour.2008.11.116.
    • . . „The solid electrolyte interphase - The most important and the least understood solid electrolyte in rechargeable Li batteries.Zeitschrift für Physikalische Chemie, Nr. 223 (10-11): 13951406. doi: 10.1524/zpch.2009.6086.
    • , , , , und . „Nano-porous SiO/carbon composite anode for lithium-ion batteries.Journal of Applied Electrochemistry, Nr. 39 (9): 16431649. doi: 10.1007/s10800-009-9854-x.
    Forschungsartikel in Sammelbänden (Konferenzen)
    • . . „State-of-Charge and Deterioration Modeling of Lithium-Ion Cells for Hybrid Vehicles (HEV).“ Beitrag präsentiert auf der Proceedings of the 9th Stuttgart Int. Symposium “Automotive Engine Technology”, Stuttgart
    Forschungsartikel (Buchbeiträge)
    • , , und . . „Secondary Batteries- Lithium recharable systems- Lithium ion | Aging Mechanisms.“ In Encyclopedia of Electrochemical Power Sources, herausgegeben von CK Dyer, PT Moseley, Z Ogumi, DAJ Rand und BScrosati (Eds.). Boston, New York, San Diego: Academic Press.

    Fachbücher (Herausgegebene Bücher)
    • Winter, M, Brodd, RJ, Qiu, X, und Yang, Y-Q, Hrsg. . Preface; Proceedings of the Battery and Fuel Cell Materials Symposium, International Battery Materials Association, 184. Aufl. Amsterdam: Elsevier.
    Forschungsartikel (Zeitschriften)
    • , , und . . „Moderne Li-Ionen-Batterie-Komponenten: Gegenwart und Zukunft.Chemie Ingenieur Technik, Nr. 80: 1241.
    • , , , , , , und . . „Silicon/graphite composite electrodes for high capacity anodes: Influence of binder chemistry on cycling stability.Electrochemistry and Solid State Letters, Nr. 11: A76–A80.
    • , , und . . „Study of metal-supported carbon matrix as a high-capacity anode for Li-ion battery.Ionics, Nr. 14: 421425.
    • , , , , , , und . . „Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability.Electrochemical and Solid-State Letters, Nr. 11 (5): A76A80. doi: 10.1149/1.2888173.
    • , , , , und . . „Polymer electrolyte for lithium batteries based on photochemically crosslinked poly(ethylene oxide) and ionic liquid.European Polymer Journal, Nr. 44 (9): 29862990. doi: 10.1016/j.eurpolymj.2008.06.022.
    • , , , , , und . . „Ionic liquids as electrolyte in lithium batteries: In situ FTIRS studies on the use of electrolyte additives.ECS Transactions, Nr. 11 (29): 109114. doi: 10.1149/1.2938913.

    Fachbücher (Monografien)
    • , , und . . Extended Abstracts of the Battery and Fuel Cell Materials Symposium, Strongsville, OH: International Battery Materials Association.
    Artikel
    Forschungsartikel (Zeitschriften)
    • , und . . „In memoriam: Juergen O. Besenhard 1944-2006.Ionics, Nr. 13: 1.
    • . . „Prof. J.O. Besenhard (1944-2006), Obituary.Journal of Solid State Electrochemistry, Nr. 11: 337338.
    • , , , , , , , und . . „4-Bromobenzyl isocyanate versuy benzy isocyanate-New film-Forming electrolyte additives and overcharge protection additives for lithium ion batteries.Journal of Power Sources, Nr. 174: 637642.
    • . . „Material Science in Rechargeable Lithium Batteries: In memoriam of Prof. Dr. Jürgen O. Besenhard, a pioneer in the lithium battery field and former chair of the Institute of Chemistry and Technology of Inorganic Materials at Graz University of Technology.Bunsen-Magazin, Nr. 4
    • , , , , , , , , und . . „Ethyl isocyanate - An Electrolyte Additive for PC-based Electrolytes in Lithium Ion Batteries.Journal of Power Sources, Nr. 174: 628631.
    • , , , , , und . . „Novel overcharge additive for lithium ion batteries: bromo benzyl isocyanate vs. benzyl isocyanate.Journal of Power Sources, Nr. 174: 637642.
    • , , , , und . „Two-phase reaction mechanism during chemical lithium insertion into α-MoO3.Ionics, Nr. 13 (1): 38. doi: 10.1007/s11581-007-0065-3.
    • , , , , , und . „Isocyanate compounds as electrolyte additives for lithium-ion batteries.Journal of Power Sources, Nr. 174 (2): 387393. doi: 10.1016/j.jpowsour.2007.06.141.
    • , , , , , , , und . „Ethyl isocyanate-An electrolyte additive from the large family of isocyanates for PC-based electrolytes in lithium-ion batteries.Journal of Power Sources, Nr. 174 (2): 628631. doi: 10.1016/j.jpowsour.2007.06.140.
    • , , und . „Structural and electrochemical characterization of tin-containing graphite compounds used as anodes for Li-ion batteries.Journal of Power Sources, Nr. 174 (2): 800804. doi: 10.1016/j.jpowsour.2007.06.229.
    • , , , , , , , und . „Synthesis and characterization of nanoporous NiSi-Si composite anode for lithium-ion batteries.Journal of The Electrochemical Society, Nr. 154 (2): A97–A102. doi: 10.1149/1.2402106.
    Forschungsartikel in Sammelbänden (Konferenzen)
    • . . „Entwicklungstrends: Anodenmaterialien.“ Beitrag präsentiert auf der Proceedings: „Wiederaufladbare Lithiumbatterien", Haus der Technik-Seminar, München
    • , , , und . . „Extended Abstracts of the Battery and Fuel Cell Materials Symposium.“ Beitrag präsentiert auf der Proceedings of the Battery and Fuel Cell Materials Symposium, Shenzhen, China

    Forschungsartikel (Zeitschriften)
    • , , , und . . „Preface; Proceedings of the Battery and Fuel Cell Materials Symposium, International Battery Materials Association, Graz, Austria, 2004, Special issue.Journal of Power Sources, Nr. 153: 197.
    • , , , , , , , und . . „Nomex-derived activated carbon fibers as active materials in carbon based supercapacitors.Journal of Power Sources, Nr. 153: 419423.
    • , , , , , , und . . „2-Cyanofuran - a novel vinylene electrolyte additive for lithium-ion batteries.Journal of Power Sources, Nr. 158: 578582.
    • , , , und . . „Journal of Power Sources: Preface.Journal of Power Sources, Nr. 153
    • , , , , , , , , und . . „Scent of a Battery – Gas Evolution and Detection of Lithium Ion Battery Anodes.Abstracts of the International Battery Association and Hawaii Battery Conference 2006 (IBA-HBC 2006), Nr. 1
    • , , , , , , , , , , , und . . „Thin Film Electrodes Prepared by Electrospray and Advanced Dip-Coating Methods.Proceedings of the International Battery Association and Hawaii Battery Conference 2006 (IBA-HBC 2006), Nr. 1
    • , , , und . . „Novel Electrolyte Additives for Lithium Ion Batteries.Proceedings of the International Battery Association and Hawaii Battery Conference 2006 (IBA-HBC 2006), Nr. 1
    • , , , und . . „Electrolyte Additives for Lithium Ion Batteries.Proceedings of the International Battery Association and Hawaii Battery Conference 2006 (IBA-HBC 2006), Nr. 1
    • , , , , , , , , , , , , und . . „Thin Layer Electrodes and Improved Perdcolation Pattern Composites, Prepared by Atmospheric Pressure Ion Deposition and Substrate Induced Coagulation.Proceedings of the 7th China International Battery Fair (CIBF 2006), Nr. 1: 197209.
    • , , , , , und . . „Film Forming Electrolyte Additives for Lithium Ion Batteries: Simple Approach and Simple Solution?Proceedings of the 7th China International Battery Fair (CIBF 2006), Nr. 1: 401421.
    • . . „Key Materials in Lithium-Ion Batteries.Tutorial Book of the 2nd International Symposium on Large Lithium Ion Battery Technology and Application (LLIBTA), Nr. 1
    • . . „Overview of New Anode Electrolyte Material Developments for Lithium Ion Batteries.Proceedings of the 2nd International Symposium on Large Lithium Ion Battery technology and Application (LLIBTA), Nr. 1
    • , , , , , und . . „PC for PCs?- Chances and Limitations of Propylene Carbonate Based Electrolytes for Lithium Ion Batteries.Abstracts of the 210th meeting of the Electrochemical Society, Nr. 248
    • . . „Passive, Active or Hyperactive? - The Electrolyte in Lithium Ion Batteries.Conference Proceedings and Audio-Recording of the Li Mobile Power 2006 Conference, Nr. 1
    • , , , , , , , und . „Electrochemical impedance spectroscopy study of the SEI formation on graphite and metal electrodes.Journal of Power Sources, Nr. 153 (2): 391395. doi: 10.1016/j.jpowsour.2005.05.034.
    • , , , , , , , und . „Nomex-derived activated carbon fibers as electrode materials in carbon based supercapacitors.Journal of Power Sources, Nr. 153 (2): 419423. doi: 10.1016/j.jpowsour.2005.05.078.
    • , , , , , , und . „2-Cyanofuran-A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries.Journal of Power Sources, Nr. 158 (1): 578582. doi: 10.1016/j.jpowsour.2005.09.021.
    • , , , , , , , und . „Monitoring dynamics of electrode reactions in Li-ion batteries by in situ ESEM.Ionics, Nr. 12 (4-5): 253255. doi: 10.1007/s11581-006-0046-y.
    Forschungsartikel (Buchbeiträge)
    • , , und . . „SEI formation in Li batteries- II. Electrolyte additives.“ In Portable and Emergency Energy Sources, herausgegeben von Z Stoynov und DVladikova (Eds.). Sofia: Prof. Marin Drinov Publishing House.
    • , , und . . „SEI formation in Li batteries- I. General principles.“ In Portable and Emergency Energy Sources, herausgegeben von Z Stoynov und DVladikova (Eds.). Sofia: Prof. Marin Drinov Publishing House.

    Forschungsartikel (Zeitschriften)
    • , , , , , , , , , und . . „Ageing mechanisms in lithium ion batteries.Journal of Power Sources, Nr. 147: 269.
    • , , und . . „XRD evidence for the electrochemical formation of Li(PC)yCn in PC-based electrolytes.Electrochemistry Communications, Nr. 7: 947952.
    • , , , , , , und . . „What is Special about Electrolyte Decomposition Reactions on Graphite?Proceedings of the 1st International Symposium on Large Lithium Ion Battery Technology and Application (LLIBTA), Nr. 1
    • , , , , , und . . „The Alkaline Zn-MnO2 Battery – From Primary to Rechargeable Systems.Proceedings of The International Workshop "Portable and Emergency Energy Sources - From Materials To Systems", Nr. L5-1L5-14
    • , , , , , , , , und . . „A Novel Coating Technique for the Preparation of Core-Shell Materials and Thin-Film Electrodes.Proceedings of The International Workshop "Portable and Emergency Energy Sources - From Materials To Systems", Nr. L9-1-L9-22
    • , , und . „Layer by layer preparation of electrodes with defined thickness by multiple use of the SIC coating process.Journal of Power Sources, Nr. 146 (1-2): 209212. doi: 10.1016/j.jpowsour.2005.03.140.
    • , , , und . „XRD evidence for the electrochemical formation of Li+(PC) yCn- in PC-based electrolytes.Electrochemistry Communications, Nr. 7 (9): 947952. doi: 10.1016/j.elecom.2005.06.009.
    • , , , , , , , , , und . „Ageing mechanisms in lithium-ion batteries.Journal of Power Sources, Nr. 147 (1-2): 269281. doi: 10.1016/j.jpowsour.2005.01.006.
    Forschungsartikel (Buchbeiträge)
    • , , , und . . „Polymerisierbare Elektrolytadditive zur gezielten Bildung von Grenzphasen an Elektroden in Lithium-Ionen-Batterien - "Polymerizable electrolyte additives for controlled formation of interfaces at electrodes in lithium ion batteries".“ In GDCh-Monographien „Grundlagen und Anwendungen der Elektrochemischen Oberflächentechnik“, Vol. 32, herausgegeben von J Russow und JOBesenhard (Eds.). Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , , , , , , , und . . „Aktivierte Kohlenstofffasern als Elektrodenmaterial für Superkondensatoren ("Activated carbon fibers as electrode material in supercapacitors").“ In GDCh-Monographien „Grundlagen und Anwendungen der Elektrochemischen Oberflächentechnik“, Vol. 32, herausgegeben von J Russow und JOBesenhard (Eds.). Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , , , und . . „Abscheidung von Nanopartikeln auf Stromableitern mittels substratinduzierter Koagulation ("Deposition of nanoparticles on current collectors by substrate induced coagulation").“ In GDCh-Monographien "Grundlagen und Anwendungen der Elektrochemischen Oberflächentechnik", herausgegeben von J Russow und JO Besenhard. Frankfurt am Main: Gesellschaft Deutscher Chemiker.

