BIEKER, Dr. Peter (geb. Plaspohl)


MEET - Münster Electrochemical Energy Technology
Raum: C.1.2.04
Wilhelm-Schickard-Straße 8
D-48149 Münster

Tel.: +49 251 83-36750
peter.bieker@uni-muenster.de

Forschungsschwerpunkte: Modifikationen von Graphiten als Anodenmaterial für Lithium Ionen Batterien; Lithium-Luft-Batterien, Erforschung einer für Sauerstoff nicht permeablen Membran

Dissertationsthema: Beeinflussung und Quantifizierung der intrinsischen und extrinsischen Ladungskompensation in Polyelektrolyt-Multischichten

  • Patentanmeldungen

    • M. Winter, S. Passerini, S. F. Lux, P. Bieker, T. Placke, H.-W. Meyer, “Electrochemical Cell”; application number: DE20111054119 20110930; priority number: DE20111054119 20110930; international publication number: WO 2013/045561 A1.
    • M. Winter, S. Passerini, S. F. Lux, P. Bieker, T. Placke, H.-W. Meyer, “Electrochemical Cell”; application number: WO2012EP69103 20120927; priority number: DE20111054119 20110930; also published as: DE102011054119 (A1).
    • M Winter, S. Passerini, P. Bieker, J. Heine, U. Wietelmann, C Hartnig, U. Immel, „Lithiumpulveranode und galvanisches Element, das eine gebinderte Lithiumpulveranode enthält“, application number DE 102012223826.3.
    • M. Winter, B. Esser, M. Kolek, F. Otteny, F.; P. Schmidt, P. Bieker, „Elektrodenmaterial und Komposit-Elektroden auf Basis eines Polymers und Kohlenstoff“; application number: DE102017109655.A1; PCT /EP2018/061591

     

  • Präsentationen

    • P. Bieker, T. Placke, O. Fromm, H.-W. Meyer, S. Passerini, M. Winter, “Dual-ion cells - an option for stationary batteries”, Electrochemistry 2012 (GdCH), Technische Universität München, München, 2012.
    • P. Bieker, T. Placke, S. F. Lux, C. Engelhardt, S. Nowak, U. Rodehorst, H.-W. Meyer, S. Passerini, K.-E. Wirth, M. Winter, “Enhanced electrochemical performance of metal oxide coatings on graphite in combination with fluorine-free, aqueous processable binder”, 220th ECS Meeting 2011, Boston, 2011.
    • P. Plaspohl, M. Schönhoff, “Growth Laws and Swelling Behavior of Weak Polyelectrolyte Multilayers”, 6th Zsigmondy Colloquium 2010, Chemnitz, 2010.
 
  • Publikationen

    • , , , , , , , und . . „The Mechanism of Lithium Deposition in Open-Porous 3D Copper Micro-Foam Electrodes for Zero-Excess Lithium Metal Batteries (ZELMBs).“ präsentiert auf der 1st #BatteryCityMünster PhD-Day, Münster
    • , , , , , , , und . „Elucidating the lithium deposition behavior in open-porous copper micro-foam negative electrodes for zero-excess lithium metal batteries.Journal of Materials Chemistry A, Nr. 11 (33): 1782817840. doi: 10.1039/D3TA04060G.
    • , , , , , , , , und . . „Immobilizing Poly(vinylphenothiazine) in Ketjenblack-Based Electrodes to Access its Full Specific Capacity as Battery Electrode Material.Advanced Functional Materials, Nr. 33 (9) 2210512. doi: 10.1002/adfm.202210512.
    • , , , , , , , und . . „The Influence of Polyethylene Oxide Degradation in Polymer-Based Electrolytes for NMC and Lithium Metal Batteries.Advanced Energy and Sustainability Research, Nr. 4 (12) 2300153. doi: 10.1002/aesr.202300153.

    • , , , , , und . . „Negative Sulfur-Based Electrodes and their Application in Battery Cells: Dual-Ion Batteries as an Example.Journal of Solid State Electrochemistry, Nr. 26: 20772088. doi: 10.1007/s10008-022-05215-w.
    • , , , , , , und . . „Evaluating the Polymer Backbone – Vinylene versus Styrene – of Anisyl‐substituted Phenothiazines as Battery Electrode Materials.Batteries & Supercaps, Nr. 6 (2): e202200. doi: 10.1002/batt.202200464.

