Universität MünsterHomepageComputer Vision & Machine Learning Systems
  • zum Inhalt
  • zur Hauptnavigation
  • zur Subnavigation
  • Home
  • Team
  • Research
  • Teaching
  • AI@UNI-MS
  • Media
  • de
  • en
  • Sebastian Thiele
  • Prof. Dr. Benjamin Risse
  • Dr. Marlon Becker
  • Daniel Beckmann
  • Julian Bigge
  • Simon Boeder
  • Dr. Dominik Drees
  • Dr. Jan Ernsting
  • Luis Garcia-Rodriguez
  • Eike Gebauer
  • Jacqueline Kockwelp
  • Pascal Kockwelp
  • Jonas Konrad
  • Malte Modlich
  • Constanza Molina
  • Leon Pielage
  • Jonathan Radas
  • Vandita Shukla
  • Mingkun Tan
  • Sebastian Thiele

Sebastian Thiele

Professorship of Geoinformatics for Sustainable Development (Prof. Risse)
Sebastian Thiele

Heisenbergstr. 2
48149 Münster

s.thiele@uni-muenster.de

  • Research Foci

    • Machine / Deep Learning for Image Processing
    • Small Object / Insect Detection and Tracking
    • Representation Learning
    • Biomedical Imaging
  • CV

    Academic Education

    since 10.2019
    Ph. D. studies (Dr. rer. nat.), Computer Vision and Machine Learning Systems (Prof. Benjamin Risse)
    10.2017 – 09.2019
    Master of Science (Computer Science), University of Münster

    Honors

    2024
    Paper of the Month – Medizinische Fakultät der Universität Münster
  • Publications

    2025

    • Thiele, S., Kockwelp, J., Wistuba, J., Kliesch, S., Gromoll, J., & Risse, B. (2025). Investigating Imaging, Annotation and Self-Supervision for the Classification of Continuously Developing Cells in Histological Whole Slide Images. in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)

    2024

    • Gebauer, E., Thiele, S., Ouvrard, P., Sicard, A., & Risse, B. (2024). Towards a Dynamic Vision Sensor-based Insect Camera Trap. Winter Conference on Applications of Computer Vision 2024, Waikoloa, Hawaii.
    • Kockwelp, J., Thiele, S., Bartsch, J., Haalck, L., Gromoll, J., Schlatt, S., Exeler, R., Bleckmann, A., Lenz, G., Wolf, S., Steffen, B., Berdel, W. E., Schliemann, C., Risse, B., & Angenendt, L. (2024). Deep learning predicts therapy-relevant genetics in acute myeloid leukemia from Pappenheim-stained bone marrow smears. Blood Advances, 8 (1), 70–79. doi: 10.1182/bloodadvances.2023011076.

    2023

    • Haalck, L., Thiele, S., & Risse, B. (2023). Tracking Tiny Insects in Cluttered Natural Environments using Refinable Recurrent Neural Networks. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, Hawaii. doi: 10.1109/WACV57701.2024.00697.

    2022

    • Thiele, S., & Risse, B. (2022). Narrowing Attention in Capsule Networks. in IEEE (ed.), 26th International Conference on Pattern Recognition (pp. 2679–2685). Wiley-IEEE Press.
    • Kockwelp, J., Thiele, S., Kockwelp, P., Bartsch, J., Schliemann, C., Angenendt, L., & Risse, B. (2022). Cell Selection-based Data Reduction Pipeline for Whole Slide Image Analysis of Acute Myeloid Leukemia. in IEEE/CVF (ed.), In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern RecognitionThe IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR) (pp. 1825–1834). doi: 10.1109/CVPRW56347.2022.00199.

    2021

    • Valkov, D., Thiele, S., Huesmann, K., & Risse, B. (2021). Touch Recognition on Complex 3D Printed Surfaces using Filter Response Analysis. in IEEE (ed.), IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 195–200). Wiley-IEEE Computer Society Press. doi: 10.1109/VRW52623.2021.00043.
    • Thiele, S., Haalck, L., Struffert, M., Scherber, C., & Risse, B. (2021). Towards Visual Insect Camera Traps. International Conference on Pattern Recognition (ICPR) Workshop on Visual observation and analysis of Vertebrate And Insect Behavior (VAIB), Milan.
Top of page

Contact

University of Münster
Computer Vision and Machine Learning Systems

Heisenbergstraße 2
48149 Münster

Tel: +49 251 83-32717
Fax: +49 251 83-33755
cvmls@uni-muenster.de
 
living.knowledge
  • Index
  • Intranet
  • Legal Disclosure
  • Privacy Statement
  • Accessibility

© 2025 Institute for Geoinformatics