    Fachbücher (Monografien)
    • , , und . . Extended Abstracts of the Battery and Fuel Cell Materials Symposium, Strongsville, OH: International Battery Materials Association.
    Artikel
    Forschungsartikel (Zeitschriften)
    • , , , , und . . „The electrolyte decomposition reactions on tin and graphite based anodes are different.Electrochemistry and Solid State Letters, Nr. 7: A201–A205.
    • , und . . „Erratum: What are batteries, supercapacitors and fuel cells?Chemical Reviews, Nr. 105: 1021.
    • , und . . „What are batteries, supercapacitors and fuel cells?Chemical Reviews, Nr. 104: 42454269.
    • , , , , , , , , , , und . . „The Solid Electrolyte Interface (SEI) in Rechargeable Lithium Batteries: About Understanding and Misunderstanding.Proceedings of the 5th Advanced Batteries and Accumulators (ABA), Nr. 1: 4950.
    • , , , und . . „Improving the Performance of Supercap Electrodes made by SIC.Proceedings of the 5th Advanced Batteries and Accumulators (ABA), Nr. 1: 127.
    • , , , , und . . „Propylene Gas Evolution in Pc based Electrolyte and the Connection to Pc Co-Intercalation into Graphite Anodes.Proceedings of the 5th Advanced Batteries and Accumulators (ABA), Nr. 1: 40.
    • , , , , und . . „Evolution of Unsaturated Hydrocarbene (ethylene, propylene) at the Graphite and Lithium Storage.Proceedings of the 5th Advanced Batteries and Accumulators (ABA), Nr. 1: 37.
    • , , , , , , und . . „Boron Doped Battery Graphites and their Abilities in Aggresive PC and γ-BL Rich Electrolytes.Proceedings of the 55th Annual Meeting of the ISE, Nr. 1
    • , , , , , , und . . „Battery Graphites Meeting the Requirements of PC and γ-BL Electrolytes.Proceedings of the 5th Advanced Batteries and Accumulators (ABA), Nr. 1
    • , , , , und . . „The Effect of Electrolyte Additives on the Behaviour of Carbon and Li-Alloy Anodes.Proceedings of the 6th China International Battery Fair (CIBF 2004), Nr. 1
    • , , , , , , , , , und . . „Symposium on Advanced Anodes for Lithium Ion Batteries.Proceedings of the Symposium on Advanced anodes for Lithium Ion, Nr. 1
    • , , , , , , , , , und . . „The SEI (Solid Electrolyte Interphase) and its Implications on Lithium Battery Performance.Proceedings of Batteries 2004, Nr. 1
    • , , , , , , , , , , und . . „The Solid Electrolyte Interphase (SEI) in Lithium Batteries: Understanding and Misunderstanding.Proceedings of the 2004 Taipei International Power Forum (TPF 2004), Nr. 1: B5–1–B5–22.
    • , , , , , , , , und . „Influence of the reductive preparation conditions on the morphology and on the electrochemical performance of Sn/SnSb.Solid State Ionics, Nr. 168 (1-2): 5159. doi: 10.1016/j.ssi.2004.01.027.
    • , , , , und . „Dilatometric and mass spectrometric investigations on lithium ion battery anode materials.Analytical and Bioanalytical Chemistry, Nr. 379 (2): 272276. doi: 10.1007/s00216-004-2570-9.
    • , , , , und . „In-situ FTIR investigations on the reduction of vinylene electrolyte additives suitable for use in lithium-ion batteries.Analytical and Bioanalytical Chemistry, Nr. 379 (2): 266271. doi: 10.1007/s00216-004-2522-4.
    • , , , und . „Combination of redox capacity and double layer capacitance in composite electrodes through immobilization of an organic redox couple on carbon black.Electrochimica Acta, Nr. 50 (1): 199204. doi: 10.1016/j.electacta.2004.07.030.
    Forschungsartikel (Buchbeiträge)
    • , , und . . „Carbonaceous and graphitic anodes: basic aspects.“ In Lithium Batteries: Science and Technology, herausgegeben von GA Nazri und G Pistoia. Dordrecht: Kluwer Academic.
    • , , , , , , und . . „Kontrollierte Deckschichtbildung auf Anoden in wiederaufladbaren Li-Batterien. ("Controlled film formation in rechargeable Li batteries").“ In GDCh-Monographien "Elektrochemie und Materialforschung", herausgegeben von K Jüttner und J Russow. Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , , und . . „Carbonaceous and Graphitic Anodes.“ In Lithium Batteries, Science and Technology, herausgegeben von GA Nazri und G Pistoia.

    Forschungsartikel (Zeitschriften)
    • , , , , , und . . „In Situ Characterization of SEI Formation on Graphite in the Presence of Vinylene Group Containing Film Forming Electrolyte Additives.Journal of Power Sources, Nr. 119-121: 561566.
    • , , , , , , , und . . „Acrylic Acid Nitrile, a Film Forming Electrolyte Component for Lithium Ion Batteries, which Belongs to the Family of Vinylene Group Containing Additives.Journal of Power Sources, Nr. 119-121: 368372.
    • , , , , , , , , , , und . . „A Study on Electrolyte Interactions with Graphite Anodes Exhibiting Structures with Various Amounts of Rhombohedral Phase.Journal of Power Sources, Nr. 119-121: 528537.
    • , , , und . . „Herstellung und Charakterisierung von neuartigen Elektroden für Superkondensatoren.Proceedings: Kronacher Impedanztage 2003, "Niederohm-Anwendungen", Nr. 1: 15.
    • , , , , , , und . . „Influence of Sub-Surface Structures of Graphite on the Anode Performance in Lithium Ion Batteries.Proceedings of the 4th Advanced Batteries and Accumulators (ABA), Nr. 1: 1516.
    • , , , und . . „Film-Formation at Cathodes for Lithium Ion Batteries.Proceedings of the 4th Advanced Batteries and Accumulators (ABA), Nr. 1: 4144.
    • , , und . . „Influence of Reductive Preparation Conditions on the Morphology and Electrochemical Performance of Nano-Sized Sn/SnSb Intermetallics.Proceedings of the 4th Advanced Batteries and Accumulators (ABA), Nr. 1: 155158.
    • , , , , , , , , , , und . . „The Solid Electrolyte Interphase (SEI) in Rechargeable Lithium Batteries: About Understanding and Misunderstanding.Proceedings of the 4th Advanced Batteries and Accumulators (ABA), Nr. 1: 4950.
    • , , , , und . . „SEI Formation on Lithium Storage Alloy Anodes Studied by DEMS.Proceedings of the 4th Advanced Batteries and Accumulators (ABA), Nr. 1: 4647.
    • , , , und . . „Influence of the Electrolyte Composition on the Capacity Fade of Lithium Alloy Electrodes.Proceedings of the 4th Advanced Batteries and Accumulators (ABA), Nr. 1: 48.
    • , , , , und . . „The Impact of Electrolyte Additives on the SEI Formation in Lithium Ion Batteries.Proceedings of the 4th Advanced Batteries and Accumulators (ABA), Nr. 1: 28.
    • , , und . . „Rechargeable Li-Batteries, Basics, State-of-the-Art, Perspectives.Proceedings of the International Symposium on Power Sources for Stationary and Distributed Power Systems, Nr. 1: 15.
    • , , , , , , und . . „Anode-Electrolyte Interactions in Rechargeable Lithium Batteries: Similarities and Differences of Carbonaceous and Metallic Anodes.Abstract of the Lithium-Battery-Discussion 2003, No. NNv. 7, Plenary, Nr. 1
    • , , , , , , , , , , und . . „Application of the SIC Coating Process on Supercapacitors and Batteries, Part II: Coating of Lithium Ion Battery Cathodes, Example LiCoO2.Proceedings of the International Symposium on Power Sources for Stationary and Distributed Power Systems, Nr. 1
    • , , , , und . . „Application of the SIC Coating Process on Supercapacitors and Batteries, Part I: Supercapacitor Electrodes.Proceedings of the International Symposium on Power Sources for Stationary and Distributed Power Systems, Nr. 1
    • , , , , , , , und . . „Graphits’s crystallitivity influences on anodes electrochemical properties in lithium-ion cells.Proceedings - Electrochemical Society, Nr. 20: 7787.
    • , , , , , , , , , , und . . „Anode-Electrolyte Reactions in Li Batteries: The Differences between Graphitic and Metallic Anodes.NATO-Science Series: New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells, Nr. 229: 171188.
    • , , , , , , , und . . „An Overview on SEI Formation Processes of Lithium Battery Anodes in Organic Solvent Based Electrolytes.Proceedings of the Taipei Power Forum and Exhibition (TPF 2003), Nr. 1: C4–1–C4–22.
    • , , , und . . „Electrochemical Studies on the SEI-Formation Process in the Presence of Vinylene Electrolyte Additives.Congress Catalogue: New Trends in Intercalation Compounds for Energy Storage and Conversion, Nr. 1: 7175.
    • , , , , , und . „HREM study of hexagonal and rhombohedral graphites for use as anodes in lithium ion batteries.Microscopy and Microanalysis, Nr. 9 (SUPPL. 3): 5455.
    • , , , und . „Composite supercapacitor electrodes.Journal of Solid State Electrochemistry, Nr. 8 (1): 1516. doi: 10.1007/s10008-003-0412-x.
    • , , , , , und . „In situ characterization of the SEI formation on graphite in the presence of a vinylene group containing film-forming electrolyte additives.Journal of Power Sources, Nr. 119-121: 561566. doi: 10.1016/S0378-7753(03)00289-1.
    Forschungsartikel (Buchbeiträge)
    • , , , , , , , und . . „The influence of graphite sub-surface structures on the electrochemical performance in lithium ion batteries.“ In New Trends in Intercalation Compounds for Energy Storage and Conversion, herausgegeben von K Zaghib, CM Julien und J Prakash. Pennington, NJ: The Electrochemical Society.