    • , , , und . . „Tailored 3D-Microstructured Electrode Substrates for Increased Performance in Zero-Excess Lithium Metal Batteries.“ präsentiert auf der 240th ECS Meeting, Orlando, FL doi: 10.1149/MA2021-02194mtgabs.
    • , , , , , und . . „Opportunities and Limitations of Ionic-Liquid- and Organic Carbonate Solvent-Based Electrolytes for Mg-Ion-Based Dual-Ion Batteries.ChemSusChem, Nr. 14 (20): 44804498. doi: 10.1002/cssc.202101227.
    • , , , , , , , , und . . „Increasing the Lithium Ion Mobility in Poly(Phosphazene)-Based Solid Polymer Electrolytes through Tailored Cation Doping.Journal of The Electrochemical Society, Nr. 168 (7): 070559. doi: 10.1149/1945-7111/ac148d.
    • , , , , , , und . . „Degradation phenomena of lithium metal powder electrodes in liquid electrolyte.“ Beitrag präsentiert auf der Advanced Battery Power 2021, Online
    • , , , und . . „Asymmetric Anions for enhanced Ionic Liquid-based Electrolytes in O2-Li-Batteries.“ Beitrag präsentiert auf der Advanced Battery Power - Kraftwerk Batterie 2021, Online
    • , , , , , , , , , und . . „Galvanic Couples in Ionic Liquid‐Based Electrolyte Systems for Lithium Metal Batteries—An Overlooked Cause of Galvanic Corrosion?Advanced Energy Materials, Nr. 2101021 doi: 10.1002/aenm.202101021.
    • , , , , , , , , und . . „Galvanic Corrosion as a Challenge for the Application of Ionic Liquids in O2ǁLi Cell Chemistries.“ Beitrag präsentiert auf der Advanced Battery Power - Kraftwerk Batterie 2021, Online
    • , , , , , , , , und . . „Bridging the Gap between Small Molecular π-Interactions and Their Effect on Phenothiazine-Based Redox Polymers in Organic Batteries.ACS Applied Energy Materials, Nr. 4 (8): 7622–7631. doi: 10.1021/acsaem.1c00917.
    • , , , , , und . . „Lithium Powder Synthesis and Preparation of Powder-Based Composite Electrodes for Application in Lithium Metal Batteries.Energy Technology, Nr. 2100871 doi: 10.1002/ente.202100871.
    • , , , , , , , und . . „Insights into the Solubility of Poly (vinylphenothiazine) in Carbonate-Based Battery Electrolytes.ACS applied materials & interfaces, Nr. 13 (10): 1244212453. doi: 10.1021/acsami.0c20012.
    • , , , , , , , , und . . „Dibenzo[a,e]Cyclooctatetraene‐Functionalized Polymers as Potential Battery Electrode Materials.Macromolecular Rapid Communications, Nr. 42 (18): 2000725. doi: 10.1002/marc.202000725.

    • , , , , , und . . „Approaching Electrochemical Limits of MgxClyz+ Complex-Based Electrolytes for Mg Batteries by Tailoring the Solution Structure.Journal of The Electrochemical Society, Nr. 167 (16): 160505. doi: 10.1149/1945-7111/abc7e4.
    • , , , , , , , und . . „Galvanic Corrosion of Lithium‐Powder‐Based Electrodes.Advanced Energy Materials, Nr. 10 (15): 2000017. doi: 10.1002/aenm.202070065.
    • , , , , , , , , , und . . „Solid-state lithium-sulfur battery enabled by Thio-LiSICON/Ploymer composite electrlyte and sulfuized polyacrylonitrile cathode.Advanced Functional Materials, Nr. xx
    • , , , , , und . . „Electrolytes and Metallic Anodes: About an Old Argument That Marks the Fundamental Understanding of Modern Metal Anodes in Advanced Battery Systems.“ Beitrag präsentiert auf der Pacific Rim Meeting on Electrochemical and Solid State Science (PRiMe), Honolulu, Hawaii (online) doi: 10.1149/MA2020-024671mtgabs.
    • , , , , , , , , und . . „Sputter coating of lithium metal electrodes with lithiophilic metals for homogeneous and reversible lithium electrodeposition and electrodissolution.Materials Today, Nr. Volume 39: 137145. doi: 10.1016/j.mattod.2020.04.002.
    • , , , , , und . . „Solid Electrolyte Interphase Evolution on Lithium Metal Electrodes Followed by Scanning Electrochemical Microscopy Under Realistic Battery Cycling Current Densities.ChemElectroChem, Nr. 7: 18. doi: 10.1002/celc.202000441.

    • , , , , und . . „In situ 7Li-NMR analysis of lithium metal surface deposits with varying electrolyte compositions and concentrations.Physical Chemistry Chemical Physics, Nr. 21: 2608426094. doi: 10.1039/C9CP05334D.
    • , , , , und . . „In Situ NMR Analysis of Lithium Metal Surface Deposits from Electrolytes with Varying Salt Concentrations.“ Beitrag präsentiert auf der Electrochemical Conference on Energy and the Environment: Bioelectrochemistry and Energy Storage, Glasgow, Scotland
    • , , , , , , , , , , , und . . „High Capacity Utilization of Li Metal Anodes by Application of Celgard® Separator-Reinforced Ternary Polymer Electrolyte.Journal of The Electrochemical Society, Nr. 166 (10): A2142–A2150. doi: 10.1149/2.1131910jes.
    • , , , , , und . . „Method for Improved Interfaces of Micro-Patterned Lithium Metal Anodes and Solid Polymer Electrolytes.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen, Deutschland
    • , , , und . . „Magnesium and Lithium Metal Anodes: Future Battery Technologies Side-by-Side?“ Beitrag präsentiert auf der Advanced Lithium Batteries for Automobile Applications ABAA 12, Ulm, Germany
    • , , , , , , , , und . . „Lithium: Protection, Modification and the Use in Different Battery Systems.“ Beitrag präsentiert auf der Workshop "Lithium Metal Anodes: Processing and Integration in (Solid-State) Batteries", Dresden, Germany
    • , , , , , und . . „Phenothiazine-functionalized poly(norbornene)s as high-rate cathode-materials for organic batteries.ChemSusChem, Nr. xx doi: 10.1002/cssc.201903168.
    • , , , , , , und . . „Poly(vinylphenoxazine) as fast-charging cathode material for organic batteries.ACS Sustainable Chemistry & Engineering, Nr. 2020 (8): 238247. doi: 10.1021/acssuschemeng.9b05253.
    • , , , , , und . . „Cementation Reaction of Lithium Powder Electrodes for Improving the Electrochemical Performances of Lithium-Metal Batteries.“ Beitrag präsentiert auf der Electrochemical Conference on Energy & the Environment, Glasgow, Scotland
    • , , , , , , und . . „Lithium-Powder Based Electrodes Modified with ZnI2 for Enhanced Electrochemical Performance of Lithium-Metal Batteries.Journal of The Electrochemical Society, Nr. 166 (8): A1400A1407. doi: 10.1149/2.0401908jes.
    • , , , , , und . . „Chemical modification of lithium-powder electrodes for higher capacity utilisation in lithium-metal batteries.“ Beitrag präsentiert auf der Advanced Battery Power 2019, Aachen, Germany
    • , , , , und . . „Lithium-Metal Foil Surface Modification: Investigations of Scanning Electrochemical Microscopy (SECM).“ Beitrag präsentiert auf der 11. Kraftwerk Batterie Fachtagung, Aachen, Deutschland
    • , , , und . „Ionic Liquid-based Electrolytes for a Safer Future of Lithium/Oxygen Batteries.“ Beitrag präsentiert auf der 11. Kraftwerk Batterie Fachtagung, Aachen, Deutschland