    Forschungsartikel (Zeitschriften)
    • , und . . „Effect of Electrolyte Additives and Carbon Surface Treatment on the Performance of Graphite Anodes.Denchi Toronkai Koen Yoshishu, Nr. 43: 8283.
    • , und . . „Advances in battery technology: rechargeable magnesium batteries and novel negative electrode materials for lithium ion batteries.ChemPhysChem, Nr. 2: 155159.
    • , , , , , und . . „Sn(II) treated MoO3 as cathode material for lithium batteries.Ionics, Nr. 8: 183191.
    • , , , und . . „Sn-Sb and Sn-Bi Alloys as new anode materials for lithium-ion batteries.Ionics, Nr. 8: 321328.
    • , , , , und . . „Binary and Ternary Intermetallics for Anodes in Lithium Ion Cells.Proceedings of the 4th Hawaii Battery Conference, Nr. 1: 177182.
    • , , und . . „Film-Forming Electrolyte Additives.Proceedings of the 4th Hawaii Battery Conference, Nr. 1: 238244.
    • , , , und . . „“Binder-Free” Supercap Electrodes Processed from High Surface Area Fine Particulate Carbon Black.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1
    • , , , , , , , und . . „Supercapacitor Electrodes Prepared from High Surface Area Carbon Black Featuring High Pseudo-Capacitance and Electrolytic Double Layer Capacitance.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1: 28–1–28–3.
    • , , , und . . „Novel Concepts for Supercapacitor Electrodes.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1: 30–1–30–2.
    • , , , und . . „Electrochemical Performance of Nano-Size Sn/SnSb Intermetallic Lithium Storage Host Materials Prepared by Different Reductive Methods.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1
    • , , , , , , und . . „Film Formation on Metallic Anodes for Lithium Ion Batteries.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1: 44–1–44–2.
    • , , , , , , , , und . . „Interaction of Electrolyte Systems and Graphites with Different Rhombohedral Content.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1: 17–1–17–2.
    • , , , , , und . . „Investigation of Electrolyte Additives for Lithium Ion Batteries using In Situ Methods.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1: 19–1–19–2.
    • , , , , , , , und . . „Characterization and XPS Analysis of Film Forming Electrolyte Additives for Lithium Ion Batteries.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1: 21–1–21–2.
    • , , , und . . „Additives to Propylene Carbonate Based Electrolytes for Lithium Ion Batteries.Proceedings of the 3rd Advanced Batteries and Accumulators (ABA), Nr. 1
    • , , und . . „Chemie und Technologie der Lithium-Ionen-Batterie.Abstract: 10. Österreichische Chemietage, Nr. PV-2
    • , , , , , , , und . . „In Situ Characterization of Film-Forming Electrolyte.Proceedings: 10. Österreichische Chemietage, Nr. 1
    • , , , , , , , , , , und . . „Film Formation at Anodes in Rechargeable Lithium Batteries in the Presence of Electrolyte Additives.Proceedings of the 202nd Meeting of the Electrochemical Society, Nr. 1
    • , , , , , , und . . „Surface Filming of Graphitic Carbons in the Presence of Electrolyte Additives.Proceedings of the 43rd Japanese Battery Conference, Nr. 1
    • , , , und . . „New Lithium Battery Electrolyte Improving the Cycling Performance of Lithium Storage Alloy Anodes.Proceedings of the 7th International Symposium on Advanced in ElectrochemicalScience and Technology (ISAEST-VII), Nr. 1
    • , , , , , , und . . „Tailoring of Lithium Battery Electrolyte Properties by the use of Electrolyte Additives.Report of the 7th International Symposium on Advances in Electrochemical Science and Technology (ISAEST-VII), Nr. 1
    • , , , , und . . „Strategies Towards Novel Supercapacitor Electrodes.Proceedings of the 12th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Nr. 1
    • , und . „Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries.ChemPhysChem, Nr. 3 (2): 155159. doi: 10.1002/1439-7641(20020215)3:2155::AID-CPHC155>3.0.CO;2-S.
    • , , und . „Anodic materials for rechargeable Li-batteries.Journal of Power Sources, Nr. 105 (2): 151160. doi: 10.1016/S0378-7753(01)00934-X.
    Forschungsartikel (Buchbeiträge)
    • , , und . . „Strategies to improve the cycling performance of lithium storage alloys.“ In New Trends in intercalation compounds for energy storage, Bd.61 , herausgegeben von C Julien, JP Pereira-Ramos und A Momchilov. Dordrecht: Kluwer Academic.
    • , , , , und . . „Elektrochemisch induzierte Polymerisation zur Bildung von Schutzschichten auf Elektroden für Lithium-Ionen-Zellen (“Electrochemically induced polymerization for formation of protecting films on electrodes for lithium ion cells").“ In GDCh-Monographien "Elektronenübertragung in Chemie und Biochemie", Bd.23 , herausgegeben von J Russow und HJ Schäfer. Frankfurt am Main: Gesellschaft Deutscher Chemiker.

    • , , , , , und . . „Preparation and radical oligomerisation of an Fe(II) complex without loss of spin-crossover properties.Chemical Monthly, Nr. 132: 519529.
    • , , , , und . . „Nanoparticular Lithium Storage Allys, Failure Mechanisms and Improvement of Cycling Perforance.Denchi Toronkai Koen Yoshishu, Nr. 42: 3233.
    • , , , und . . „Filming Properties of New Electrolyte Additives for Graphitic Anodes for Lithium Ion Cells.Proceedings of the 3rd Hawaii Battery Conference, Nr. 1: 228236.
    • , , , , , , , und . . „Filming of Graphitic Anodes in Lithium Ion Batteries-Dependence on Carbon Surface Properties.Proceedings of the 3rd Hawaii Battery Conference, Nr. 1
    • , , , , und . . „Capacity Loss and Filming of Lithium Storage Alloys.Proceedings of the 14th IBA Battery and Battery Materials Symposium, Nr. 1: 18.
    • , , , , , und . . „Anode Filming in Lithium-Ion Cells in Dependence on Graphite Properties.Abstracts of the 14th IBA Battery and Battery Materials Symposium, Nr. 1
    • , , , , und . . „New Electrolyte Additives for Rechargeable Lithium Metal Cells.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 25–1–25–2.
    • , , , und . . „Nano-Structured and Nano-Composite Lithium Storage Anode Materials.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 14–1–14–3.
    • , , , , , , und . . „New Binders for Composite Electrodes with Nano-Structured Lithium Storage Metals and Alloys.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 18–1–18–3.
    • , , , , , , , und . . „The Relevance of Graphite Properties on Anode Performance in Lithium Ion Cells.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1
    • , , , und . . „New Film Forming Electrolyte Additives for Graphitic Anodes for Lithium Ion Cells.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 27–1–27–3.
    • , , , , , und . . „The Relevance of Graphite Surface Properties for Anode Performance in Lithium Ion Cells - III. Surface Area and Surface Heterogeneities.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 22–1–22–4.
    • , , , , , und . . „The Relevance of Graphite Surface Properties for Anode Performance in Lithium Ion Cells - II. Surface Morphology.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 21–1–21–3.
    • , , , , , , , und . . „The Relevance of Graphite Surface Properties for Anode Performance in Lithium Ion Cells - I. Surface Chemical Composition.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 20–1–20–3.
    • , , , und . . „Investigation on Novel Electrolyte Additives for Improved Filming of Graphite Anodes for Lithium Ion Cells.Proceedings of the 2nd Advanced Batteries and Accumulators (ABA), Nr. 1: 26–1.
    • , , und . „Tin and tin-based intermetallics as new anode materials for lithium-ion cells.Journal of Power Sources, Nr. 94 (2): 189193. doi: 10.1016/S0378-7753(00)00585-1.
    • , , , , , , , , , und . „Studies on the anode/electrolyte interface in lithium ion batteries.Chemical Monthly / Monatshefte für Chemie, Nr. 132 (4): 473486. doi: 10.1007/s007060170110.
    • , , und . „Cyclic and acyclic sulfites: New solvents and electrolyte additives for lithium ion batteries with graphitic anodes?Journal of Power Sources, Nr. 97-98: 592594. doi: 10.1016/S0378-7753(01)00536-5.
    • , , , , , und . „X-ray photoemission studies of surface pre-treated graphite electrodes.Journal of Power Sources, Nr. 97-98: 171173. doi: 10.1016/S0378-7753(01)00540-7.
    • , , , und . „Modified carbons for improved anodes in lithium ion cells.Journal of Power Sources, Nr. 97-98: 122125. doi: 10.1016/S0378-7753(01)00523-7.
    • , , , , und . „Surface modification of graphite anodes by combination of high temperature gas treatment and silylation in nonaqueous solution.Journal of Power Sources, Nr. 97-98: 126128. doi: 10.1016/S0378-7753(01)00524-9.
    • , , , , und . „Fluorinated organic solvents in electrolytes for lithium ion cells.Journal of Power Sources, Nr. 97-98: 595597. doi: 10.1016/S0378-7753(01)00537-7.
    • , und . „Determination of the absolute and relative extents of basal plane surface area and "non-basal plane surface" area of graphites and their impact on anode performance in lithium ion batteries.Journal of Power Sources, Nr. 97-98: 151155. doi: 10.1016/S0378-7753(01)00527-4.
    • , , , , und . „Electron microscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries.Solid State Ionics, Nr. 143 (3-4): 329336. doi: 10.1016/S0167-2738(01)00886-4.
    • , , , , und . „The effect of the binder morphology on the cycling stability of Li-alloy composite electrodes.Journal of Electroanalytical Chemistry, Nr. 510 (1-2): 1219. doi: 10.1016/S0022-0728(01)00532-0.

    Forschungsartikel (Zeitschriften)
    • , , , , , , , , , , und . . „Negative electrodes in rechargeable lithium ion batteries-influence of graphite surface modification on the formation of the solid electrolyte interphase.Ionics, Nr. 6: 172179.
    • , , , , und . . „Strategies to Improve the Cycling Stability of Lithium Storage Metals and Alloys.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 8–1–8–4.
    • . . „Chemie und Technologie der Lithium-Ionen-Batterie.Abstracts: 9. Österreichische Chemietage, Nr. VO-78
    • , , , und . . „Solvated and Unsolvated Lithium Intercalation into Graphites.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 2000: 12–1–12–3.
    • , , und . . „Cyclic and Linear Sulfites for New Lithium Ion Battery Electrolytes.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 11–1–11–4.
    • , , , , und . . „Filming Properties of Fluorinated Solvents on Anodes for Lithium Ion Batteries.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 6–1–6–5.
    • , , und . . „Nanostrukturen in Batterieelektroden.Proceedings: "Reaktivität und Stabilität von Nanopartikeln" im DFG-Schwerpunktprogramm "Grundlagen der elektrochemischen Nanotechnologie", Nr. 1: 242304.
    • , , , und . . „Improving the Electrochemical Performance of Graphitic Carbons in Lithium Ion Cells by Surface Treatment.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 16–1–16–3.
    • , , , , , , und . . „XPS Studies of Graphites for Lithium Ion Cells.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 15–1–15–3.
    • , , , , und . . „Surface Modification of Graphitic Anodes by Silylation.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 17–1–17–3.
    • , , , und . . „Impacts of Graphite Pre-Treatment on Solid Electrolyte Interphase Formation of Graphitic Anodes in Lithium Ion Cells.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 10–1–10–6.
    • , , , und . . „Determination of Surface Heterogeneities on Graphites and their Relation to Performance in Lithium Ion Batteries.Proceedings of the 1st Advanced Batteries and Accumulators (ABA), Nr. 1: 9–1–9–4.
    • , , , und . . „Nano-Dispersed Li-Storage Alloys as Anode Materials for Li-Ion-Cells.Proceedings of the 198th Meeting of the Electrochemical Society, Nr. 32: 3241.
    • , , , , , , und . . „Electron Microscopy Study of Sn/SnSb Composite Electrodes for Lithium-Ion Batteries.Proceedings 12th European Congress on Electron Microscopy, Nr. 2
    • , , , , und . „Dilatometric investigations of graphite electrodes in nonaqueous lithium battery electrolytes.Journal of The Electrochemical Society, Nr. 147 (7): 24272431. doi: 10.1149/1.1393548.
    • , , , , , , und . „XPS studies of graphite electrode materials for lithium ion batteries.Applied Surface Science, Nr. 167 (1): 99106. doi: 10.1016/S0169-4332(00)00525-0.
    Forschungsartikel (Buchbeiträge)
    • , , , , und . . „Fluorierte organische Lösungsmittel als Elektrolytadditive und -komponenten für Lithium-Ionen-Zellen ("Fluorinated organic solvents as electrolyte additives and electrolyte components for lithium ion cells").“ In GDCh-Monographien "Elektrochemische Verfahren für neue Technologien", Bd.21 , herausgegeben von DM Kolb, K Mund und J Russow. Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , , , , , , und . . „Neue Polymer-Elektrolyt-Membranen für Lithium-Ionen-Batterien ("New polymer electrolyte membranes for lithium ion batteries").“ In GDCh-Monographien "Elektrochemische Verfahren für neue Technologien", Bd.21 , herausgegeben von DM Kolb, K Mund und J Russow. Frankfurt am Main: Gesellschaft Deutscher Chemiker.