    • , , , , , , und . . „Magnesium/Sulfur Batteries: The Differences Between Mg and Li Polysulfides.“ Beitrag präsentiert auf der Batterieforum Deutschland 2018, Berlin, Deutschland
    • , , , , , , und . . „Preparation and electrochemical investigation of lithium powder electrodes.“ Beitrag präsentiert auf der Kraftwerk Batterie 2018, Münster
    • , , , , , und . . „Understanding Mg/S Batteries: The Different Electrochemistry of Li and Mg Polysulfide Solutions.“ Beitrag präsentiert auf der IMLB 2018, Kyoto, Japan
    • , , , , , und . . „Enhanced Cycle Life in Solid –State Lithium Metal Batteries Using Modified Lithium Electrodes.“ Beitrag präsentiert auf der Electrochemistry 2018, Ulm, Deutschland
    • , , , , , , und . . „Electrochemical investigations of in situ alloyed Li-metal surfaces by using a LiTFSI/MgTFSI2-containing Polymer Electrolyte.“ Beitrag präsentiert auf der 16th Ulm ElectroChemical Talks (UECT), Ulm, Deutschland
    • , , , , , , und . . „Cation-Dependent Electrochemistry of Polysulfides in Lithium and Magnesium Electrolyte Solutions.Journal of Physical Chemistry C, Nr. 122 (38): 2177021783. doi: 10.1021/acs.jpcc.8b06560.

    • , , , , , , und . . „Lithium metal surface modification with silicon-based material in the solid polymer electrolyte system.“ Beitrag präsentiert auf der 649. WE-Heraeus-Seminar: In-operando characterization of energy materials, Bad Honnef, Germany
    • , , , , , , , und . . „Lithium-Metal Foil Surface Modification: An Effective Method to Improve the Cycling Performance of Lithium-Metal Batteries.Advanced Materials Interfaces, Nr. 1700166 doi: 10.1002/admi.201700166.
    • , , , , und . . „Improving the electrochemical performance of lithiummetal systems by lithium surface modification.“ Beitrag präsentiert auf der Advanced Battery Power Conference 2017, Aachen
    • , , , , , , und . . „Modified Imidazolium-Based Ionic Liquids With Improved Chemical Stability Against Lithium Metal.Chemistryselect, Nr. 2 (21): 6052–6056. doi: 10.1002/slct.201701599.
    • , , , , , und . . „Influence of the Cation in Lithium and Magnesium Polysulphide Solutions in Dependence of the Solvent Chemistry.Physical Chemistry Chemical Physics, Nr. 19 (18): 1115211162. doi: 10.1039/C7CP01238A.
    • , , , , , , und . . „Influence of the cation in Li and Mg polysulfide solutions in dependence of the solvent chemistry.“ Beitrag präsentiert auf der 6th Workshop »Lithium-Sulfur-Batteries«, Dresden

    • , , , , und . . „Polymers with Redox-active Functional Groups as Cathode Materials in Rechargeable Batteries.“ Beitrag präsentiert auf der FoChIn - Forschung in der chemischen Industrie, Münster
    • , , , , , und . . „Immobilised 10-methylphenothiazine and thianthrene molecules as active cathode materials in rechargeable batteries.“ Beitrag präsentiert auf der Advanced Battery Power, April 26-27 2016, Münster
    • , , und . . „Magnesium-Schwefel-Batterien.“ Beitrag präsentiert auf der "Demokratie und Wissenschaft", Promovierendenforum der Heinrich Böll Stiftung, Berlin, Deutschland
    • , , und . . „From Lithium-Sulfur towards Magnesium-Sulfur Batteries.“ Beitrag präsentiert auf der "Campus", Sommerakademie der Heinrich Böll Stiftung, Bad Bevensen, Deutschland
    • , , und . . „Studies on the Magnesium Anode in Various Electrolytes.“ Beitrag präsentiert auf der Kraftwerk Batterie, Münster, Deutschland
    • , , , , , , und . . „Decomposition of Imidazolium-Based Ionic Liquids in Contact with Lithium Metal.ChemSusChem, Nr. 10 (5): 876–883. doi: 10.1002/cssc.201601496.
    • , und . . „Lithium-Ionen-Technologie und was danach kommen könnte.Chemie in unserer Zeit, Nr. 50 (3): 172186. doi: 10.1002/ciuz.201600745.