    Artikel
    Forschungsartikel (Zeitschriften)
    • , und . . „Wiederaufladbare Batterien Teil II: Akkumulatoren mit nichtwäßriger Elektrolytlösung. ("Rechargeable batteries part II: Accumulators with non-aqueous electrolyte solution").Chemie in unserer Zeit, Nr. 33: 320332.
    • , und . . „Wiederaufladbare Batterien Teil I: Akkumulatoren mit wäßriger Elektrolytlösung. ("Rechargeable batteries part I: Accumulators with aqueous electrolyte solution").Chemie in unserer Zeit, Nr. 33: 252266.
    • , , , und . . „New anode materials for lithium ion cells.ITE Battery Letters, Nr. 1: 126.
    • , , , und . . „Cyclic and linear sulfites as electrolyte solvents and electrolyte additives for lithium ion cells with graphitic anodes.ITE Battery Letters, Nr. 1: 110.
    • , , , , , und . . „Kinetics of Li insertion into polycristalline and nanocrystalline ‘SnSb’ alloys investigated by transient and steady state techniques.Journal of Power Sources, Nr. 81-82: 268272.
    • , , , , , , , , , , , , , , , , , und . . „The carbon anode/electrolyte interface in lithium ion cells.ITE Battery Letters, Nr. 1: 129.
    • , , , , , , , , und . . „Lithium storage alloys as anodes for lithium ion cells.ITE Battery Letters, Nr. 1: 140.
    • , und . . „Electrochemical lithiation of tin and tin-based intermetallics and composites.Electrochimica Acta (Special edition "Li insertion into host materials"), Nr. 45: 3150.
    • , , , , und . . „Composite Electrodes for Lithium Ion Batteries containing Nano-sized Lithium Storage Metals.Proceedings of the 12th International Conference on Solid State Ionics, Nr. 1: 127128.
    • , , , , , und . . „Analytische Elektronenmikroskopie am nanostrukturierten Sn/SnSb-Kompositelektroden.Abstracts: 29. Tagung der Deutschen Gesellschaft für Elektronenmikroskopie, Nr. 1: 29.
    • , und . . „Materials for Rechargeable Li-batteries.Abstracts of the 6th Euroconference on Solid State Ionics, Nr. 119: 39.
    • , , und . . „Nano-Structured Lithium Storage Alloy Anodes.Abstracts of the 13th IBA Batteries and Batteries Materials Symposium, Nr. 24
    • , , , , und . . „Graphites with Modified Surface Morphology for Improved Anodes in Lithium Ion Cells.Performance Report of the Research Institute for Electron Microscopy (Graz University of Technology), Nr. 1
    • , , , und . „Propylene sulfite as film-forming electrolyte additive in lithium ion batteries.Electrochemistry Communications, Nr. 1 (3-4): 148150.
    • , , , und . „Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries.Electrochemical and Solid-State Letters, Nr. 2 (2-4): 161163.
    • , , , und . „FTIR and DEMS investigations on the electroreduction of chloroethylene carbonate-based electrolyte solutions for lithium-ion cells.Journal of Power Sources, Nr. 81-82: 818823.
    • , , und . „Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes.Journal of The Electrochemical Society, Nr. 146 (2): 470472.
    Forschungsartikel (Buchbeiträge)
    • , und . . „Lithiated Carbons.“ In Handbook of Battery Materials, Bd.3 , herausgegeben von JO Besenhard. Weinheim: VCH Verlagsgesellschaft.
    • , , , , , und . . „Tin and tin-based intermetallic phases as electrode materials for secondary lithium ion cells.“ In Advances in Science and Technology "Innovative Materials in Advanced Energy Technologies, Bd.24 , herausgegeben von P Vincenzini. Faenza: Techna.
    • , , , , , , , und . . „Surface modification of carbons by reaction of dangling bonds.“ In Advances in Science and Technology "Innovative Materials in Advanced Energy Technologies", Bd.24 , herausgegeben von P Vincenzini. Faenza: Techna.
    • , , , und . . „Ethylene sulfite as new film-forming agent for LiCn-anodes.“ In Advances in Science and Technology "Innovative Materials in Advanced Energy Technologies", Bd.24 , herausgegeben von P Vincenzini. Faenza: Techna.
    • , , , und . . „Röntgenbeugungsuntersuchungen zur Aufklärung der Reaktionsmechanismen der reversiblen Lithiumaufnahme von Lithiumspeicherlegierungen ("X-ray diffractometric investigations for explaining the reaction mechanism of reversible lithium uptake of lithium storage alloys").“ In GDCh-Monographien "Metalle in der Elektrochemie", Bd.18 , herausgegeben von W Plieth und R Russow. Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    Qualifikationsschriften (Dissertationen, Habilitationsschriften)
    • . . „Neue Materialien und Strategien für wiederaufladbare Lithiumbatterien („New materials and strategies for rechargeable lithium batteries“).Habilitationsschrift, Technische Universität Graz.

    Forschungsartikel (Zeitschriften)
    • , und . . „Insertion reactions in advanced electrochemical energy storage.Pure and Applied Chemistry, Nr. 70: 603608.
    • , , und . . „Graphites for lithium ion cells: the correlation of the first cycle charge loss with the Brunauer-Emmett-Teller surface-area.Journal of The Electrochemical Society, Nr. 145
    • , und . . „Chloroethylene carbonate, a solvent for lithium ion cells, evolving CO2 during reduction.Journal of The Electrochemical Society, Nr. 145: L27–L30.
    • , , , und . . „Insertion electrode materials in rechargeable lithium batteries.Advanced Materials, Nr. 10: 725763.
    • , , , , und . . „Lithium storage alloys as anode materials for lithium ion batteries.Progress in Batteries and Battery Materials, Nr. 17: 208.
    • , und . . „Reaktionen und Materialaspekte von Lithium-Ionen-Akkumulatoren.Abstracts: 26. GDCh-Hauptversammlung und 100-Jahrfeier der GÖCh, Nr. 1: 130.
    • , , , , und . . „Small Particle Size Li-Alloy Anodes for Lithium Ion Batteries.Proceedings of the 1st Hawaii Battery Conference, Nr. 1: 110.
    • , , , , und . . „Entwicklungstendenzen von Lithiumbatterien.Conference Proceedings: Batterien, Ladekonzepte & Stromversorgungsdesign, Nr. 1: 1726.
    • , , , , und . . „Ein leistungsfähiger mikroprozessorgesteuerter 16 Kanal Potentiostat/Galvanostat und seine Anwendung zur Entwicklung neuartiger Materialien für Lithium-Ionen-Batterien.Conference Proceedings: Batterien, Ladekonzepte & Stromversorgungsdesign, Nr. 1: 2839.
    • , , , , , , , , , und . . „Film-Forming Electrolyte Additives for Lithium Ion Cells.Proceedings of the 2nd Hawaii Battery Conference, Nr. 1: 215216.
    • , , , , , und . . „Fluorinated Organic Solvents in Electrolytes for Lithium Ion Cells, Effects on Flammability, Low Temperature Performance and Anode Filming.Proceedings of the 2nd Hawaii Battery Conference, Nr. 1: 181184.
    • , , und . „Graphites for lithium-ion cells: The correlation of the first-cycle charge loss with the brunauer-emmett-teller surface area.Journal of The Electrochemical Society, Nr. 145 (2): 428436.
    Forschungsartikel (Buchbeiträge)
    • , , , , , und . . „Elektrochemisches Verhalten von nanostrukturierten Wirtsmaterialien für Legierungselektroden in Lithium-Ionen-Zellen ("Electrochemical behaviour of nano-structured host materials for lithium alloy electrodes in lithium ion cells").“ In GDCh-Monographien "Batterien - Von den Grundlagen bis zur Anwendung", Bd.12 , herausgegeben von FJ Kruger, J Russow und G Sandstede. Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , , , , , und . . „Synthese nanostrukturierter Wirtsmaterialien für Legierungselektroden in Lithium-Ionen-Zellen ("Synthesis of nano-structured host materials for lithium alloy electrodes in lithium ion cells").“ In GDCh-Monographien "Batterien - Von den Grundlagen bis zur Anwendung", Bd.12 , herausgegeben von FJ Kruger, J Russow und G Sandstede. Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , , , , , , und . . „Oberflächenmodifizierte Kohlenstoffe als negative Elektrodenmaterialien in Lithium-Ionen-Zellen ("Surface-modified carbons as negative electrode materials in lithium ion cells").“ In GDCh-Monographien "Batterien - Von den Grundlagen bis zur Anwendung", Bd.12 , herausgegeben von FJ Kruger, J Russow und G Sandstede. Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , , , , , , und . . „Aktive Materialien für Lithium-Ionen-Zellen ("Active materials for lithium ion cells").“ In GDCh-Monographien "Batterien - Von den Grundlagen bis zur Anwendung", Bd.12 , herausgegeben von FJ Kruger, J Russow und G Sandstede. Frankfurt am Main: Gesellschaft Deutscher Chemiker.
    • , und . . „Electrochemical intercalation of lithium into carbonaceous materials.“ In Lithium Ion Batteries-Fundamentals and Performance, herausgegeben von M Wakihara und O Yamamoto. Weinheim: Wiley-VCH Verlag.
    • , , , , , , , und . . „Elektrolyte auf der Basis organischer Lösungsmittel für Lithium-Ionen-Zellen ("Electrolytes on the basis of organic solvents for lithium ion cells").“ In GDCh-Monographien "Batterien - Von den Grundlagen bis zur Anwendung", Bd.12 , herausgegeben von FJ Kruger, J Russow und G Sandstede. Frankfurt am Main: Gesellschaft Deutscher Chemiker.

    • , , , und . . „Graphite electrodes with tailored porosity for rechargeable ion-transfer-batteries.Journal of Power Sources, Nr. 68: 267270.
    • , , und . . „Will advanced Li-alloy anodes have a chance in lithium-ion batteries?Journal of Power Sources, Nr. 68: 8790.
    • , , und . . „Morphological Effects of the Metallic Host Matrix on the Performance of Li-Alloys as Negative Electrode Material in Li-Ion Cells.Batteries for Portable Applications and Electric Vehicles, Nr. 1: 350362.
    • , , , , und . . „Elektrochemische Untersuchungen an feinkörnigen Wirtsmetallphasen für Legierungselektroden in Lithium-Ionen-Zellen.Abstracts: 26. GDCh-Hauptversammlung und 100-Jahrfeier der GÖCh, Nr. 1: 416.
    • , , und . „Will advanced lithium-alloy anodes have a chance in lithium-ion batteries?Journal of Power Sources, Nr. 68 (1): 8790.
    • , , , und . „Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries.Journal of Power Sources, Nr. 68 (2): 267270.

    Forschungsartikel (Zeitschriften)
    • , , , und . . „Wissenschaft Aktuell.Chemie in unserer Zeit, Nr. 30: 193195.
    • , und . . „Ein neues Manganoxid für Lithium-Ionen-Batterien ("A new manganese oxide for lithium ion batteries").Chemie in unserer Zeit, Nr. 4: 194.
    • , , , , und . . „Components for Rechargeable Lithium Batteries.Abstracts of the Hot Topic Seminar, Nr. 1: 29.
    • , , und . . „Small particle size multiphase Li-alloy anodes for lithium-ion-batteries.Solid State Ionics, Nr. 90 (1-4): 281287.
    Forschungsartikel (Buchbeiträge)
    • , , und . . „Deckschichten auf LiCn-Anoden in wiederaufladbaren Li-Zellen ("Passive films on LiCn anodes in rechargeable Li-cells").“ In GDCh-Monographien "Elektrochemie der Elektronenleiter", Bd.3 , herausgegeben von F Beck. Frankfurt am Main: Gesellschaft Deutscher Chemiker.

    Forschungsartikel (Zeitschriften)
    • , und . . „Intercalationsreaktionen in elektrochemischen Stromquellen.Proceedings: 2. Ulmer Elektrochemische Tage, Ladungsspeicherung in der Doppelschicht, Nr. 1: 4799.
    • , , und . . „Electrolyte Effects on Surface-Filming of Lithium-Carbon Electrodes.Proceedings of the International Workshop on Advanced Batteries (Lithium Batteries), Nr. 1: 129137.
    • , , und . . „Film-Formation on Lithium-Graphite Electrodes for Ion-Transfer Batteries.Annex Report, PSI General Energy Technology Newsletter, Nr. 1: 2122.
    • , , , und . „Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes.Journal of Power Sources, Nr. 54 (2): 228231.
    Qualifikationsschriften (Dissertationen, Habilitationsschriften)
    • . . „Filmbildung auf Lithium/Kohlenstoff-Intercalationsanoden, Untersuchungen zum Mechanismus und zum Einfluß eines Elektrolytadditivs („Film formation on lithium/carbon intercalation anodes, investigations on the mechanism and on the effect of an electrolyte additive“).Dissertationsschrift, Westfälische Wilhelms-Universität Münster.