    • , , , , und . . „HELiS - High energy lithium sulphur cells and batteries.“ Beitrag präsentiert auf der Elektromobilität in NRW, Essen
    • , , , , , , und . . „Thianthrene-Functionalized Polymers As High-Voltage Materials for Organic Cathode-Based Dual-Ion Batteries.Meeting Abstracts, Nr. MA2015-02 (3): 316.
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der GDCh-Wissenschaftsforum Chemie 2015, Dresden, Deutschland
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der Forschung in der Chemischen Indrustrie, Münster, Deutschland
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der Kraftwerk Batterie, Aachen, Deutschland
    • , , und . . „Electrochemical in situ Investigations of SEI and Dendrite Formation on the Lithium Metal Anode.“ Beitrag präsentiert auf der GDCh JCF Frühjahrssymposium 2015, Münster, Deutschland
    • , und . . „Was braucht man für eine Super-Batterie?Chemie in unserer Zeit, Nr. 50 (1): 2633. doi: 10.1002/ciuz.201500713.

    • , , , , , , , und . . „Using Polyisobutylene as a Non-Fluorinated Binder for Coated Lithium Powder (CLiP) Electrodes.Electrochimica Acta, Nr. 138: 288293. doi: 10.1016/j.electacta.2014.06.128.

    • , , , , , und . . „Coated Lithium Powder (CliP) Electrodes for Lithium-Metal-Batteries.Advanced Energy Materials, Nr. 4 (5): 1300815. doi: 10.1002/aenm.201300815.
    • , , , , , und . „Coated Lithium Powder (CLiP) Electrodes for Lithium-Metal Batteries.Advanced Energy Materials, Nr. null (null) doi: 10.1002/aenm.201300815.

    • , , , , , , und . . „Dual-ion cells based on anion intercalation into graphite from ionic liquid-based electrolytes.Zeitschrift für Physikalische Chemie, Nr. 226 (5-6): 391407. doi: 10.1524/zpch.2012.0222.
    • , , , , , , , und . . „Graphite surface modifications by elevated temperature gas treatments.“ Beitrag präsentiert auf der Kraftwerk Batterie 2012, Münster, Germany
    • , , , , , , , , und . . „Impact of graphite surface modifications on graphite surface properties.“ Beitrag präsentiert auf der Electrochemistry 2012 (GdCH), Technische Universität München, München, Germany
    • , , , , , , , , und . . „Enhanced Electrochemical Performance of Graphite Anodes for Lithium-Ion Batteries by Dry Coating with Hydrophobic Fumed Silica.Journal of The Electrochemical Society, Nr. 159 (11): A1849–A1855. doi: 10.1149/2.070211jes.
    • , , , , , , , und . . „Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells.Journal of The Electrochemical Society, Nr. 159 (11): A1755–A1765. doi: 10.1149/2.011211jes.
    • , , , , , , , , und . . „Influence of graphite surface modifications on the ratio of basal plane to "non-basal plane" surface area and on the anode performance in lithium ion batteries.Journal of Power Sources, Nr. 200: 8391. doi: 10.1016/j.jpowsour.2011.10.085.
    • , , , , , , , , und . . „Influence of graphite surface modifications on the ratio of basal plane to “non-basal plane” surface area and on the anode performance in lithium ion batteries.Journal of Power Sources, Nr. 200: 8391. doi: 10.1016/j.jpowsour.2011.10.085.