    • , und . . „Filming of Lithium-Carbon Anodes in Organic Electrolytes.Abstracts of the Hot Topic Seminar, Nr. 1: 4950.

    Fachbücher (Monografien)
    • . . Korrosionsschutz von Lithium/Kohlenstoff-Intercalationsanoden in organischen und anorganischen Lösungsmitteln („Corrosion protection of lithium/carbon intercalation anodes in organic and inorganic solvents“) ,
    Forschungsartikel (Zeitschriften)
    • , , , , , und . . „Inorganic film-forming electrolyte additives improving the cycling behaviour of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes.Journal of Power Sources, Nr. 44: 413420.
  • Wissenschaftliche Vorträge

    • Kessen, Dennis; Walter, Matthias; Winter, Martin; Nowak, Sascha; Wiemers-Meyer, Simon : “Fortschritte bei der Elementanalyse von Lithium-Ionen-Batterien mittels ETV-ICP-OES - Herausforderungen und Möglichkeiten”. 11th Nordic Conference on Plasma Spectrochemistry, Loen , .
    • Buchmann, Julius; van Wickeren, Stefan; Petzold, Moritz; Winter, Martin; Nowak, Sascha : “Lithium-Ionen-Batterie-Recycling - Analysetechniken für die Charakterisierung und Risikobewertung von Prozesswasser ”. Initiating, Translating & Scaling-up of Battery Innovations in North West Europe & Silicon Valley, Stanford, .
    • Kessen, Dennis; Winter, Martin; Nowak, Sascha; Wiemers-Meyer, Simon : “Post-Mortem Analyse von Lithium-Ionen-Batterien mittels Techniken der thermischen Zersetzung und Verdampfung”. Initiating, Translating & Scaling-up of Battery Innovations in North West Europe & Silicon Valley Workshop, Stanford, .
    • Buchmann, Julius; Petzold, Moritz; van Wickeren, Stefan; Winter, Martin; Nowak, Sascha : “Comprehensive Characterization of Process Water in Lithium-Ion Battery Recycling – an Analytical Guide”. 244th ECS Meeting (The Electrochemical Society), Göteburg, .
    • Wiemers-Meyer, Simon; Vahnstiege, Marc; Kröger, Till-Niklas; Harte, Patrick; Beuse, Thomas; Wölke, Jan Mathis; Klein, Sven; Börner, Markus; Winter, Martin; Nowak, Sascha : “Quantifying the Inactivation of Battery Electrode Material Particles”. 244th ECS Meeting (The Electrochemical Society), Göteburg, .
    • Kolesnikov, Aleksei; Profanter, Laurin; Lee, Ilha, Haneke, Lukas; Winter, Martin; Kasnatscheew, Johannes : “Pre-Lithiation of Silicon-Based Anode Materials: Concepts and Realization”. 244th ECS Meeting, Gothenburg, .
    • Ingber, Tjark T. K.; Bela, Marlena M.; Püttmann, Frederik; Dohmann, Jan F.; Bieker, Peter; Börner, Markus; Winter, Martin; Stan, Marian C. : “How does Lithium Electrodeposit in Open-Porous Cu Micro-Foams for Zero-Excess Lithium Metal Batteries?COMPASS Conference: Transferable Skills for Research & Innovation, Helsinki, .
    • Ulke, Jessica; Lechtenfeld, Christian; Peschel, Christoph; van Wickeren, Stefan; Bloch, Aleksandra; Simon, Anna; Winter, Martin; Nowak, Sascha : „Anwendung der Ionenchromatographie zur Charakterisierung innovativer Recyclingstrategien von Batterieelektrolyten“. Metrohm Praxiseminar: Analytik von Batterieelektrolyten, Filderstadt, .
    • Lechtenfeld, Christian; Peschel, Christoph; van Wickeren, Stefan; Bloch, Aleksandra; Winter, Martin; Nowak, Sascha : “Analysis of the Decomposition of Sulfur-Based Electrolyte Additives in Spent LiNi0.6Co0.2Mn0.2O2||AG Cells”. 243rd ECS Meeting (The Electrochemical Society), Boston, .
    • Nowak, Sascha; Peschel, Christroph; Winter, Martin : “Comprehensive Characterization of Shredded Lithium-ion Battery Recycling Material”. International Battery Seminar 2023, Orlando, .
    • Buchmann, Julius; Henschel, Jonas; Winter, Martin; Nowak, Sascha : “Phytoremediation of soils contaminated with battery materials”. MUST Winter School, Münster, .
    • Nowak, S; Henschel, J; Horsthemke, F; Stenzel, YP; Evertz, M; Girod, S; Lürenbaum, C; Kösters, K; Wiemers-Meyer, S; Winter, M : “Lithium ion battery electrolyte degradation of field-tested electric vehicle battery cells - Obtaining quantitative results by speciation”. Thermo ICP-MS Anwenderseminar, Darmstadt, .
    • Nowak, S; Peschel, C; Winter, M : “From Non-Target to Target analysis via GC-HRMS of lithium ion battery electrolyte decomposition”. GC meets NTS, Virtual, .
    • Nowak, S; Helling, M; Winter, M : „Glimmentladungsmassenspektrometrie im Bereich der Lithium-Ionen-Batterieforschung – Herausforderungen und Möglichkeiten bei der Methodenentwicklung“. Anwendertreffen Analytische Glimmentladungsspektrometrie, Dresden, .
    • Nowak, S; Peschel, C; Henschel, J; Winter, M : “Characterization of Electrolytes: from Aging to Recycling”. IMLB 2022, Sydney, .
    • Nowak, S; Leißing, M; Winter, M; Wiemers-Meyer, S : “Analysis of permanent gases and light hydrocarbons evolving during operation oflithium ion batteries with a barrier discharge ionization detector”. 10th Nordic Conference on Plasma Spectrochemistry, Loen, .
    • Helling, Malina; Mense, Maximilian; Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha : “Glow discharge-mass spectrometry in the field of lithium batteries-Overcoming challenges in method development”. 10th Nordic Conference on Plasma Spectrochemistry, Loen, .
    • Kröger, Till-Niklas; Harte, Patrick; Vahnstiege, Marc; Beuse, Thomas; Jan Mathis Wölke; Klein, Sven; Börner, Markus; Winter, Martin, Nowak, Sascha; Wiemers-Meyer, Simon : “Single particle ICP-OES analysis of battery materials determining particleinactivation and its consequences for the battery”. 10th Nordic Conference on Plasma Spectrochemistry, Loen, .
    • Kasnatscheew, Johannes; Stolz, Lukas; Winter, Martin; : “Physicochemical Interplay in Solid Polymer Electrolytes: Benchmarking, Prospects and Limits in High Voltage Lithium-based Batteries”. 241th ECS Meeting, Vancouver, .
    • Kubot, Maximilian; Winter, Martin; Nowak, Sascha : “Organofluorophosphates As Electrochemical Aging Products in Lithium Ion Battery Electrolytes”. 241th ECS Meeting, Vancouver, .
    • Helling, Malina; Winter, Martin; Nowak, Sascha : “APPLICATION AND CHALLENGES OF GLOW DISCHARGE MASS SPECTROMETRY IN THE FIELD OF LITHIUM ION BATTERIES”. 5th International Glow Discharge Spectroscopy Symposium, Oviedo, Spanien, .
    • Perner, Verena; Otteny, Fabian; Esser, Birgit; Bieker, Peter; Winter, Martin; Kolek, Martin : “Variations of Heteroaromatic Redox Polymer-Based Cathode-Active Materials for Rechargeable Li│Organic Batteries”. Organic Battery Days 2021, online, .
    • Börner, Markus; Ibing, Lukas; Dienwiebel, Iris; Winter, Martin : “Enabling aqueous processing of positive electrodes for lithium ion batteries – Challenges and opportunities for process and electrode design”. International Battery Production Conference, Braunschweig, Deutschland, .
    • Ingber, Tjark Thorben Klaus; Bieker, Peter; Stan, Marian; Winter, Martin : “Designing Surface Structured Substrates for Use as Negative Electrodes in Zero Excess Lithium Metal Batteries”. Kraftwerk Batterie - Advanced Battery Power 2021, Essen, .
    • Nowak, Sascha; Henschel, Jonas; Horsthemke, Fabian; Stenzel, Yannick Philipp; Evertz, Marco; Girod, Sabrina; Lürenbaum, Constantin; Kösters, Kristina; Wiemers-Meyer, Simon; Winter, Martin : “Lithium Ion Battery Electrolyte Degradation of Field-tested Electric Vehicle Battery Cells – A Comprehensive Analytical Study”. International Battery Seminar, Virtual, .
    • Nowak, Sascha; Grützke Martin; Rothermel, Sergej; Krüger, Steffen; Winter, Martin : “Possible Dangers in Handling and Storing of Lithium Ion Batteries during Recycling”. AABC Europe, Virtual, .
    • Kösters, Kristina; Henschel, Jonas; Winter, Martin; Nowak, Sascha : “Removal of Hexafluorophosphate for a Faster and Interference Free Analysis of Lithium IonBattery Decomposition Products by means of Gas-and Liquid-Chromatography”. 31. Doktorandenseminar des AK Separation Science, Virtual, .
    • Börner, Markus; Stan, Marian; Kolek, Martin; Küpers, Verena; Noll, Pascal; Winter, Martin : “Chancen und Herausforderungen bei der Modifizierung und Verarbeitung von Lithium-Metall-Folien”. Batterietag NRW 2020, Essen (online), Deutschland, .
    • Perner, Verena; Otteny, Fabian; Esser, Birgit; Bieker, Peter; Kolek, Martin; Winter, Martin : “Investigation on heteroatomic redox polymers as cathode-active materials for rechargeable Li/organic batteries”. INREP Annual Conference 2020, online, .
    • Nowak, Sascha; Evertz, Marco; Stenzel, Yannick P; Fehlings, Nick; Lürenbaum, Constantin; Winter, Martin : “nL droplet residues for TXRF: From the lithium ion battery research question to the WIPANO project „TRFA-KAL‘”. TUB/PTB Research Seminar , Berlin, .
    • Hanf, Lenard; Winter, Martin; Nowak, Sascha : “New insights into the capacity fading mechanisms of lithium ion batteries - Investigation of transition metal oxidation states in electrolytes by means of capillary electrophoresis”. 12. Kraftwerk Batterie Fachtagung, Münster, Deutschland, .
    • Nowak, Sascha; Harte, Patrick; Schwieters, Timo; Winter, Martin : “Qualitative and Quantitative Imaging of Transition Metal Deposition and Lithium Distribution Patterns in Lithium Ion Batteries”. 53. Jahrestagung der Deutschen Gesellschaft für Massenspektrometrie, DGMS, Münster, Deutschland, .
    • Hanf, Lenard; Winter, Martin; Nowak, Sascha : “Transition metal speciation in lithium ion battery electrolytes by means of capillary electrophoresis”. 30. Doktorandenseminar des AK Separation Science, Duisburg, Deutschland, .
    • Henschel, Jonas; Stenzel Yannick Philipp; Winter, Martin; Nowak, Sascha : “LC-MS capabilities in lithium ion battery research ‒ Electrolyte degradation and beyond”. 30. Doktorandenseminar des AK Separation Science, Duisburg, Deutschland, .
    • Börner, Markus; Ibing, Lukas; Keßler, Elizaveta; Ambrock, Karina; Dienwiebel, Iris; Winter, Martin : “Enabling aqueous processing of high-energy and high-power electrodes for lithium ion batteries – Issues and mitigation strategies”. 236th ECS Meeting, Atlanta, USA, .
    • Diehl, Marcel; Winter, Martin; Nowak, Sascha : “Glow Discharge Mass Spectrometry in Lithium Ion Batteries – The Jack of All Trades for Analyzing Solid Battery Components?Anwendertreffen Analytische Glimmentladungsspektrometrie, Freiberg, Deutschland, .
    • Stenzel, Yannick Philipp; Henschel, Jonas; Winter, Martin; Nowak, Sascha : “Species Analysis of LIB Electrolytes using Hyphenated Techniques and Elemental Mass Spectrometry”. CANAS 2019, Freiberg, Deutschland, .
    • Kröger, Till-Niklas; Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha : “Direct Analysis of Argon-borne Particles in the Field of Lithium Ion Battery Cathode Materials by ICP-OES”. CANAS 2019, Freiberg, Deutschland, .
    • Nowak, Sascha; Evertz, Marco; Diehl, Marcel; Kenkel, Alexander; Winter, Martin : “Novel Insights into Lithium Losses and Solid Electrolyte Interphase Formation in Lithium Ion Batteries”. CANAS 2019, Freiberg, Deutschland, .
    • Nowak, Sascha; Evertz, Marco; Diehl, Marcel; Kenkel, Alexander; Winter, Martin : “Novel Perceptions of Lithium Ion Batteries: Isotopic Labeling for Insights into Lithium Losses and Solid Electrolyte Interphase Formation By Means of Plasma‑Based Techniques”. The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow, Schottland, .
    • Kolek, Martin; Otteny, Fabian; Perner, Verena; Esser, Birgit; Winter, Martin; Bieker, Peter : “Phenothiazine-Based Redox Polymers As Cathode-Active Materials in Li/Organic Batteries”. Electrochemical Conference on Energy & the Environment 2019, Glasgow, Scotland, .
    • Kolesnikov, Aleksei; Zhou, Dong; Kolek, Martin; Bieker, Peter; Winter, Martin; Stan, Marian Cristian : “Cementation Reaction of Lithium Powder Electrodes for Improving the Electrochemical Performances of Lithium-Metal Batteries”. Electrochemical Conference on Energy & the Environment 2019, Glasgow, Scotland, .
    • Börner, Markus; Beuse, Thomas; Badillo Jimenez, Juan Pablo; Imholt, Laura; Winter, Martin : “Assessing Safety Properties of Lithium Metal Batteries”. The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow, Schottland, .
    • Horsthemke, Fabian; Winkler, Volker; Friesen, Alex; Winter, Martin; Nowak, Sascha : “Insights into Electrolyte Decomposition Phenomena Utilizing Solid Phase Microextraction - Gas Chromatography - Mass Spectrometry in Combination with an in Situ Lithium Ion Cell”. The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow, Schottland, .
    • Kolek, Martin; Bieker, Georg; Diddens, Diddo; Bieker, Peter; Winter, Martin : “Systematical Study of the Stabilization and Electrochemical Behavior of Li and Mg Polysulfides”. Electrochemical Conference on Energy & the Environment 2019, Glasgow, .
    • Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha : “In Situ NMR Study on Lib Electrolytes -Tracing the Network of Reactions in a Battery-”. The Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage (ECEE 2019), Glasgow, Schottland, .
    • Küpers, Verena; Bieker, Georg; Bieker, Peter; Winter, Martin; Kolek, Martin : “Increased Oxidative Stability of Electrolytes for Mg-Based Batteries Using Ionic Liquids as (Co-)Solvents”. German Israeli Battery School 2019, Berlin, Deutschland, .
    • Kolek, Martin; Bieker, Georg; Bieker, Peter; Winter, Martin : “Polysulfides in Mg/S Batteries – Stabilization and Electrochemical Behavior”. German Israeli Battery School 2019, Berlin, Germany, .
    • Nowak, Sascha; Evertz, Marco; Schwieters, Timo; Vortmann, Britta; Winter, Martin : “Analysis of Lithium Ion Batteries – Demands, State-of-the-art and Challenges”. Joint Seminar HZB & PTB, Berlin, Deutschland, .
    • Wiemers-Meyer, Simon; Winter Martin; Nowak, Sascha : “Revealing the Network of Reactions in LIB Electrolytes By In Situ and Ex Situ NMR Techniques”. 11. Kraftwerk Batterie Fachtagung, Aachen, Deutschland, .
    • Henschel, Jonas; Kösters, Kristina; Winter, Martin; Nowak, Sascha : “Quantification of potentially toxic Phosporus-based decomposition products in Lithium Ion battery electrolytes”. ANAKON 2019, Münster, Deutschland, .
    • Nowak, Sascha; Harte, Patrick; Mense, Maximilian; Schwieters, Timo; Winter, Martin : “Adaptation and Improvement of an Elemental Mapping Method for Lithium Ion Battery Electrodes via of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry”. ANAKON 2019, Münster, Deutschland, .
    • Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha : “In Situ and Ex Situ NMR Analysis of Lithium Ion Battery Electrolytes”. ANAKON 2019, Münster, Deutschland, .
    • Diehl, Marcel; Evertz, Marco; Kenkel, Alexander; Winter, Martin; Nowak, Sascha : “Plasma-Based Techniques: A Versatile Tool to Gather Insights into Lithium Losses of Lithium Ion Batteries”. European Winter Conference on Plasma Spectrochemistry 2019, Pau, Frankreich, .
    • Winter, M : „Hätten Sie’s gewusst? Geschichte und Geschichten der Lithiium-Ionen-Batterie, deren Auswirkungen wie heute noch spüren“. CAR Symposium, Bochum, .
    • Winter, Martin : „Der Konjunktiv II im Kontext der Batterie – Was wäre, wenn…?7. Batterieforum Deutschland , Ritz-Carlton, Berlin, .
    • Horsthemke, Fabian; Friesen, Alex; Winter, Martin; Nowak, Sascha : “Analysis of Aging Phenomena in Lithium Ion Battery Electrolytes by SPME-GC-MS”. 29. Doktorandenseminar des AK Separation Science, Hohenroda, Deutschland, .
    • Nowak, Sascha; Stenzel, Yannick Philipp; Winter, Martin : “Evaluation of different plasma conditions and resolutions and analysis of organo(fluoro)phosphates via GC-ICP-SF-MS”. Thermo ICP-MS Anwenderseminar, Kassel, Deutschland, .
    • Nowak, Sascha; Evertz, Marco; Horsthemke, Fabian; Schwieters, Timo; Winter, Martin : “Analytical Possibilities for the Analysis of Lithium Ion Battery Aging Effects and the Correlation to the Electrochemical Performance”. Rudolf-Diesel-Industry-Fellowship Lecture Series, München, Deutschland, .
    • Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha : “In Situ NMR Measurements of LIB Electrolytes -Revealing the Network of Reactions in a Battery”. AiMES 2018 - ECS and SMEQ Joint International Meeting, Cancun, Mexiko, .
    • Stan, Marian Cristian; Becking, Jens; Kolek, Martin; Gröbmeyer, Albert; Bieker, Peter Maria; Winter, Martin : “Mechanical and chemical surface modification of lithium as a tool to alter the electrodeposition process and to improve the cycling performances of lithium-metal electrodes”. AiMES 2018, Cancun, Mexico, .
    • Kasnatscheew, Johannes; Winter, Martin; : “The real impact of LiPF6/Organic Carbonate-based electrolyte oxidation on specific capacity losses and cycle life at high positive electrode potentials”. AIMES Meeting, Cancun, .
    • Nowak, Sascha; Evertz, Marco; Horsthemke, Fabian; Kasnatscheew, Johannes; Börner, Markus; Winter, Martin : “Unraveling Transition Metal Dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in Lithium Ion Full Cells by Using the Total Reflection X-ray Fluorescence Technique”. 9. TXRF und µ-XRF-Workshop, Münster, Deutschland, .
    • Küpers, Verena; Kolek, Martin; Bieker, Peter; Winter, Martin; Brunklaus, Gunther : “In Situ 7Li-NMR Analysis of Lithium Metal Surface Deposits”. Electrochemistry 2018, Ulm University, Ulm, Germany, .
    • Evertz, Marco; Kröger, Till-Niklas; Winter, Martin; Nowak, Sascha : “Total Reflection X-Ray Fluorescence in the Field of Lithium Ion Batteries – Elemental Detection in Lithium containing Electrolytes using Nanoliter Droplets”. 9. TXRF und µ-XRF-Workshop, Münster, Deutschland, .
    • Evertz, Marco; Kenkel, Alexander; Winter, Martin; Nowak, Sascha : “Understanding Lithium Losses in Layered Lithium Ion Battery Cathode Materials by Means of Plasma-Based Techniques”. 13. Symposium „Massenspektrometrische Verfahren der Element­spurenanalyse“ & ICPMS-Anwendertreffen, Berlin, Deutschland, .
    • Nowak, Sascha; Schwieters, Timo; Evertz, Marco; Mense, Maximilian; Harte, Patrick; Winter, Martin : “Visualizing elemental deposition and distribution patterns on graphite anodes from lithium ion batteries: A laser ablation-inductively coupled plasma-mass spectrometry approach”. 13. Symposium „Massenspektrometrische Verfahren der Element­spurenanalyse“ & ICPMS-Anwendertreffen, Berlin, Deutschland, .
    • Stenzel, Yannick Philipp; Henschel, Jonas; Winter Martin; Nowak Sascha : “Investigation of different plasma conditions and resolutions for lithium ion battery electrolyte analysis by means of GC-ICP-SF-MS”. Interdisziplinäres Doktorandenseminar des Deutschen Arbeitskreises für Analytische Spektroskopie (DAAS), Geesthacht, Deutschland, .
    • Diehl, Marcel; Naber, Verena; Winter, Martin; Nowak, Sascha : “Deciphering the Lithium Ion Movement in Lithium Ion Batteries: Determination of the Isotopic Abundances of 6Li and 7Li by Means of Plasma-Based Mass Spectrometric Techniques”. Interdisziplinäres Doktorandenseminar des Deutschen Arbeitskreises für Analytische Spektroskopie (DAAS), Geesthacht, Deutschland, .
    • Evertz, Marco; Winter, Martin; Nowak Sascha : “Elemental Investigation of Lithium Ion Battery Materials by Means of Plasma- and X ray Based Techniques”. Interdisziplinäres Doktorandenseminar des Deutschen Arbeitskreises für Analytische Spektroskopie (DAAS), Geesthacht, Deutschland, .
    • Evertz, Marco; Stenzel, Yannick Philipp; Horsthemke, Fabian; Winter, Martin; Nowak, Sascha : “Total Reflection X ray Fluorescence of Lithium Ion Battery Electrolytes from Field Tested Electric Vehicles”. European Conference on X-Ray Spectrometry: EXRS2018, Ljubljana, Slowenien, .
    • Stenzel, Yannick Philipp; Henschel, Jonas; Winter, Martin; Nowak, Sascha : “IDENTIFICATION AND QUANTIFICATION OF POTENTIALLY HAZARDOUS DECOMPOSITION PRODUCTS OF LITHIUM ION BATTERY ELECTROLYTES CHROMATOGRAPHIC TECHNIQUES WITH ICP-SF-MS DETECTION ”. 9th Nordic Conference on Plasma Spectrochemistry, Loen, Norwegen, .
    • Nowak, Sascha; Schwieters, Timo; Lürenbaum, Constantin; Mense, Maximilian; Vortmann-Westhoven, Britta; Winter, Martin : “Visualizing elemental deposition patterns on graphite anodes from lithium ion batteries: A combination of laser ablation-inductively coupled plasma-mass spectrometry and laser ablation-inductively coupled plasma-optical emission spectrometry”. 9th Nordic Conference on Plasma Spectrochemistry, Loen, Norwegen, .