    • , , , , , , und . . „Modified graphites for improved anode performance in lithium-ion batteries.“ Beitrag präsentiert auf der Bunsenkolloquium - Grenzflächen in Lithium(ionen)-Batterien, Goslar, Germany

    • , und . „Linear and exponential growth regimes of multilayers of weak polyelectrolytes in dependence on pH.Macromolecules, Nr. 43 (11): 50525059. doi: 10.1021/ma1007489.
  • Wissenschaftliche Vorträge

    • Ingber, Tjark T. K.; Bela, Marlena M.; Püttmann, Frederik; Dohmann, Jan F.; Bieker, Peter; Börner, Markus; Winter, Martin; Stan, Marian C. : “How does Lithium Electrodeposit in Open-Porous Cu Micro-Foams for Zero-Excess Lithium Metal Batteries?COMPASS Conference: Transferable Skills for Research & Innovation, Helsinki, .
    • Perner, Verena; Otteny, Fabian; Esser, Birgit; Bieker, Peter; Winter, Martin; Kolek, Martin : “Variations of Heteroaromatic Redox Polymer-Based Cathode-Active Materials for Rechargeable Li│Organic Batteries”. Organic Battery Days 2021, online, .
    • Ingber, Tjark Thorben Klaus; Bieker, Peter; Stan, Marian; Winter, Martin : “Designing Surface Structured Substrates for Use as Negative Electrodes in Zero Excess Lithium Metal Batteries”. Kraftwerk Batterie - Advanced Battery Power 2021, Essen, .
    • Perner, Verena; Otteny, Fabian; Esser, Birgit; Bieker, Peter; Kolek, Martin; Winter, Martin : “Investigation on heteroatomic redox polymers as cathode-active materials for rechargeable Li/organic batteries”. INREP Annual Conference 2020, online, .
    • Kolesnikov, Aleksei; Zhou, Dong; Kolek, Martin; Bieker, Peter; Winter, Martin; Stan, Marian Cristian : “Cementation Reaction of Lithium Powder Electrodes for Improving the Electrochemical Performances of Lithium-Metal Batteries”. Electrochemical Conference on Energy & the Environment 2019, Glasgow, Scotland, .
    • Küpers, Verena; Bieker, Georg; Bieker, Peter; Winter, Martin; Kolek, Martin : “Increased Oxidative Stability of Electrolytes for Mg-Based Batteries Using Ionic Liquids as (Co-)Solvents”. German Israeli Battery School 2019, Berlin, Deutschland, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Winter, Martin; Bieker, Peter : “Understanding Magnesium/Sulfur Batteries: The Different Electrochemistry of Li and Mg Polysulfide Solutions”. ECS Spring Meeting, Seattle, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Winter, Martin; Bieker, Peter : “The Solvent-dependent Electrochemistry of Lithium and Magnesium Polysulfide Solutions”. Li-SM3 Conference 2018, Chicago, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Winter, Martin; Bieker, Peter : “Magnesium/Sulfur Batteries - The Differences Between Mg and Li Polysulfide Chemistries”. Kraftwerk Batterie, Münster, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Kolek, Martin; Wellmann, Julia; Winter, Martin; Bieker, Peter : „Magnesium/Schwefel-Batterien: Unterschiede zwischen Magnesium- und Lithium-Polysulfiden (Kurzpräsentation)“. Batterieforum Deutschland 2018, Berlin, .
    • Bieker, Georg; Jalkanen, Kirsi; Diddens, Diddo; Wellmann, Julia; Kolek, Martin; Winter, Martin; Bieker, Peter : “Influence of the cation in Li and Mg polysulfide solutions in dependence of the solvent chemistry (Poster Talk)”. 6th Workshop »Lithium-Sulfur-Batteries«, Dresden, .
    • Bieker, Georg; Jalkanen, Kirsi; Winter, Martin; Bieker, Peter : “Towards Magnesium-Sulfur Batteries”. GDCh Electrochemistry 2016, Goslar, Deutschland, .
    • Bieker, Georg; Jalkanen, Kirsi; Winter, Martin; Bieker, Peter : “Studies on the Magnesium Anode in Various Electrolytes”. 1st International Symposium on Magnesium Batteries, Blaubeuren, Deutschland, .
    • Bieker, Georg; Winter, Martin; Bieker, Peter : „Magnesium-Schwefel-Batterien“. "Demokratie und Wissenschaft", Promovierendenforum der Heinrich Böll Stiftung, Berlin, Deutschland, .
    • Bieker, Georg; Winter, Martin; Bieker, Peter : “Approaching Magnesium-Sulfur Batteries”. GDCh JCF Frühjahrssymposium 2016, Kiel, Deutschland, .