    • Evertz, Marco; Kenkel, Alexander; Winter, Martin; Nowak, Sascha : “INVESTIGATION OF LITHIUM LOSSES IN LITHIUM ION BATTERIES BY MEANS OF PLASMA BASED TECHNIQUES USING ISOTOPE LABELED MATERIALS”. 9th Nordic Conference on Plasma Spectrochemistry, Loen, Norwegen, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Winter, Martin; Bieker, Peter : “Understanding Magnesium/Sulfur Batteries: The Different Electrochemistry of Li and Mg Polysulfide Solutions”. ECS Spring Meeting, Seattle, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Winter, Martin; Bieker, Peter : “The Solvent-dependent Electrochemistry of Lithium and Magnesium Polysulfide Solutions”. Li-SM3 Conference 2018, Chicago, .
    • Nowak, Sascha; Diehl, Marcel; Evertz. Marco; Winter, Martin : “Direct Solid Analysis of Carbonaceous Electrodes Using 6Lithium Enriched Non-Aqueous Electrolytes and Transitition Metal Dissolution with Self-Prepared Matrix Matched Standards by Pulsed-Glow-Discharge-Sector Field-Mass Spectrometry (pGD-SF-MS)”. 4th International Glow Discharge Spectroscopy Symposium (IGDSS2018), Berlin, Deutschland, .
    • Ibing, Lukas; Gallasch, Tobias; Hintennach, Andreas; Winter, Martin; Schappacher, Falko : “A new low viscosity binder system for aqueous processing of ultra-thick Li ion battery cathodes”. Kraftwerk Batterie 2018, Münster, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Winter, Martin; Bieker, Peter : “Magnesium/Sulfur Batteries - The Differences Between Mg and Li Polysulfide Chemistries”. Kraftwerk Batterie, Münster, .
    • Nowak, Sascha; Schwieters, Timo; Vortmann, Britta; Lürenbaum, Constantin; Winter, Martin : “Laser Ablation ICP-MS Method for the Investigation of Lithium Ion Battery Electrodes”. CANAS & ESAS 2018, Berlin, Deutschland, .
    • Evertz, Marco; Kenkel, Alexander; Diehl, Marcel; Winter, Martin; Nowak, Sascha : “Investigation of 6Li-Isotope Labeled Lithium Ion Battery Electrodes by means of Plasma-based Techniques”. CANAS & ESAS 2018, Berlin, Deutschland, .
    • Diehl, Marcel, Evertz, Marco; Ibing, Lukas; Winter, Martin; Nowak, Sascha : “Combination of Different Elemental Analysis Methods with Isotope Dilution Analysis by Means of Plasma-Based Mass Spectrometric Techniques”. CANAS & ESAS 2018, Berlin, Deutschland, .
    • Stenzel, Yannick; Winter, Martin; Nowak, Sascha : “Quantitative analysis of potentially hazardous decomposition products of lithium ion battery electrolytes”. CANAS & ESAS 2018, Berlin, Deutschland, .
    • Nowak, Sascha; Mönnighoff, Xaver; Grützke, Martin; Winter, Martin : „Sub und überkritisches Kohlendioxid mit Lösemitteladditiven zur Wiedergewinnung von Lithium Ionen Batterie Elektrolyten“. Jahrestreffen der ProcessNet-Fachgruppe„Hochdruckverfahrenstechnik, Erlangen, Deutschland, .
    • Nowak, Sascha; Rothermel, Sergej; Winter, Martin : “Recycling of Graphite and Reutilization as Anode Material in Lithium Ion Battery Cells”. AABC Europe 2018, Mainz, Deutschland, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Wellmann, Julia; Winter, Martin; Bieker, Peter : „Magnesium/Schwefel-Batterien: Unterschiede zwischen Magnesium- und Lithium-Polysulfiden (Kurzpräsentation)“. Batterieforum Deutschland 2018, Berlin, .
    • Nowak, Sascha; Henschel, Jonas; Horsthemke, Fabian; Schultz, Carola; Winter, Martin : “Application of Gas and Liquid Chromatography Mass Spectrometry Methods for the Characterization of Lithium Ion Battery Electrolytes”. Shimadzu MS Days 2017, Hamburg, Shimadzu, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Wellmann, Julia; Kolek, Martin; Winter, Martin; Bieker, Peter : “Influence of the cation in Li and Mg polysulfide solutions in dependence of the solvent chemistry (Poster Talk)”. 6th Workshop »Lithium-Sulfur-Batteries«, Dresden, .
    • Diehl, Marcel; Evertz, Marco; Winter, Martin; Nowak, Sascha : “DIRECT SOLID ANALYSIS OF CARBONACEOUS ELECTRODES USING 6LI ENRICHED NON AQUEOUS ELECTROLYTES IN LITHIUM ION BATTERIES BY GD-SF-MS”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Stenzel, Yannick Philipp; Winter, Martin; Nowak, Sascha : “SPECIATION OF ORGANOPHOSPHORUS AGING PRODUCTS IN LITHIUM ION BATTERY ELECTROLYTES VIA DRY PLASMA GC-ICP-SF-MS”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Henschel, Jonas; Winter, Martin; Nowak, Sascha : “HPLC-MSn INVESTIGATION OF LITHIUM ION BATTERY ELEKTROLYTE- RELATED AGING PRODUCTS”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Nowak, Sascha; Kraft, Vadim; Stenzel Yannick; Menzel, Jennifer; Winter, Martin : “SPECIATION OF ORGANO(FLUOROPHOSPHATES IN LITHIUM ION BATTERY ELECTROLYTES BY SILMUTANEOUS 2D ION CHROMATOGRAPHY WITH ELECTROSPRAY IONIZATION AND INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Vortmann-Westhoven, Britta: Lürenbaum, Constantin; Winter, Martin; Nowak, Sascha : “WHERE IS THE LITHIUM? QUANTITATIVE DETERMINATION OF THE LITHIUM DISTRIBUTION IN LITHIUM ION BATTERY CELLS BY INDUCTIVELY COUPLED PLASMA TECHNIQUES”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Börner, Markus; Evertz, Marco; Kollmer, Felix; Schappcher, Falko Mark; Winter, Martin; Nowak, Sascha : “ANALYSIS OF ACTIVE MATERIAL DEGRADATION IN LITHIUM ION BATTERIES BY MEANS OF TIME-OF-FLIGHT SECONDARY MASS SPECTROMETRY ”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Preibisch, Yves; Stenzel, Yannick Philipp; Winter, Martin; Nowak, Sascha : “INVESTIGATION OF ENVIRONMENTAL FRIENDLY BINDER MATERIALS FOR LI ION BATTERIES BY MEANS OF PYROLYSIS-GC/EI-MS ”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Schwieters, Timo; Winter, Martin; Nowak, SAscha : “Spatially Resolved Elemental Deposition on Aged Lithium Ion Battery Graphite Electrodes by means of LA-ICP-MS”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Horsthemke, Fabian; Glogovac, Ivan; Mönnighoff, Xaver; Winter, Martin; Nowak, Sascha : “CHARACTERIZATION OF PHOSPHAZENE ADDITIVES AND THEIR DECOMPOSITION PRODUCTS IN LITHIUM ION BATTERY ELECTROLYTES BY GC-ORBITRAP-MS WITH DIFFERENT IONIZATIONS”. Ionization Principles in Organic and Inorganic Mass Spectrometry, Menorca, Spanien, .
    • Börner, Markus; Nowak, Sascha; Kollmer, Felix; Zech, Claudia; Beckhoff, Burkhard; Schappacher, Falko M.; Winter, Martin : “Analysis of the transition metal dissolution/deposition process in lithium ion batteries”. European Materials Research Society - ALTECH, Straßburg, Frankreich, .
    • Pyschik, Marcelina; Winter, Martin; Nowak, Sascha : “INVESTIGATIONS OF IONIC LIQUIDS AND ELECTROLYTES FROM LITHIUM ION BATTERIES BY CAPILLARY ELECTROPHORESIS”. 23rd International Symposium on Separation Sciences (ISSS 2017), Wien, Österreich, .
    • Vortmann, Britta; Kraft, Vadim; Winter, Martin; Nowak, Sascha : “Transition Metal Analysis in Lithium Ion Battery (LIB) Electrolytes by Ion Chromatography (IC) with Post-Column Reaction (PCR) and UV/Vis-Detectiondifferent Columnsvia self-prepared Chelation-Based Columns”. 23rd International Symposium on Separation Sciences (ISSS 2017), Wien, Österreich, .
    • Evertz, Marco; Kasnatscheew, Johannes; Winter, Martin; Nowak, Sascha : “Total Reflection X-Ray Fluorescence in the Field of Lithium Ion Batteries – Elemental Detection on Carbonaceous Anodes”. 17th International Conference on Total Reflection X-Ray Fluorescence Analysis and Related Methods (TXRF2017), Brescia, Italien, .
    • Kasnatscheew, Johannes; Winter, Martin : “Investigation and optimization of SEI-layers caused by novel siloxane-based aprotic liquid electrolytes ”. German Israel Battery School (GIBS), , Hadera/Tel Aviv, .
    • Pyschik, Marcelina; Zech, Claudia; Beckhoff, Burkhard; Winter, Martin; Nowak, Sascha : “Investigations of Ionic Liquids by Ion Chromatography, Capillary Electrophoresis and X-Ray Absorption Spectrometry”. European Materials Research Society Spring Meeting, Straßburg, Frankreich, .
    • Evertz, Marco; Schiweters, Timo; Börner, Markus; Winter, Martin; Nowak, Sascha : “Matrix-Matched Calibration Approach for Sector-Field Glow Discharge- Mass Spectrometry in the Field of Lithium Ion Batteries”. Anwendertreffen Analytische Glimmentladungsspektrometrie, Bremen, Deutschland, .
    • Nowak, Sascha; Kraft, Vadim; Vortmann-Westhoven, Britta; Winter, Martin; Andersson, Jan; Nesterenko, Pavel : „Bestimmung von Übergangsmetallen in Lithium Ionen Batterie Elektrolyten mittels Ionenchromatographie“. Anwenderforum IC, Münster, Deutschland, .
    • Nowak, Sascha; Strehlau, Jenny; Weber, Till; Bornhorst, Julia; Schwerdtle, Tanja; Winter, Martin : „Fluoridbestimmung in Zellkulturmedien zur Untersuchung der Toxizität von Lithium Ionen Batterie Elektrolyten“. 9. Analytische Tage, Jena, Deutschland, .
    • Schappacher, Falko M.; Winter, Martin; Friesen, Alex; : “Lithium Ion Batteries: State of the Art in Performance and Safety”. 38. Vienna Motor Symposium, ÖVK, Vienna, Austria, .
    • Evertz, Marco; Kasnatscheew, Johannes; Zech, Claudia; Beckhoff; Winter, Martin; Nowak, Sascha : “Elemental Investigation of various Lithium Ion Battery Cathode Materials by means of Plasma- and X-Ray-Based Techniques”. ANAKON 2017, Tübingen, Deutschland, .
    • Pyschik, Marcelina; Winter, Martin; Nowak, Sascha : “Decomposition and Reaction of the Additive 1,3-Propane Sultone with Electrolyte Compounds”. 20th Topical Meeting of the International Society of Electrochemistry, Buenos Aires, Argentinien, .
    • Evertz, Marco; Schwieters, Timo; Börner, Markus; Winter, Martin; Nowak, Sascha : “Investigation of Lithium Ion Battery Electrodes by means of Sector Field-Glow Discharge-Mass Spectrometry (SF-GD-MS)”. European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton, Österreich, .
    • Lürenbaum, Constantin; Mönnighoff, Xaver; Fischer, Steffen; Winter, Martin; Nowak, Sascha : “Investigation of Lithium-Ion Battery Electrolytes by Gas Chromatography - Barrier Ionization Discharge Detector”. European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton, Österreich, .
    • Stenzel, Yannick; Lürenbaum, Constantin; Winter, Martin; Nowak, Sascha : “Speciation Analysis of Organophosphorus Aging Products of Lithium Ion Battery Electrolytes by means of GC-ICP-SF-MS”. European Winter Conference on Plasma Spectrochemistry - EWCPS 2017, St. Anton, Österreich, .
    • Kraft, Vadim; Winter, Martin; Nowak, Sascha : „Analytik von Alterungsprodukten der Lithium-Ionen Batterieelektrolyten mittels Flüssigkeitschromatographie“. Chromatographie Anwenderseminar, Gelsenkirchen, Deutschland, .
    • Pyschik, Marcelina; Winter, Martin; Nowak, Sascha : „Alterungsprozesse von Ionischen Flüssigkeiten und Lithium Ionen Batterie Elektrolyten“. 27. Doktorandenseminar Hohenroda, Hohenroda, Deutschland, .
    • Nowak, Sascha; Schultz, Carola; Winter, Martin : “Qualitative and Quantitative Investigations of Organic Electrolytes in Lithium-Ion Batteries with LC-IT-TOF-MS and LC-MS/MS”. Shimadzu MS-Tage - Anwendertreffen und MS-Seminar, Berlin, Deutschland, .
    • Nowak, Sascha; Mönnighoff, Xaver; Stenzel, Yannick; Winter, Martin : “Orbitechnologie in Vergleich zur konventionellen GC-MS ”. European Food and Environmental Seminars 2016, Münster, Deutschland, .
    • Hildebrand, Stephan; Friesen, Alex; Schappacher, Falko; Winter, Martin : “Thermal Stability of Lithium-ion Battery Materials: A Kinetic Consideration ”. 7th Battery Safety 2016, Bethesda, MD, .
    • Stenzel, Yannick; Grützke, Martin; Winter, Martin; Nowak, Sascha : “Analysis of Lithium Ion Battery Materials by Pyrolysis-GC-MS”. Pyrolysis GC-MS User Meeting , Duisburg, Deutschland, .
    • Pyschik, Marcelina; Winter, Martin; Nowak, Sascha : “CE/ESI-MS Investigations of Electrolyte from Lithium-Ion Batteries”. CE Forum, Regensburg, Deutschland, .
    • Nowak, Sascha; Kraft, Vadim; Menzel, Jennifer; Vortmann, Britta; Winter, Martin : “Investigation of lithium ion battery electrolytes by simultaneous two dimensional IC-ESI-MS and IC-ICP-MS”. 2nd Global IC User Meeting, Herisau, Schweiz, .
    • Vortmann-Westhoven, Britta; Kraft, Vadim; Lürenbaum, Constantin; Hanf, Lenard, Diehl; Marcel; Winter, Martin; Nowak, Sascha : “Lithium Ion Batteries: Stoichiometric Characterization of Electrodes and Determination of Transition Metal Dissolution in Electrolytes using CE and IC”. 2nd Global IC User Meeting, Herisau, Schweiz, .
    • Bieker, Georg; Jalkanen, Kirsi; Winter, Martin; Bieker, Peter : “Towards Magnesium-Sulfur Batteries”. GDCh Electrochemistry 2016, Goslar, Deutschland, .
    • Nowak, Sascha; Evertz, Marco; Lürenbaum, Constantin; Winter, Martin; : „TXRF in der Batterieanalytik“. 8. TXRF und µ-XRF-Workshop, Münster, Deutschland, .
    • Evertz, Marco; Winter, Martin; Nowak, Sascha : “Detektion von elementaren Batteriedegradationsprodukten mittels TXRF ”. 8. TXRF und µ-XRF-Workshop, Münster, Deutschland, .
    • Nowak Sascha, Stenzel Yannick, Kraft Vadim, Menzel, Jennifer, Winter Martin : “SPECIATION OF ORGANOPHOSPHATES IN LITHIUM ION BATTERY ELECTROLYTES WITH 2D-IC-ICP-MS AND GC-SF-ICP-MS”. 25. ICP-MS Anwendertreffen & 12. Symposium Massenspektrometrische Verfahren der Elementspurenanalyse, Siegen, Deutschland, .
    • Mönnighoff, Xaver; Konersmann, Benedikt; Horsthemke, Fabian; Friesen, Alex; Grützke, Martin; Winter, Martin; Nowak, Sascha : “Post-Mortem SFE of Electrolyte from Commercially Available 18650-type Lithium Ion Batteries and Characterization by GC-MS”. 31th International Symposium on Chromatography, Cork, Irland, .
    • Schultz, Carola; Vedder, Sven; Winter, Martin; Nowak, Sascha : “Identification and Quantificationof Aging Products in Lithium Ion Battery Electrolytes with LC-MS”. 31th International Symposium on Chromatography, Cork, Irland, .
    • Hildebrand, Stephan; Friesen, Alex; Schappacher, Falko; Winter, Martin : “Evaluating the Safety of Lithium ion Battery Materials via Accelerating Rate Calorimetry (ARC) ”. 17th International Conference Advanced Batteries, Accumulators and Fuel Cells, Brno University of technology, Brno, Czech Republic, .
    • Menzel, Jennifer; Kraft, Vadim; Winter, Martin; Nowak, Sascha : “In vitro Study of the Reactions of Alkyl Phosphates from Lithium Ion Battery Electrolyte in Human Whole Blood, using simultaneous 2D/IC/ESI-MS”. 31th International Symposium on Chromatography, Cork, Irland, .
    • Vortmann, Britta; Kraft, Vadim; Lürenbaum, Constantin; Winter, Martin; Nowak, Sascha : “Determination of Lithium and Transitition Metals in Lithium Ion Battery Components by Capillary Electrophoresis and Ion Chromatography”. 31th International Symposium on Chromatography, Cork, Irland, .
    • Bieker, Georg; Jalkanen, Kirsi; Winter, Martin; Bieker, Peter : “Studies on the Magnesium Anode in Various Electrolytes”. 1st International Symposium on Magnesium Batteries, Blaubeuren, Deutschland, .
    • Nowak, Sascha; Schappacher, Falko; Grützke, Martin; Kraft, Vadim; Weber, Waldemar; Reichert, Mathias; Kilic, Bilge; Winter, Martin; : “Electrolytes: A key component for improved safety and longer life of lithium ion batteries”. International Battery Association (IBA), Nantes, Frankreich, .
    • Cekic-Laskovic, Isidora; Nowak, Sascha; Schappacher, Falko; Winter, Martin : “Electrolytes for Li-Ion Batteries: Limitations, Challenges and Oppurtunities”. 18th International Meeting on Lithium Batteries, Chicago, USA, .
    • Bieker, Georg; Winter, Martin; Bieker, Peter : „Magnesium-Schwefel-Batterien“. "Demokratie und Wissenschaft", Promovierendenforum der Heinrich Böll Stiftung, Berlin, Deutschland, .
    • Vortmann, Britta; Winter, Martin; Nowak, Sascha : “Investigation of the lithium distribution in lithium-ion battery cells and of the influence of different parameters”. 8. Kraftwerk Batterie, Münster, Deutschland, .
    • Menzel, Jennifer; Winter, Martin; Nowak, Sascha : “Influence of electrolyte additives on the decomposition behaviour of LIPF6 based LIB electrolytes”. 8. Kraftwerk Batterie, Münster, Deutschland, .
    • Friesen, Alex; Horsthemke, Fabian; Mönnighoff, Xaver; Winter, Martin; Schappacher, Falko : “Studie zur Korrelation der Alterung bei tiefen Temperaturen und der Sicherheit von kommerziellen Lithium-Ionen Zellen des Typs 18650”. 8. Kraftwerk Batterie Fachtagung, Münster, Deutschland, .
    • Bieker, Georg; Winter, Martin; Bieker, Peter : “Approaching Magnesium-Sulfur Batteries”. GDCh JCF Frühjahrssymposium 2016, Kiel, Deutschland, .
    • Streipert Benjamin; Janssen Pia; Cao Xia; Amereller Marius; Cekic-Laskovic Isidora; Winter Martin : “Rolle der Inaktivmaterialien in Hochvolt-Lithium-Ion-Batterien”. International Conference on Innovative Electrochemical Energy Materials and Technologies (EEMT2015), Guangxi University, Nanning, China, .
    • Janssen, Pia; Streipert, Benjamin; Wendt, Christian; Krafft, Roman; Stoev, Martin; Kraft, Vadim; Murmann, Patrick; Kalinovich, Nataliya; Lewis-Alleyne, Lesley; Korth, Martin; Röschenthaler, Gerd-Volker; Winter, Martin; Cekic-Laskovic, Isidora : “Investigation of the shutdown potential adjustment by modification of carbene adducts in lithium ion batteries”. International Conference on Innovative Electrochemical Energy Materials and Technologies, Guangxi University, Nanning, China, .
    • Friesen, Alex; Schultz, Carola; Brunklaus, Gunther; Rodehorst, Uta; Börner, Markus; Mönnighoff, Xaver; Haetge, Jan; Schappacher, Falko; Winter, Martin : “Long term aging of automotive type lithium-ion cells”. 228th ECS Meeting, Conference, Phoenix, USA, .
    • Tillmann S, Hermida Merino D, Winter M, Cekic-Laskovic I, Loos K : “Block Copolymer-Templates for the Design of Three-Dimensional Interpenetrating Current Collectors for Submicrostructured Electrodes”. 66th Annual Meeting of the International Society of Electrochemistry, Taipei, Taiwan, .
    • Murmann Patrick, Kalinovich Natalya, Shevchuk Michael, Roeschenthaler Gert-Volker, Cekic-Laskovic Isidora, Winter Martin : “Study on fluorine content in phosphates used as flame retardant additives / co-solvents in electrolytes for lithium-ion batteries”. 226. Meeting of the Electrochemical Society, Cancun, Mexiko, .
    • Hahn, Hendrik; Wagner, Ralf; Schappacher, Falko; Winter, Martin; Nowak, Sascha : “In-situ Swagelok® Differential Electrochemical Mass Spectrometry (ISDEMS): New On-line Analysis Enables Insight into Lithium Ion Batteries During Operation”. Colloquium Spectroscopicum Internationale XXXIX, Portugal, .
    • Börner, Markus; Vortmann, Britta; Niehoff, Philip; Schappacher, Falko; Winter, Martin : “Comparison of different synthesis methods for LiNi0.5Mn1.5O4: Electrochemical performance and aging mechanisms”. 227th ECS Meeting, Chicago, USA, .
    • Murmann, Patrick; Niehoff, Philip; Schmitz, René; Nowak, Sascha; Sartori, Peter; Schmitz, Raphael Wilhelm; Winter, Martin : “Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6”. 225. Meeting of the Electrochemical Society, Orlando, Florida, USA, .
    • Börner, Markus; Stenzel, Yannick; Schappacher, Falko; Winter, Martin : “Analysis of the aging mechanisms on the surface of LiNi0.5Co0.2Mn0.3O2 cathodes in commercial 18650 lithium ion batteries”. Kraftwerk Batterie, Aachen, Deutschland, .
    • Börner, Markus; Friesen, Alex; Haetge, Jan; Berghus, Debbie; Meier, Vladislav; Winter, Martin; Schappacher, Falko : „Studie zur Korrelation von Alterung und Sicherheit von Lithium-Ionen Batterien anhand kommerzieller Zellen des Typs 18650 basierend auf LiNi0.5Co0.2Mn0.3O2 / C“. Batterieforum Deutschland 2015, Berlin, Deutschland, .
    • Pyschik, Marcelina; Naber, Verena; Passerini, Stefano; Winter, Martin; Nowak, Sascha : “Aging Investigation of various Electrolytes by means of IC/ESI-MS and CE-ESI-MS”. 225th ECS Meeting, Orlando, USA, .
    • Börner, Markus; Klamor, Sebastian; Hoffmann, Björn; Schroeder, Melanie; Winter, Martin; Schappacher, Falko : “Analysis of the manganese dissolution and deposition in LiMn2O4/Li5Ti5O12 based lithium-ion batteries”. 224th ECS Meeting, San Francisco, USA, .
    • Börner, Markus; Klamor, Sebastian; Hoffmann, Björn; Schroeder, Melanie; Winter, M; Schappacher, Falko : “Analysis of the manganese dissolution and deposition in LiMn2O4/Li4Ti5O12 based lithium-ion batteries”. XXXVIII Colloquim Spectroscopium Internationale, Tromso, Norwegen, .
    • Lux, Simon; Placke Tobias, Engelhardt Christina; Nowak, Sascha; Rodehorst, Uta; Meyer, Hinrich; Passerini Stefano; Wirth, Klaus; Winter, Martin : “Enhanced performance of silica dry-coated graphite”. 219th ECS Meeting, Montreal, Kanada, .